summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/zynq_nand.c
blob: 28db4153f5e0b995d72084eb7b6cca790b746f92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
// SPDX-License-Identifier: GPL-2.0+
/*
 * (C) Copyright 2016 Xilinx, Inc.
 *
 * Xilinx Zynq NAND Flash Controller Driver
 * This driver is based on plat_nand.c and mxc_nand.c drivers
 */

#include <common.h>
#include <malloc.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <nand.h>
#include <linux/ioport.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
#include <dm.h>

/* The NAND flash driver defines */
#define ZYNQ_NAND_CMD_PHASE		1
#define ZYNQ_NAND_DATA_PHASE		2
#define ZYNQ_NAND_ECC_SIZE		512
#define ZYNQ_NAND_SET_OPMODE_8BIT	(0 << 0)
#define ZYNQ_NAND_SET_OPMODE_16BIT	(1 << 0)
#define ZYNQ_NAND_ECC_STATUS		(1 << 6)
#define ZYNQ_MEMC_CLRCR_INT_CLR1	(1 << 4)
#define ZYNQ_MEMC_SR_RAW_INT_ST1	(1 << 6)
#define ZYNQ_MEMC_SR_INT_ST1		(1 << 4)
#define ZYNQ_MEMC_NAND_ECC_MODE_MASK	0xC

/* Flash memory controller operating parameters */
#define ZYNQ_NAND_CLR_CONFIG	((0x1 << 1)  |	/* Disable interrupt */ \
				(0x1 << 4)   |	/* Clear interrupt */ \
				(0x1 << 6))	/* Disable ECC interrupt */

#ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS

/* Assuming 50MHz clock (20ns cycle time) and 3V operation */
#define ZYNQ_NAND_SET_CYCLES	((0x2 << 20) |	/* t_rr from nand_cycles */ \
				(0x2 << 17)  |	/* t_ar from nand_cycles */ \
				(0x1 << 14)  |	/* t_clr from nand_cycles */ \
				(0x3 << 11)  |	/* t_wp from nand_cycles */ \
				(0x2 << 8)   |	/* t_rea from nand_cycles */ \
				(0x5 << 4)   |	/* t_wc from nand_cycles */ \
				(0x5 << 0))	/* t_rc from nand_cycles */
#endif


#define ZYNQ_NAND_DIRECT_CMD	((0x4 << 23) |	/* Chip 0 from interface 1 */ \
				(0x2 << 21))	/* UpdateRegs operation */

#define ZYNQ_NAND_ECC_CONFIG	((0x1 << 2)  |	/* ECC available on APB */ \
				(0x1 << 4)   |	/* ECC read at end of page */ \
				(0x0 << 5))	/* No Jumping */

#define ZYNQ_NAND_ECC_CMD1	((0x80)      |	/* Write command */ \
				(0x00 << 8)  |	/* Read command */ \
				(0x30 << 16) |	/* Read End command */ \
				(0x1 << 24))	/* Read End command calid */

#define ZYNQ_NAND_ECC_CMD2	((0x85)      |	/* Write col change cmd */ \
				(0x05 << 8)  |	/* Read col change cmd */ \
				(0xE0 << 16) |	/* Read col change end cmd */ \
				(0x1 << 24))	/* Read col change
							end cmd valid */
/* AXI Address definitions */
#define START_CMD_SHIFT			3
#define END_CMD_SHIFT			11
#define END_CMD_VALID_SHIFT		20
#define ADDR_CYCLES_SHIFT		21
#define CLEAR_CS_SHIFT			21
#define ECC_LAST_SHIFT			10
#define COMMAND_PHASE			(0 << 19)
#define DATA_PHASE			(1 << 19)
#define ONDIE_ECC_FEATURE_ADDR		0x90
#define ONDIE_ECC_FEATURE_ENABLE	0x08

#define ZYNQ_NAND_ECC_LAST	(1 << ECC_LAST_SHIFT)	/* Set ECC_Last */
#define ZYNQ_NAND_CLEAR_CS	(1 << CLEAR_CS_SHIFT)	/* Clear chip select */

/* ECC block registers bit position and bit mask */
#define ZYNQ_NAND_ECC_BUSY	(1 << 6)	/* ECC block is busy */
#define ZYNQ_NAND_ECC_MASK	0x00FFFFFF	/* ECC value mask */

#define ZYNQ_NAND_ROW_ADDR_CYCL_MASK	0x0F
#define ZYNQ_NAND_COL_ADDR_CYCL_MASK	0xF0

#define ZYNQ_NAND_MIO_NUM_NAND_8BIT	13
#define ZYNQ_NAND_MIO_NUM_NAND_16BIT	8

enum zynq_nand_bus_width {
	NAND_BW_UNKNOWN = -1,
	NAND_BW_8BIT,
	NAND_BW_16BIT,
};

#ifndef NAND_CMD_LOCK_TIGHT
#define NAND_CMD_LOCK_TIGHT 0x2c
#endif

#ifndef NAND_CMD_LOCK_STATUS
#define NAND_CMD_LOCK_STATUS 0x7a
#endif

/* SMC register set */
struct zynq_nand_smc_regs {
	u32 csr;		/* 0x00 */
	u32 reserved0[2];
	u32 cfr;		/* 0x0C */
	u32 dcr;		/* 0x10 */
	u32 scr;		/* 0x14 */
	u32 sor;		/* 0x18 */
	u32 reserved1[249];
	u32 esr;		/* 0x400 */
	u32 emcr;		/* 0x404 */
	u32 emcmd1r;		/* 0x408 */
	u32 emcmd2r;		/* 0x40C */
	u32 reserved2[2];
	u32 eval0r;		/* 0x418 */
};

/*
 * struct nand_config - Defines the NAND flash driver instance
 * @parts:		Pointer to the mtd_partition structure
 * @nand_base:		Virtual address of the NAND flash device
 * @end_cmd_pending:	End command is pending
 * @end_cmd:		End command
 */
struct nand_config {
	void __iomem	*nand_base;
	u8		end_cmd_pending;
	u8		end_cmd;
};

struct nand_drv {
	struct zynq_nand_smc_regs *reg;
	struct nand_config config;
};

struct zynq_nand_info {
	struct udevice *dev;
	struct nand_drv nand_ctrl;
	struct nand_chip nand_chip;
};

/*
 * struct zynq_nand_command_format - Defines NAND flash command format
 * @start_cmd:		First cycle command (Start command)
 * @end_cmd:		Second cycle command (Last command)
 * @addr_cycles:	Number of address cycles required to send the address
 * @end_cmd_valid:	The second cycle command is valid for cmd or data phase
 */
struct zynq_nand_command_format {
	u8 start_cmd;
	u8 end_cmd;
	u8 addr_cycles;
	u8 end_cmd_valid;
};

/*  The NAND flash operations command format */
static const struct zynq_nand_command_format zynq_nand_commands[] = {
	{NAND_CMD_READ0, NAND_CMD_READSTART, 5, ZYNQ_NAND_CMD_PHASE},
	{NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, ZYNQ_NAND_CMD_PHASE},
	{NAND_CMD_READID, NAND_CMD_NONE, 1, 0},
	{NAND_CMD_STATUS, NAND_CMD_NONE, 0, 0},
	{NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, ZYNQ_NAND_DATA_PHASE},
	{NAND_CMD_RNDIN, NAND_CMD_NONE, 2, 0},
	{NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, ZYNQ_NAND_CMD_PHASE},
	{NAND_CMD_RESET, NAND_CMD_NONE, 0, 0},
	{NAND_CMD_PARAM, NAND_CMD_NONE, 1, 0},
	{NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, 0},
	{NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, 0},
	{NAND_CMD_LOCK, NAND_CMD_NONE, 0, 0},
	{NAND_CMD_LOCK_TIGHT, NAND_CMD_NONE, 0, 0},
	{NAND_CMD_UNLOCK1, NAND_CMD_NONE, 3, 0},
	{NAND_CMD_UNLOCK2, NAND_CMD_NONE, 3, 0},
	{NAND_CMD_LOCK_STATUS, NAND_CMD_NONE, 3, 0},
	{NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},
	/* Add all the flash commands supported by the flash device */
};

/* Define default oob placement schemes for large and small page devices */
static struct nand_ecclayout nand_oob_16 = {
	.eccbytes = 3,
	.eccpos = {0, 1, 2},
	.oobfree = {
		{ .offset = 8, .length = 8 }
	}
};

static struct nand_ecclayout nand_oob_64 = {
	.eccbytes = 12,
	.eccpos = {
		   52, 53, 54, 55, 56, 57,
		   58, 59, 60, 61, 62, 63},
	.oobfree = {
		{ .offset = 2, .length = 50 }
	}
};

static struct nand_ecclayout ondie_nand_oob_64 = {
	.eccbytes = 32,

	.eccpos = {
		8, 9, 10, 11, 12, 13, 14, 15,
		24, 25, 26, 27, 28, 29, 30, 31,
		40, 41, 42, 43, 44, 45, 46, 47,
		56, 57, 58, 59, 60, 61, 62, 63
	},

	.oobfree = {
		{ .offset = 4, .length = 4 },
		{ .offset = 20, .length = 4 },
		{ .offset = 36, .length = 4 },
		{ .offset = 52, .length = 4 }
	}
};

/* bbt decriptors for chips with on-die ECC and
   chips with 64-byte OOB */
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs = 4,
	.len = 4,
	.veroffs = 20,
	.maxblocks = 4,
	.pattern = bbt_pattern
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs = 4,
	.len = 4,
	.veroffs = 20,
	.maxblocks = 4,
	.pattern = mirror_pattern
};

/*
 * zynq_nand_waitfor_ecc_completion - Wait for ECC completion
 *
 * returns: status for command completion, -1 for Timeout
 */
static int zynq_nand_waitfor_ecc_completion(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd_to_nand(mtd);
	struct nand_drv *smc = nand_get_controller_data(nand_chip);
	unsigned long timeout;
	u32 status;

	/* Wait max 10us */
	timeout = 10;
	status = readl(&smc->reg->esr);
	while (status & ZYNQ_NAND_ECC_BUSY) {
		status = readl(&smc->reg->esr);
		if (timeout == 0)
			return -1;
		timeout--;
		udelay(1);
	}

	return status;
}

/*
 * zynq_nand_init_nand_flash - Initialize NAND controller
 * @option:	Device property flags
 *
 * This function initializes the NAND flash interface on the NAND controller.
 *
 * returns:	0 on success or error value on failure
 */
static int zynq_nand_init_nand_flash(struct mtd_info *mtd, int option)
{
	struct nand_chip *nand_chip = mtd_to_nand(mtd);
	struct nand_drv *smc = nand_get_controller_data(nand_chip);
	u32 status;

	/* disable interrupts */
	writel(ZYNQ_NAND_CLR_CONFIG, &smc->reg->cfr);
#ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS
	/* Initialize the NAND interface by setting cycles and operation mode */
	writel(ZYNQ_NAND_SET_CYCLES, &smc->reg->scr);
#endif
	if (option & NAND_BUSWIDTH_16)
		writel(ZYNQ_NAND_SET_OPMODE_16BIT, &smc->reg->sor);
	else
		writel(ZYNQ_NAND_SET_OPMODE_8BIT, &smc->reg->sor);

	writel(ZYNQ_NAND_DIRECT_CMD, &smc->reg->dcr);

	/* Wait till the ECC operation is complete */
	status = zynq_nand_waitfor_ecc_completion(mtd);
	if (status < 0) {
		printf("%s: Timeout\n", __func__);
		return status;
	}

	/* Set the command1 and command2 register */
	writel(ZYNQ_NAND_ECC_CMD1, &smc->reg->emcmd1r);
	writel(ZYNQ_NAND_ECC_CMD2, &smc->reg->emcmd2r);

	return 0;
}

/*
 * zynq_nand_calculate_hwecc - Calculate Hardware ECC
 * @mtd:	Pointer to the mtd_info structure
 * @data:	Pointer to the page data
 * @ecc_code:	Pointer to the ECC buffer where ECC data needs to be stored
 *
 * This function retrieves the Hardware ECC data from the controller and returns
 * ECC data back to the MTD subsystem.
 *
 * returns:	0 on success or error value on failure
 */
static int zynq_nand_calculate_hwecc(struct mtd_info *mtd, const u8 *data,
		u8 *ecc_code)
{
	struct nand_chip *nand_chip = mtd_to_nand(mtd);
	struct nand_drv *smc = nand_get_controller_data(nand_chip);
	u32 ecc_value = 0;
	u8 ecc_reg, ecc_byte;
	u32 ecc_status;

	/* Wait till the ECC operation is complete */
	ecc_status = zynq_nand_waitfor_ecc_completion(mtd);
	if (ecc_status < 0) {
		printf("%s: Timeout\n", __func__);
		return ecc_status;
	}

	for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
		/* Read ECC value for each block */
		ecc_value = readl(&smc->reg->eval0r + ecc_reg);

		/* Get the ecc status from ecc read value */
		ecc_status = (ecc_value >> 24) & 0xFF;

		/* ECC value valid */
		if (ecc_status & ZYNQ_NAND_ECC_STATUS) {
			for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
				/* Copy ECC bytes to MTD buffer */
				*ecc_code = ecc_value & 0xFF;
				ecc_value = ecc_value >> 8;
				ecc_code++;
			}
		} else {
			debug("%s: ecc status failed\n", __func__);
		}
	}

	return 0;
}

/*
 * onehot - onehot function
 * @value:	value to check for onehot
 *
 * This function checks whether a value is onehot or not.
 * onehot is if and only if one bit is set.
 *
 * FIXME: Try to move this in common.h
 */
static bool onehot(unsigned short value)
{
	bool onehot;

	onehot = value && !(value & (value - 1));
	return onehot;
}

/*
 * zynq_nand_correct_data - ECC correction function
 * @mtd:	Pointer to the mtd_info structure
 * @buf:	Pointer to the page data
 * @read_ecc:	Pointer to the ECC value read from spare data area
 * @calc_ecc:	Pointer to the calculated ECC value
 *
 * This function corrects the ECC single bit errors & detects 2-bit errors.
 *
 * returns:	0 if no ECC errors found
 *		1 if single bit error found and corrected.
 *		-1 if multiple ECC errors found.
 */
static int zynq_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
			unsigned char *read_ecc, unsigned char *calc_ecc)
{
	unsigned char bit_addr;
	unsigned int byte_addr;
	unsigned short ecc_odd, ecc_even;
	unsigned short read_ecc_lower, read_ecc_upper;
	unsigned short calc_ecc_lower, calc_ecc_upper;

	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;

	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;

	ecc_odd = read_ecc_lower ^ calc_ecc_lower;
	ecc_even = read_ecc_upper ^ calc_ecc_upper;

	if ((ecc_odd == 0) && (ecc_even == 0))
		return 0;       /* no error */

	if (ecc_odd == (~ecc_even & 0xfff)) {
		/* bits [11:3] of error code is byte offset */
		byte_addr = (ecc_odd >> 3) & 0x1ff;
		/* bits [2:0] of error code is bit offset */
		bit_addr = ecc_odd & 0x7;
		/* Toggling error bit */
		buf[byte_addr] ^= (1 << bit_addr);
		return 1;
	}

	if (onehot(ecc_odd | ecc_even))
		return 1; /* one error in parity */

	return -1; /* Uncorrectable error */
}

/*
 * zynq_nand_read_oob - [REPLACABLE] the most common OOB data read function
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @page:	page number to read
 * @sndcmd:	flag whether to issue read command or not
 */
static int zynq_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			int page)
{
	unsigned long data_phase_addr = 0;
	int data_width = 4;
	u8 *p;

	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);

	p = chip->oob_poi;
	chip->read_buf(mtd, p, (mtd->oobsize - data_width));
	p += mtd->oobsize - data_width;

	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
	chip->read_buf(mtd, p, data_width);

	return 0;
}

/*
 * zynq_nand_write_oob - [REPLACABLE] the most common OOB data write function
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @page:	page number to write
 */
static int zynq_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
			     int page)
{
	int status = 0, data_width = 4;
	const u8 *buf = chip->oob_poi;
	unsigned long data_phase_addr = 0;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);

	chip->write_buf(mtd, buf, (mtd->oobsize - data_width));
	buf += mtd->oobsize - data_width;

	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
	chip->write_buf(mtd, buf, data_width);

	/* Send command to program the OOB data */
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

/*
 * zynq_nand_read_page_raw - [Intern] read raw page data without ecc
 * @mtd:        mtd info structure
 * @chip:       nand chip info structure
 * @buf:        buffer to store read data
 * @oob_required: must write chip->oob_poi to OOB
 * @page:       page number to read
 */
static int zynq_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				   u8 *buf,  int oob_required, int page)
{
	unsigned long data_width = 4;
	unsigned long data_phase_addr = 0;
	u8 *p;

	chip->read_buf(mtd, buf, mtd->writesize);

	p = chip->oob_poi;
	chip->read_buf(mtd, p, (mtd->oobsize - data_width));
	p += (mtd->oobsize - data_width);

	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;

	chip->read_buf(mtd, p, data_width);
	return 0;
}

static int zynq_nand_read_page_raw_nooob(struct mtd_info *mtd,
		struct nand_chip *chip, u8 *buf, int oob_required, int page)
{
	chip->read_buf(mtd, buf, mtd->writesize);
	return 0;
}

static int zynq_nand_read_subpage_raw(struct mtd_info *mtd,
				    struct nand_chip *chip, u32 data_offs,
				    u32 readlen, u8 *buf, int page)
{
	if (data_offs != 0) {
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_offs, -1);
		buf += data_offs;
	}
	chip->read_buf(mtd, buf, readlen);

	return 0;
}

/*
 * zynq_nand_write_page_raw - [Intern] raw page write function
 * @mtd:        mtd info structure
 * @chip:       nand chip info structure
 * @buf:        data buffer
 * @oob_required: must write chip->oob_poi to OOB
 */
static int zynq_nand_write_page_raw(struct mtd_info *mtd,
	struct nand_chip *chip, const u8 *buf, int oob_required, int page)
{
	unsigned long data_width = 4;
	unsigned long data_phase_addr = 0;
	u8 *p;

	chip->write_buf(mtd, buf, mtd->writesize);

	p = chip->oob_poi;
	chip->write_buf(mtd, p, (mtd->oobsize - data_width));
	p += (mtd->oobsize - data_width);

	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;

	chip->write_buf(mtd, p, data_width);

	return 0;
}

/*
 * nand_write_page_hwecc - Hardware ECC based page write function
 * @mtd:	Pointer to the mtd info structure
 * @chip:	Pointer to the NAND chip info structure
 * @buf:	Pointer to the data buffer
 * @oob_required: must write chip->oob_poi to OOB
 *
 * This functions writes data and hardware generated ECC values in to the page.
 */
static int zynq_nand_write_page_hwecc(struct mtd_info *mtd,
	struct nand_chip *chip, const u8 *buf, int oob_required, int page)
{
	int i, eccsteps, eccsize = chip->ecc.size;
	u8 *ecc_calc = chip->buffers->ecccalc;
	const u8 *p = buf;
	u32 *eccpos = chip->ecc.layout->eccpos;
	unsigned long data_phase_addr = 0;
	unsigned long data_width = 4;
	u8 *oob_ptr;

	for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
		chip->write_buf(mtd, p, eccsize);
		p += eccsize;
	}
	chip->write_buf(mtd, p, (eccsize - data_width));
	p += eccsize - data_width;

	/* Set ECC Last bit to 1 */
	data_phase_addr = (unsigned long) chip->IO_ADDR_W;
	data_phase_addr |= ZYNQ_NAND_ECC_LAST;
	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
	chip->write_buf(mtd, p, data_width);

	/* Wait for ECC to be calculated and read the error values */
	p = buf;
	chip->ecc.calculate(mtd, p, &ecc_calc[0]);

	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]);

	/* Clear ECC last bit */
	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
	data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;

	/* Write the spare area with ECC bytes */
	oob_ptr = chip->oob_poi;
	chip->write_buf(mtd, oob_ptr, (mtd->oobsize - data_width));

	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
	oob_ptr += (mtd->oobsize - data_width);
	chip->write_buf(mtd, oob_ptr, data_width);

	return 0;
}

/*
 * zynq_nand_write_page_swecc - [REPLACABLE] software ecc based page
 * write function
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @buf:	data buffer
 * @oob_required: must write chip->oob_poi to OOB
 */
static int zynq_nand_write_page_swecc(struct mtd_info *mtd,
	struct nand_chip *chip, const u8 *buf, int oob_required, int page)
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	u8 *ecc_calc = chip->buffers->ecccalc;
	const u8 *p = buf;
	u32 *eccpos = chip->ecc.layout->eccpos;

	/* Software ecc calculation */
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];

	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
}

/*
 * nand_read_page_hwecc - Hardware ECC based page read function
 * @mtd:	Pointer to the mtd info structure
 * @chip:	Pointer to the NAND chip info structure
 * @buf:	Pointer to the buffer to store read data
 * @oob_required: must write chip->oob_poi to OOB
 * @page:	page number to read
 *
 * This functions reads data and checks the data integrity by comparing hardware
 * generated ECC values and read ECC values from spare area.
 *
 * returns:	0 always and updates ECC operation status in to MTD structure
 */
static int zynq_nand_read_page_hwecc(struct mtd_info *mtd,
	struct nand_chip *chip, u8 *buf, int oob_required, int page)
{
	int i, stat, eccsteps, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	u8 *p = buf;
	u8 *ecc_calc = chip->buffers->ecccalc;
	u8 *ecc_code = chip->buffers->ecccode;
	u32 *eccpos = chip->ecc.layout->eccpos;
	unsigned long data_phase_addr = 0;
	unsigned long data_width = 4;
	u8 *oob_ptr;

	for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
		chip->read_buf(mtd, p, eccsize);
		p += eccsize;
	}
	chip->read_buf(mtd, p, (eccsize - data_width));
	p += eccsize - data_width;

	/* Set ECC Last bit to 1 */
	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
	data_phase_addr |= ZYNQ_NAND_ECC_LAST;
	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
	chip->read_buf(mtd, p, data_width);

	/* Read the calculated ECC value */
	p = buf;
	chip->ecc.calculate(mtd, p, &ecc_calc[0]);

	/* Clear ECC last bit */
	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
	data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;

	/* Read the stored ECC value */
	oob_ptr = chip->oob_poi;
	chip->read_buf(mtd, oob_ptr, (mtd->oobsize - data_width));

	/* de-assert chip select */
	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;

	oob_ptr += (mtd->oobsize - data_width);
	chip->read_buf(mtd, oob_ptr, data_width);

	for (i = 0; i < chip->ecc.total; i++)
		ecc_code[i] = ~(chip->oob_poi[eccpos[i]]);

	eccsteps = chip->ecc.steps;
	p = buf;

	/* Check ECC error for all blocks and correct if it is correctable */
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
		if (stat < 0)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;
	}
	return 0;
}

/*
 * zynq_nand_read_page_swecc - [REPLACABLE] software ecc based page
 * read function
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @buf:	buffer to store read data
 * @page:	page number to read
 */
static int zynq_nand_read_page_swecc(struct mtd_info *mtd,
	struct nand_chip *chip, u8 *buf, int oob_required,  int page)
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	u8 *p = buf;
	u8 *ecc_calc = chip->buffers->ecccalc;
	u8 *ecc_code = chip->buffers->ecccode;
	u32 *eccpos = chip->ecc.layout->eccpos;

	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

	for (i = 0; i < chip->ecc.total; i++)
		ecc_code[i] = chip->oob_poi[eccpos[i]];

	eccsteps = chip->ecc.steps;
	p = buf;

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
		if (stat < 0)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;
	}
	return 0;
}

/*
 * zynq_nand_select_chip - Select the flash device
 * @mtd:	Pointer to the mtd_info structure
 * @chip:	Chip number to be selected
 *
 * This function is empty as the NAND controller handles chip select line
 * internally based on the chip address passed in command and data phase.
 */
static void zynq_nand_select_chip(struct mtd_info *mtd, int chip)
{
	/* Not support multiple chips yet */
}

/*
 * zynq_nand_cmd_function - Send command to NAND device
 * @mtd:	Pointer to the mtd_info structure
 * @command:	The command to be sent to the flash device
 * @column:	The column address for this command, -1 if none
 * @page_addr:	The page address for this command, -1 if none
 */
static void zynq_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
				 int column, int page_addr)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_drv *smc = nand_get_controller_data(chip);
	const struct zynq_nand_command_format *curr_cmd = NULL;
	u8 addr_cycles = 0;
	struct nand_config *xnand = &smc->config;
	void *cmd_addr;
	unsigned long cmd_data = 0;
	unsigned long cmd_phase_addr = 0;
	unsigned long data_phase_addr = 0;
	u8 end_cmd = 0;
	u8 end_cmd_valid = 0;
	u32 index;

	if (xnand->end_cmd_pending) {
		/* Check for end command if this command request is same as the
		 * pending command then return
		 */
		if (xnand->end_cmd == command) {
			xnand->end_cmd = 0;
			xnand->end_cmd_pending = 0;
			return;
		}
	}

	/* Emulate NAND_CMD_READOOB for large page device */
	if ((mtd->writesize > ZYNQ_NAND_ECC_SIZE) &&
	    (command == NAND_CMD_READOOB)) {
		column += mtd->writesize;
		command = NAND_CMD_READ0;
	}

	/* Get the command format */
	for (index = 0; index < ARRAY_SIZE(zynq_nand_commands); index++)
		if (command == zynq_nand_commands[index].start_cmd)
			break;

	if (index == ARRAY_SIZE(zynq_nand_commands)) {
		printf("%s: Unsupported start cmd %02x\n", __func__, command);
		return;
	}
	curr_cmd = &zynq_nand_commands[index];

	/* Clear interrupt */
	writel(ZYNQ_MEMC_CLRCR_INT_CLR1, &smc->reg->cfr);

	/* Get the command phase address */
	if (curr_cmd->end_cmd_valid == ZYNQ_NAND_CMD_PHASE)
		end_cmd_valid = 1;

	if (curr_cmd->end_cmd == NAND_CMD_NONE)
		end_cmd = 0x0;
	else
		end_cmd = curr_cmd->end_cmd;

	if (command == NAND_CMD_READ0 ||
	    command == NAND_CMD_SEQIN) {
		addr_cycles = chip->onfi_params.addr_cycles &
				ZYNQ_NAND_ROW_ADDR_CYCL_MASK;
		addr_cycles += ((chip->onfi_params.addr_cycles &
				ZYNQ_NAND_COL_ADDR_CYCL_MASK) >> 4);
	} else {
		addr_cycles = curr_cmd->addr_cycles;
	}

	cmd_phase_addr = (unsigned long)xnand->nand_base	|
			(addr_cycles << ADDR_CYCLES_SHIFT)	|
			(end_cmd_valid << END_CMD_VALID_SHIFT)		|
			(COMMAND_PHASE)					|
			(end_cmd << END_CMD_SHIFT)			|
			(curr_cmd->start_cmd << START_CMD_SHIFT);

	cmd_addr = (void __iomem *)cmd_phase_addr;

	/* Get the data phase address */
	end_cmd_valid = 0;

	data_phase_addr = (unsigned long)xnand->nand_base	|
			(0x0 << CLEAR_CS_SHIFT)				|
			(end_cmd_valid << END_CMD_VALID_SHIFT)		|
			(DATA_PHASE)					|
			(end_cmd << END_CMD_SHIFT)			|
			(0x0 << ECC_LAST_SHIFT);

	chip->IO_ADDR_R = (void  __iomem *)data_phase_addr;
	chip->IO_ADDR_W = chip->IO_ADDR_R;

	/* Command phase AXI Read & Write */
	if (column != -1 && page_addr != -1) {
		/* Adjust columns for 16 bit bus width */
		if (chip->options & NAND_BUSWIDTH_16)
			column >>= 1;
		cmd_data = column;
		if (mtd->writesize > ZYNQ_NAND_ECC_SIZE) {
			cmd_data |= page_addr << 16;
			/* Another address cycle for devices > 128MiB */
			if (chip->chipsize > (128 << 20)) {
				writel(cmd_data, cmd_addr);
				cmd_data = (page_addr >> 16);
			}
		} else {
			cmd_data |= page_addr << 8;
		}
	} else if (page_addr != -1)  { /* Erase */
		cmd_data = page_addr;
	} else if (column != -1) { /* Change read/write column, read id etc */
		/* Adjust columns for 16 bit bus width */
		if ((chip->options & NAND_BUSWIDTH_16) &&
		    ((command == NAND_CMD_READ0) ||
		     (command == NAND_CMD_SEQIN) ||
		     (command == NAND_CMD_RNDOUT) ||
		     (command == NAND_CMD_RNDIN)))
			column >>= 1;
		cmd_data = column;
	}

	writel(cmd_data, cmd_addr);

	if (curr_cmd->end_cmd_valid) {
		xnand->end_cmd = curr_cmd->end_cmd;
		xnand->end_cmd_pending = 1;
	}

	ndelay(100);

	if ((command == NAND_CMD_READ0) ||
	    (command == NAND_CMD_RESET) ||
	    (command == NAND_CMD_PARAM) ||
	    (command == NAND_CMD_GET_FEATURES))
		/* wait until command is processed */
		nand_wait_ready(mtd);
}

/*
 * zynq_nand_read_buf - read chip data into buffer
 * @mtd:        MTD device structure
 * @buf:        buffer to store date
 * @len:        number of bytes to read
 */
static void zynq_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	/* Make sure that buf is 32 bit aligned */
	if (((unsigned long)buf & 0x3) != 0) {
		if (((unsigned long)buf & 0x1) != 0) {
			if (len) {
				*buf = readb(chip->IO_ADDR_R);
				buf += 1;
				len--;
			}
		}

		if (((unsigned long)buf & 0x3) != 0) {
			if (len >= 2) {
				*(u16 *)buf = readw(chip->IO_ADDR_R);
				buf += 2;
				len -= 2;
			}
		}
	}

	/* copy aligned data */
	while (len >= 4) {
		*(u32 *)buf = readl(chip->IO_ADDR_R);
		buf += 4;
		len -= 4;
	}

	/* mop up any remaining bytes */
	if (len) {
		if (len >= 2) {
			*(u16 *)buf = readw(chip->IO_ADDR_R);
			buf += 2;
			len -= 2;
		}
		if (len)
			*buf = readb(chip->IO_ADDR_R);
	}
}

/*
 * zynq_nand_write_buf - write buffer to chip
 * @mtd:        MTD device structure
 * @buf:        data buffer
 * @len:        number of bytes to write
 */
static void zynq_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	const u32 *nand = chip->IO_ADDR_W;

	/* Make sure that buf is 32 bit aligned */
	if (((unsigned long)buf & 0x3) != 0) {
		if (((unsigned long)buf & 0x1) != 0) {
			if (len) {
				writeb(*buf, nand);
				buf += 1;
				len--;
			}
		}

		if (((unsigned long)buf & 0x3) != 0) {
			if (len >= 2) {
				writew(*(u16 *)buf, nand);
				buf += 2;
				len -= 2;
			}
		}
	}

	/* copy aligned data */
	while (len >= 4) {
		writel(*(u32 *)buf, nand);
		buf += 4;
		len -= 4;
	}

	/* mop up any remaining bytes */
	if (len) {
		if (len >= 2) {
			writew(*(u16 *)buf, nand);
			buf += 2;
			len -= 2;
		}

		if (len)
			writeb(*buf, nand);
	}
}

/*
 * zynq_nand_device_ready - Check device ready/busy line
 * @mtd:	Pointer to the mtd_info structure
 *
 * returns:	0 on busy or 1 on ready state
 */
static int zynq_nand_device_ready(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd_to_nand(mtd);
	struct nand_drv *smc = nand_get_controller_data(nand_chip);
	u32 csr_val;

	csr_val = readl(&smc->reg->csr);
	/* Check the raw_int_status1 bit */
	if (csr_val & ZYNQ_MEMC_SR_RAW_INT_ST1) {
		/* Clear the interrupt condition */
		writel(ZYNQ_MEMC_SR_INT_ST1, &smc->reg->cfr);
		return 1;
	}

	return 0;
}

static int zynq_nand_check_is_16bit_bw_flash(void)
{
	int is_16bit_bw = NAND_BW_UNKNOWN;
	int mio_num_8bit = 0, mio_num_16bit = 0;

	mio_num_8bit = zynq_slcr_get_mio_pin_status("nand8");
	if (mio_num_8bit == ZYNQ_NAND_MIO_NUM_NAND_8BIT)
		is_16bit_bw = NAND_BW_8BIT;

	mio_num_16bit = zynq_slcr_get_mio_pin_status("nand16");
	if (mio_num_8bit == ZYNQ_NAND_MIO_NUM_NAND_8BIT &&
	    mio_num_16bit == ZYNQ_NAND_MIO_NUM_NAND_16BIT)
		is_16bit_bw = NAND_BW_16BIT;

	return is_16bit_bw;
}

static int zynq_nand_probe(struct udevice *dev)
{
	struct zynq_nand_info *zynq = dev_get_priv(dev);
	struct nand_chip *nand_chip = &zynq->nand_chip;
	struct nand_drv *smc = &zynq->nand_ctrl;
	struct nand_config *xnand = &smc->config;
	struct mtd_info *mtd;
	struct resource res;
	ofnode of_nand;
	unsigned long ecc_page_size;
	u8 maf_id, dev_id, i;
	u8 get_feature[4];
	u8 set_feature[4] = {ONDIE_ECC_FEATURE_ENABLE, 0x00, 0x00, 0x00};
	unsigned long ecc_cfg;
	int ondie_ecc_enabled = 0;
	int err = -1;
	int is_16bit_bw;

	smc->reg = (struct zynq_nand_smc_regs *)dev_read_addr(dev);
	of_nand = dev_read_subnode(dev, "flash@e1000000");
	if (!ofnode_valid(of_nand)) {
		printf("Failed to find nand node in dt\n");
		goto fail;
	}
	if (ofnode_read_resource(of_nand, 0, &res)) {
		printf("Failed to get nand resource\n");
		goto fail;
	}

	xnand->nand_base = (void __iomem *)res.start;
	mtd = nand_to_mtd(nand_chip);
	nand_set_controller_data(nand_chip, &zynq->nand_ctrl);

	/* Set address of NAND IO lines */
	nand_chip->IO_ADDR_R = xnand->nand_base;
	nand_chip->IO_ADDR_W = xnand->nand_base;

	/* Set the driver entry points for MTD */
	nand_chip->cmdfunc = zynq_nand_cmd_function;
	nand_chip->dev_ready = zynq_nand_device_ready;
	nand_chip->select_chip = zynq_nand_select_chip;

	/* If we don't set this delay driver sets 20us by default */
	nand_chip->chip_delay = 30;

	/* Buffer read/write routines */
	nand_chip->read_buf = zynq_nand_read_buf;
	nand_chip->write_buf = zynq_nand_write_buf;

	is_16bit_bw = zynq_nand_check_is_16bit_bw_flash();
	if (is_16bit_bw == NAND_BW_UNKNOWN) {
		printf("%s: Unable detect NAND based on MIO settings\n",
		       __func__);
		goto fail;
	}

	if (is_16bit_bw == NAND_BW_16BIT)
		nand_chip->options = NAND_BUSWIDTH_16;

	nand_chip->bbt_options = NAND_BBT_USE_FLASH;

	/* Initialize the NAND flash interface on NAND controller */
	if (zynq_nand_init_nand_flash(mtd, nand_chip->options) < 0) {
		printf("%s: nand flash init failed\n", __func__);
		goto fail;
	}

	/* first scan to find the device and get the page size */
	if (nand_scan_ident(mtd, 1, NULL)) {
		printf("%s: nand_scan_ident failed\n", __func__);
		goto fail;
	}
	/* Send the command for reading device ID */
	nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
	nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);

	/* Read manufacturer and device IDs */
	maf_id = nand_chip->read_byte(mtd);
	dev_id = nand_chip->read_byte(mtd);

	if ((maf_id == 0x2c) && ((dev_id == 0xf1) ||
				 (dev_id == 0xa1) || (dev_id == 0xb1) ||
				 (dev_id == 0xaa) || (dev_id == 0xba) ||
				 (dev_id == 0xda) || (dev_id == 0xca) ||
				 (dev_id == 0xac) || (dev_id == 0xbc) ||
				 (dev_id == 0xdc) || (dev_id == 0xcc) ||
				 (dev_id == 0xa3) || (dev_id == 0xb3) ||
				 (dev_id == 0xd3) || (dev_id == 0xc3))) {
		nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES,
						ONDIE_ECC_FEATURE_ADDR, -1);
		for (i = 0; i < 4; i++)
			writeb(set_feature[i], nand_chip->IO_ADDR_W);

		/* Wait for 1us after writing data with SET_FEATURES command */
		ndelay(1000);

		nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES,
						ONDIE_ECC_FEATURE_ADDR, -1);
		nand_chip->read_buf(mtd, get_feature, 4);

		if (get_feature[0] & ONDIE_ECC_FEATURE_ENABLE) {
			debug("%s: OnDie ECC flash\n", __func__);
			ondie_ecc_enabled = 1;
		} else {
			printf("%s: Unable to detect OnDie ECC\n", __func__);
		}
	}

	if (ondie_ecc_enabled) {
		/* Bypass the controller ECC block */
		ecc_cfg = readl(&smc->reg->emcr);
		ecc_cfg &= ~ZYNQ_MEMC_NAND_ECC_MODE_MASK;
		writel(ecc_cfg, &smc->reg->emcr);

		/* The software ECC routines won't work
		 * with the SMC controller
		 */
		nand_chip->ecc.mode = NAND_ECC_HW;
		nand_chip->ecc.strength = 1;
		nand_chip->ecc.read_page = zynq_nand_read_page_raw_nooob;
		nand_chip->ecc.read_subpage = zynq_nand_read_subpage_raw;
		nand_chip->ecc.write_page = zynq_nand_write_page_raw;
		nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
		nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
		nand_chip->ecc.read_oob = zynq_nand_read_oob;
		nand_chip->ecc.write_oob = zynq_nand_write_oob;
		nand_chip->ecc.size = mtd->writesize;
		nand_chip->ecc.bytes = 0;

		/* NAND with on-die ECC supports subpage reads */
		nand_chip->options |= NAND_SUBPAGE_READ;

		/* On-Die ECC spare bytes offset 8 is used for ECC codes */
		if (ondie_ecc_enabled) {
			nand_chip->ecc.layout = &ondie_nand_oob_64;
			/* Use the BBT pattern descriptors */
			nand_chip->bbt_td = &bbt_main_descr;
			nand_chip->bbt_md = &bbt_mirror_descr;
		}
	} else {
		/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
		nand_chip->ecc.mode = NAND_ECC_HW;
		nand_chip->ecc.strength = 1;
		nand_chip->ecc.size = ZYNQ_NAND_ECC_SIZE;
		nand_chip->ecc.bytes = 3;
		nand_chip->ecc.calculate = zynq_nand_calculate_hwecc;
		nand_chip->ecc.correct = zynq_nand_correct_data;
		nand_chip->ecc.hwctl = NULL;
		nand_chip->ecc.read_page = zynq_nand_read_page_hwecc;
		nand_chip->ecc.write_page = zynq_nand_write_page_hwecc;
		nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
		nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
		nand_chip->ecc.read_oob = zynq_nand_read_oob;
		nand_chip->ecc.write_oob = zynq_nand_write_oob;

		switch (mtd->writesize) {
		case 512:
			ecc_page_size = 0x1;
			/* Set the ECC memory config register */
			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
			       &smc->reg->emcr);
			break;
		case 1024:
			ecc_page_size = 0x2;
			/* Set the ECC memory config register */
			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
			       &smc->reg->emcr);
			break;
		case 2048:
			ecc_page_size = 0x3;
			/* Set the ECC memory config register */
			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
			       &smc->reg->emcr);
			break;
		default:
			nand_chip->ecc.mode = NAND_ECC_SOFT;
			nand_chip->ecc.calculate = nand_calculate_ecc;
			nand_chip->ecc.correct = nand_correct_data;
			nand_chip->ecc.read_page = zynq_nand_read_page_swecc;
			nand_chip->ecc.write_page = zynq_nand_write_page_swecc;
			nand_chip->ecc.size = 256;
			break;
		}

		if (mtd->oobsize == 16)
			nand_chip->ecc.layout = &nand_oob_16;
		else if (mtd->oobsize == 64)
			nand_chip->ecc.layout = &nand_oob_64;
		else
			printf("%s: No oob layout found\n", __func__);
	}

	/* Second phase scan */
	if (nand_scan_tail(mtd)) {
		printf("%s: nand_scan_tail failed\n", __func__);
		goto fail;
	}
	if (nand_register(0, mtd))
		goto fail;
	return 0;
fail:
	free(xnand);
	return err;
}

static const struct udevice_id zynq_nand_dt_ids[] = {
	{.compatible = "arm,pl353-smc-r2p1",},
	{ /* sentinel */ }
};

U_BOOT_DRIVER(zynq_nand) = {
	.name = "zynq-nand",
	.id = UCLASS_MTD,
	.of_match = zynq_nand_dt_ids,
	.probe = zynq_nand_probe,
	.priv_auto_alloc_size = sizeof(struct zynq_nand_info),
};

void board_nand_init(void)
{
	struct udevice *dev;
	int ret;

	ret = uclass_get_device_by_driver(UCLASS_MTD,
					  DM_GET_DRIVER(zynq_nand), &dev);
	if (ret && ret != -ENODEV)
		pr_err("Failed to initialize %s. (error %d)\n", dev->name, ret);
}