summaryrefslogtreecommitdiff
path: root/drivers/pci_endpoint/pci_ep-uclass.c
blob: 0d0912f1bc32da1aec5704e76ac19d137251a5e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// SPDX-License-Identifier: GPL-2.0+
/*
 * PCI Endpoint uclass
 *
 * Based on Linux PCI-EP driver written by
 * Kishon Vijay Abraham I <kishon@ti.com>
 *
 * Copyright (c) 2019
 * Written by Ramon Fried <ramon.fried@gmail.com>
 */

#include <common.h>
#include <dm.h>
#include <errno.h>
#include <asm/global_data.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <pci_ep.h>
#include <linux/types.h>

DECLARE_GLOBAL_DATA_PTR;

int pci_ep_write_header(struct udevice *dev, uint fn, struct pci_ep_header *hdr)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);

	if (!ops->write_header)
		return -ENOSYS;

	return ops->write_header(dev, fn, hdr);
}

int pci_ep_read_header(struct udevice *dev, uint fn, struct pci_ep_header *hdr)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);

	if (!ops->read_header)
		return -ENOSYS;

	return ops->read_header(dev, fn, hdr);
}

int pci_ep_set_bar(struct udevice *dev, uint func_no, struct pci_bar *ep_bar)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);
	int flags = ep_bar->flags;

	/* Some basic bar validity checks */
	if (ep_bar->barno > BAR_5 || ep_bar->barno < BAR_0)
		return -EINVAL;

	if ((ep_bar->barno == BAR_5 &&
	     (flags & PCI_BASE_ADDRESS_MEM_TYPE_64)) ||
	    ((flags & PCI_BASE_ADDRESS_SPACE_IO) &&
	     (flags & PCI_BASE_ADDRESS_IO_MASK)) ||
	    (upper_32_bits(ep_bar->size) &&
	     !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
		return -EINVAL;

	if (!ops->set_bar)
		return -ENOSYS;

	return ops->set_bar(dev, func_no, ep_bar);
}

int pci_ep_read_bar(struct udevice *dev, uint func_no, struct pci_bar *ep_bar,
		    enum pci_barno barno)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);

	/* Some basic bar validity checks */
	if (barno > BAR_5 || barno < BAR_0)
		return -EINVAL;

	if (!ops->read_bar)
		return -ENOSYS;

	return ops->read_bar(dev, func_no, ep_bar, barno);
}

int pci_ep_clear_bar(struct udevice *dev, uint func_num, enum pci_barno bar)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);

	if (!ops->clear_bar)
		return -ENOSYS;

	return ops->clear_bar(dev, func_num, bar);
}

int pci_ep_map_addr(struct udevice *dev, uint func_no, phys_addr_t addr,
		    u64 pci_addr, size_t size)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);

	if (!ops->map_addr)
		return -ENOSYS;

	return ops->map_addr(dev, func_no, addr, pci_addr, size);
}

int pci_ep_unmap_addr(struct udevice *dev, uint func_no, phys_addr_t addr)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);

	if (!ops->unmap_addr)
		return -ENOSYS;

	return ops->unmap_addr(dev, func_no, addr);
}

int pci_ep_set_msi(struct udevice *dev, uint func_no, uint interrupts)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);
	uint encode_int;

	if (interrupts > 32)
		return -EINVAL;

	if (!ops->set_msi)
		return -ENOSYS;

	/* MSI spec permits allocation of
	 * only 1, 2, 4, 8, 16, 32 interrupts
	 */
	encode_int = order_base_2(interrupts);

	return ops->set_msi(dev, func_no, encode_int);
}

int pci_ep_get_msi(struct udevice *dev, uint func_no)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);
	int interrupt;

	if (!ops->get_msi)
		return -ENOSYS;

	interrupt = ops->get_msi(dev, func_no);

	if (interrupt < 0)
		return 0;

	/* Translate back from order base 2*/
	interrupt = 1 << interrupt;

	return interrupt;
}

int pci_ep_set_msix(struct udevice *dev, uint func_no, uint interrupts)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);

	if (interrupts < 1 || interrupts > 2048)
		return -EINVAL;

	if (!ops->set_msix)
		return -ENOSYS;

	return ops->set_msix(dev, func_no, interrupts - 1);
}

int pci_ep_get_msix(struct udevice *dev, uint func_no)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);
	int interrupt;

	if (!ops->get_msix)
		return -ENOSYS;

	interrupt = ops->get_msix(dev, func_no);

	if (interrupt < 0)
		return 0;

	return interrupt + 1;
}

int pci_ep_raise_irq(struct udevice *dev, uint func_no,
		     enum pci_ep_irq_type type, uint interrupt_num)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);

	if (!ops->raise_irq)
		return -ENOSYS;

	return ops->raise_irq(dev, func_no, type, interrupt_num);
}

int pci_ep_start(struct udevice *dev)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);

	if (!ops->start)
		return -ENOSYS;

	return ops->start(dev);
}

int pci_ep_stop(struct udevice *dev)
{
	struct pci_ep_ops *ops = pci_ep_get_ops(dev);

	if (!ops->stop)
		return -ENOSYS;

	return ops->stop(dev);
}

UCLASS_DRIVER(pci_ep) = {
	.id		= UCLASS_PCI_EP,
	.name		= "pci_ep",
	.flags		= DM_UC_FLAG_SEQ_ALIAS,
};

void pci_ep_init(void)
{
	struct udevice *dev;

	for (uclass_first_device_check(UCLASS_PCI_EP, &dev);
	     dev;
	     uclass_next_device_check(&dev)) {
		;
	}
}