summaryrefslogtreecommitdiff
path: root/drivers/clk/kendryte/pll.c
blob: d4788ba814061db4200c3d530c32e00ce9fcfaed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
 */
#define LOG_CATEGORY UCLASS_CLK
#include <kendryte/pll.h>
#include <linux/errno.h>
#include <linux/kernel.h>

#include <common.h>
#include <dm.h>
/* For DIV_ROUND_DOWN_ULL, defined in linux/kernel.h */
#include <div64.h>
#include <log.h>
#include <serial.h>
#include <asm/io.h>
#include <dt-bindings/clock/k210-sysctl.h>
#include <kendryte/pll.h>
#include <linux/bitfield.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>

#define CLK_K210_PLL "k210_clk_pll"

#ifdef CONFIG_CLK_K210_SET_RATE
static int k210_pll_enable(struct clk *clk);
static int k210_pll_disable(struct clk *clk);

/*
 * The PLL included with the Kendryte K210 appears to be a True Circuits, Inc.
 * General-Purpose PLL. The logical layout of the PLL with internal feedback is
 * approximately the following:
 *
 *  +---------------+
 *  |reference clock|
 *  +---------------+
 *          |
 *          v
 *        +--+
 *        |/r|
 *        +--+
 *          |
 *          v
 *   +-------------+
 *   |divided clock|
 *   +-------------+
 *          |
 *          v
 *  +--------------+
 *  |phase detector|<---+
 *  +--------------+    |
 *          |           |
 *          v   +--------------+
 *        +---+ |feedback clock|
 *        |VCO| +--------------+
 *        +---+         ^
 *          |    +--+   |
 *          +--->|/f|---+
 *          |    +--+
 *          v
 *        +---+
 *        |/od|
 *        +---+
 *          |
 *          v
 *       +------+
 *       |output|
 *       +------+
 *
 * The k210 PLLs have three factors: r, f, and od. Because of the feedback mode,
 * the effect of the division by f is to multiply the input frequency. The
 * equation for the output rate is
 *   rate = (rate_in * f) / (r * od).
 * Moving knowns to one side of the equation, we get
 *   rate / rate_in = f / (r * od)
 * Rearranging slightly,
 *   abs_error = abs((rate / rate_in) - (f / (r * od))).
 * To get relative, error, we divide by the expected ratio
 *   error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in).
 * Simplifying,
 *   error = abs(1 - f / (r * od)) / (rate / rate_in)
 *   error = abs(1 - (f * rate_in) / (r * od * rate))
 * Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate,
 *   error = abs((f * inv_ratio) / (r * od) - 1)
 * This is the error used in evaluating parameters.
 *
 * r and od are four bits each, while f is six bits. Because r and od are
 * multiplied together, instead of the full 256 values possible if both bits
 * were used fully, there are only 97 distinct products. Combined with f, there
 * are 6208 theoretical settings for the PLL. However, most of these settings
 * can be ruled out immediately because they do not have the correct ratio.
 *
 * In addition to the constraint of approximating the desired ratio, parameters
 * must also keep internal pll frequencies within acceptable ranges. The divided
 * clock's minimum and maximum frequencies have a ratio of around 128.  This
 * leaves fairly substantial room to work with, especially since the only
 * affected parameter is r. The VCO's minimum and maximum frequency have a ratio
 * of 5, which is considerably more restrictive.
 *
 * The r and od factors are stored in a table. This is to make it easy to find
 * the next-largest product. Some products have multiple factorizations, but
 * only when one factor has at least a 2.5x ratio to the factors of the other
 * factorization. This is because any smaller ratio would not make a difference
 * when ensuring the VCO's frequency is within spec.
 *
 * Throughout the calculation function, fixed point arithmetic is used. Because
 * the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit
 * 32.32 fixed-point numbers are used to represent ratios. In general, to
 * implement division, the numerator is first multiplied by 2^32. This gives a
 * result where the whole number part is in the upper 32 bits, and the fraction
 * is in the lower 32 bits.
 *
 * In general, rounding is done to the closest integer. This helps find the best
 * approximation for the ratio. Rounding in one direction (e.g down) could cause
 * the function to miss a better ratio with one of the parameters increased by
 * one.
 */

/*
 * The factors table was generated with the following python code:
 *
 * def p(x, y):
 *    return (1.0*x/y > 2.5) or (1.0*y/x > 2.5)
 *
 * factors = {}
 * for i in range(1, 17):
 *    for j in range(1, 17):
 *       fs = factors.get(i*j) or []
 *       if fs == [] or all([
 *             (p(i, x) and p(i, y)) or (p(j, x) and p(j, y))
 *             for (x, y) in fs]):
 *          fs.append((i, j))
 *          factors[i*j] = fs
 *
 * for k, l in sorted(factors.items()):
 *    for v in l:
 *       print("PACK(%s, %s)," % v)
 */
#define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF))
#define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1)
#define UNPACK_OD(val) (((val) & 0xF) + 1)
static const u8 factors[] = {
	PACK(1, 1),
	PACK(1, 2),
	PACK(1, 3),
	PACK(1, 4),
	PACK(1, 5),
	PACK(1, 6),
	PACK(1, 7),
	PACK(1, 8),
	PACK(1, 9),
	PACK(3, 3),
	PACK(1, 10),
	PACK(1, 11),
	PACK(1, 12),
	PACK(3, 4),
	PACK(1, 13),
	PACK(1, 14),
	PACK(1, 15),
	PACK(3, 5),
	PACK(1, 16),
	PACK(4, 4),
	PACK(2, 9),
	PACK(2, 10),
	PACK(3, 7),
	PACK(2, 11),
	PACK(2, 12),
	PACK(5, 5),
	PACK(2, 13),
	PACK(3, 9),
	PACK(2, 14),
	PACK(2, 15),
	PACK(2, 16),
	PACK(3, 11),
	PACK(5, 7),
	PACK(3, 12),
	PACK(3, 13),
	PACK(4, 10),
	PACK(3, 14),
	PACK(4, 11),
	PACK(3, 15),
	PACK(3, 16),
	PACK(7, 7),
	PACK(5, 10),
	PACK(4, 13),
	PACK(6, 9),
	PACK(5, 11),
	PACK(4, 14),
	PACK(4, 15),
	PACK(7, 9),
	PACK(4, 16),
	PACK(5, 13),
	PACK(6, 11),
	PACK(5, 14),
	PACK(6, 12),
	PACK(5, 15),
	PACK(7, 11),
	PACK(6, 13),
	PACK(5, 16),
	PACK(9, 9),
	PACK(6, 14),
	PACK(8, 11),
	PACK(6, 15),
	PACK(7, 13),
	PACK(6, 16),
	PACK(7, 14),
	PACK(9, 11),
	PACK(10, 10),
	PACK(8, 13),
	PACK(7, 15),
	PACK(9, 12),
	PACK(10, 11),
	PACK(7, 16),
	PACK(9, 13),
	PACK(8, 15),
	PACK(11, 11),
	PACK(9, 14),
	PACK(8, 16),
	PACK(10, 13),
	PACK(11, 12),
	PACK(9, 15),
	PACK(10, 14),
	PACK(11, 13),
	PACK(9, 16),
	PACK(10, 15),
	PACK(11, 14),
	PACK(12, 13),
	PACK(10, 16),
	PACK(11, 15),
	PACK(12, 14),
	PACK(13, 13),
	PACK(11, 16),
	PACK(12, 15),
	PACK(13, 14),
	PACK(12, 16),
	PACK(13, 15),
	PACK(14, 14),
	PACK(13, 16),
	PACK(14, 15),
	PACK(14, 16),
	PACK(15, 15),
	PACK(15, 16),
	PACK(16, 16),
};

TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in,
				     struct k210_pll_config *best)
{
	int i;
	s64 error, best_error;
	u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */
	u64 max_r;
	u64 r, f, od;

	/*
	 * Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the
	 * VCO frequency. These are not the same limits as below because od can
	 * reduce the output frequency by 16.
	 */
	if (rate > 1750000000 || rate < 21250000)
		return -EINVAL;

	/* Similar restrictions on the input rate */
	if (rate_in > 1750000000 || rate_in < 13300000)
		return -EINVAL;

	ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in);
	inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate);
	/* Can't increase by more than 64 or reduce by more than 256 */
	if (rate > rate_in && ratio > (64ULL << 32))
		return -EINVAL;
	else if (rate <= rate_in && inv_ratio > (256ULL << 32))
		return -EINVAL;

	/*
	 * The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3
	 * MHz. There is no minimum, since the only way to get a higher input
	 * clock than 26 MHz is to use a clock generated by a PLL. Because PLLs
	 * cannot output frequencies greater than 1.75 GHz, the minimum would
	 * never be greater than one.
	 */
	max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000);

	/* Variables get immediately incremented, so start at -1th iteration */
	i = -1;
	f = 0;
	r = 0;
	od = 0;
	best_error = S64_MAX;
	error = best_error;
	/* do-while here so we always try at least one ratio */
	do {
		/*
		 * Whether we swapped r and od while enforcing frequency limits
		 */
		bool swapped = false;
		u64 last_od = od;
		u64 last_r = r;

		/*
		 * Try the next largest value for f (or r and od) and
		 * recalculate the other parameters based on that
		 */
		if (rate > rate_in) {
			/*
			 * Skip factors of the same product if we already tried
			 * out that product
			 */
			do {
				i++;
				r = UNPACK_R(factors[i]);
				od = UNPACK_OD(factors[i]);
			} while (i + 1 < ARRAY_SIZE(factors) &&
				 r * od == last_r * last_od);

			/* Round close */
			f = (r * od * ratio + BIT(31)) >> 32;
			if (f > 64)
				f = 64;
		} else {
			u64 tmp = ++f * inv_ratio;
			bool round_up = !!(tmp & BIT(31));
			u32 goal = (tmp >> 32) + round_up;
			u32 err, last_err;

			/* Get the next r/od pair in factors */
			while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) {
				i++;
				r = UNPACK_R(factors[i]);
				od = UNPACK_OD(factors[i]);
			}

			/*
			 * This is a case of double rounding. If we rounded up
			 * above, we need to round down (in cases of ties) here.
			 * This prevents off-by-one errors resulting from
			 * choosing X+2 over X when X.Y rounds up to X+1 and
			 * there is no r * od = X+1. For the converse, when X.Y
			 * is rounded down to X, we should choose X+1 over X-1.
			 */
			err = abs(r * od - goal);
			last_err = abs(last_r * last_od - goal);
			if (last_err < err || (round_up && last_err == err)) {
				i--;
				r = last_r;
				od = last_od;
			}
		}

		/*
		 * Enforce limits on internal clock frequencies. If we
		 * aren't in spec, try swapping r and od. If everything is
		 * in-spec, calculate the relative error.
		 */
		while (true) {
			/*
			 * Whether the intermediate frequencies are out-of-spec
			 */
			bool out_of_spec = false;

			if (r > max_r) {
				out_of_spec = true;
			} else {
				/*
				 * There is no way to only divide once; we need
				 * to examine the frequency with and without the
				 * effect of od.
				 */
				u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r);

				if (vco > 1750000000 || vco < 340000000)
					out_of_spec = true;
			}

			if (out_of_spec) {
				if (!swapped) {
					u64 tmp = r;

					r = od;
					od = tmp;
					swapped = true;
					continue;
				} else {
					/*
					 * Try looking ahead to see if there are
					 * additional factors for the same
					 * product.
					 */
					if (i + 1 < ARRAY_SIZE(factors)) {
						u64 new_r, new_od;

						i++;
						new_r = UNPACK_R(factors[i]);
						new_od = UNPACK_OD(factors[i]);
						if (r * od == new_r * new_od) {
							r = new_r;
							od = new_od;
							swapped = false;
							continue;
						}
						i--;
					}
					break;
				}
			}

			error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od);
			/* The lower 16 bits are spurious */
			error = abs((error - BIT(32))) >> 16;

			if (error < best_error) {
				best->r = r;
				best->f = f;
				best->od = od;
				best_error = error;
			}
			break;
		}
	} while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0);

	if (best_error == S64_MAX)
		return -EINVAL;

	log_debug("best error %lld\n", best_error);
	return 0;
}

static ulong k210_pll_set_rate(struct clk *clk, ulong rate)
{
	int err;
	long long rate_in = clk_get_parent_rate(clk);
	struct k210_pll_config config = {};
	struct k210_pll *pll = to_k210_pll(clk);
	u32 reg;

	if (rate_in < 0)
		return rate_in;

	log_debug("Calculating parameters with rate=%lu and rate_in=%lld\n",
		  rate, rate_in);
	err = k210_pll_calc_config(rate, rate_in, &config);
	if (err)
		return err;
	log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od);

	/*
	 * Don't use clk_disable as it might not actually disable the pll due to
	 * refcounting
	 */
	k210_pll_disable(clk);

	reg = readl(pll->reg);
	reg &= ~K210_PLL_CLKR
	    &  ~K210_PLL_CLKF
	    &  ~K210_PLL_CLKOD
	    &  ~K210_PLL_BWADJ;
	reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1)
	    |  FIELD_PREP(K210_PLL_CLKF, config.f - 1)
	    |  FIELD_PREP(K210_PLL_CLKOD, config.od - 1)
	    |  FIELD_PREP(K210_PLL_BWADJ, config.f - 1);
	writel(reg, pll->reg);

	err = k210_pll_enable(clk);
	if (err)
		return err;

	serial_setbrg();
	return clk_get_rate(clk);
}
#endif /* CONFIG_CLK_K210_SET_RATE */

static ulong k210_pll_get_rate(struct clk *clk)
{
	long long rate_in = clk_get_parent_rate(clk);
	struct k210_pll *pll = to_k210_pll(clk);
	u64 r, f, od;
	u32 reg = readl(pll->reg);

	if (rate_in < 0 || (reg & K210_PLL_BYPASS))
		return rate_in;

	if (!(reg & K210_PLL_PWRD))
		return 0;

	r = FIELD_GET(K210_PLL_CLKR, reg) + 1;
	f = FIELD_GET(K210_PLL_CLKF, reg) + 1;
	od = FIELD_GET(K210_PLL_CLKOD, reg) + 1;

	return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od);
}

/*
 * Wait for the PLL to be locked. If the PLL is not locked, try clearing the
 * slip before retrying
 */
static void k210_pll_waitfor_lock(struct k210_pll *pll)
{
	u32 mask = GENMASK(pll->width - 1, 0) << pll->shift;

	while (true) {
		u32 reg = readl(pll->lock);

		if ((reg & mask) == mask)
			break;

		reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP);
		writel(reg, pll->lock);
	}
}

/* Adapted from sysctl_pll_enable */
static int k210_pll_enable(struct clk *clk)
{
	struct k210_pll *pll = to_k210_pll(clk);
	u32 reg = readl(pll->reg);

	if ((reg | K210_PLL_PWRD) && !(reg | K210_PLL_RESET))
		return 0;

	reg |= K210_PLL_PWRD;
	writel(reg, pll->reg);

	/* Ensure reset is low before asserting it */
	reg &= ~K210_PLL_RESET;
	writel(reg, pll->reg);
	reg |= K210_PLL_RESET;
	writel(reg, pll->reg);
	nop();
	nop();
	reg &= ~K210_PLL_RESET;
	writel(reg, pll->reg);

	k210_pll_waitfor_lock(pll);

	reg &= ~K210_PLL_BYPASS;
	writel(reg, pll->reg);

	return 0;
}

static int k210_pll_disable(struct clk *clk)
{
	struct k210_pll *pll = to_k210_pll(clk);
	u32 reg = readl(pll->reg);

	/*
	 * Bypassing before powering off is important so child clocks don't stop
	 * working. This is especially important for pll0, the indirect parent
	 * of the cpu clock.
	 */
	reg |= K210_PLL_BYPASS;
	writel(reg, pll->reg);

	reg &= ~K210_PLL_PWRD;
	writel(reg, pll->reg);
	return 0;
}

const struct clk_ops k210_pll_ops = {
	.get_rate = k210_pll_get_rate,
#ifdef CONFIG_CLK_K210_SET_RATE
	.set_rate = k210_pll_set_rate,
#endif
	.enable = k210_pll_enable,
	.disable = k210_pll_disable,
};

struct clk *k210_register_pll_struct(const char *name, const char *parent_name,
				     struct k210_pll *pll)
{
	int ret;
	struct clk *clk = &pll->clk;

	ret = clk_register(clk, CLK_K210_PLL, name, parent_name);
	if (ret)
		return ERR_PTR(ret);
	return clk;
}

struct clk *k210_register_pll(const char *name, const char *parent_name,
			      void __iomem *reg, void __iomem *lock, u8 shift,
			      u8 width)
{
	struct clk *clk;
	struct k210_pll *pll;

	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
	if (!pll)
		return ERR_PTR(-ENOMEM);
	pll->reg = reg;
	pll->lock = lock;
	pll->shift = shift;
	pll->width = width;

	clk = k210_register_pll_struct(name, parent_name, pll);
	if (IS_ERR(clk))
		kfree(pll);
	return clk;
}

U_BOOT_DRIVER(k210_pll) = {
	.name	= CLK_K210_PLL,
	.id	= UCLASS_CLK,
	.ops	= &k210_pll_ops,
};