1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018-2020 Marvell International Ltd.
*/
/*
* Simple allocate only memory allocator. Used to allocate memory at
* application start time.
*/
#include <asm/global_data.h>
#include <linux/compat.h>
#include <linux/io.h>
#include <linux/types.h>
#include <mach/octeon-model.h>
#include <mach/cvmx-bootmem.h>
#include <mach/cvmx-coremask.h>
#include <mach/cvmx-regs.h>
DECLARE_GLOBAL_DATA_PTR;
#define CVMX_MIPS32_SPACE_KSEG0 1L
#define CVMX_MIPS_SPACE_XKPHYS 2LL
#define CVMX_ADD_SEG(seg, add) ((((u64)(seg)) << 62) | (add))
#define CVMX_ADD_SEG32(seg, add) (((u32)(seg) << 31) | (u32)(add))
/**
* This is the physical location of a struct cvmx_bootmem_desc
* structure in Octeon's memory. Note that dues to addressing
* limits or runtime environment it might not be possible to
* create a C pointer to this structure.
*/
static u64 cvmx_bootmem_desc_addr;
/**
* This macro returns the size of a member of a structure.
* Logically it is the same as "sizeof(s::field)" in C++, but
* C lacks the "::" operator.
*/
#define SIZEOF_FIELD(s, field) sizeof(((s *)NULL)->field)
/**
* This macro returns a member of the struct cvmx_bootmem_desc
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the struct cvmx_bootmem_desc to read.
* Regardless of the type of the field, the return type is always
* a u64.
*/
#define CVMX_BOOTMEM_DESC_GET_FIELD(field) \
__cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr, \
offsetof(struct cvmx_bootmem_desc, field), \
SIZEOF_FIELD(struct cvmx_bootmem_desc, field))
/**
* This macro writes a member of the struct cvmx_bootmem_desc
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the struct cvmx_bootmem_desc to write.
*/
#define CVMX_BOOTMEM_DESC_SET_FIELD(field, value) \
__cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr, \
offsetof(struct cvmx_bootmem_desc, field), \
SIZEOF_FIELD(struct cvmx_bootmem_desc, field), \
value)
/**
* This macro returns a member of the
* struct cvmx_bootmem_named_block_desc structure. These members can't
* be directly addressed as they might be in memory not directly
* reachable. In the case where bootmem is compiled with
* LINUX_HOST, the structure itself might be located on a remote
* Octeon. The argument "field" is the member name of the
* struct cvmx_bootmem_named_block_desc to read. Regardless of the type
* of the field, the return type is always a u64. The "addr"
* parameter is the physical address of the structure.
*/
#define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field) \
__cvmx_bootmem_desc_get(addr, \
offsetof(struct cvmx_bootmem_named_block_desc, field), \
SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field))
/**
* This macro writes a member of the struct cvmx_bootmem_named_block_desc
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the
* struct cvmx_bootmem_named_block_desc to write. The "addr" parameter
* is the physical address of the structure.
*/
#define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value) \
__cvmx_bootmem_desc_set(addr, \
offsetof(struct cvmx_bootmem_named_block_desc, field), \
SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field), \
value)
/**
* This function is the implementation of the get macros defined
* for individual structure members. The argument are generated
* by the macros inorder to read only the needed memory.
*
* @param base 64bit physical address of the complete structure
* @param offset Offset from the beginning of the structure to the member being
* accessed.
* @param size Size of the structure member.
*
* @return Value of the structure member promoted into a u64.
*/
static inline u64 __cvmx_bootmem_desc_get(u64 base, int offset,
int size)
{
base = (1ull << 63) | (base + offset);
switch (size) {
case 4:
return cvmx_read64_uint32(base);
case 8:
return cvmx_read64_uint64(base);
default:
return 0;
}
}
/**
* This function is the implementation of the set macros defined
* for individual structure members. The argument are generated
* by the macros in order to write only the needed memory.
*
* @param base 64bit physical address of the complete structure
* @param offset Offset from the beginning of the structure to the member being
* accessed.
* @param size Size of the structure member.
* @param value Value to write into the structure
*/
static inline void __cvmx_bootmem_desc_set(u64 base, int offset, int size,
u64 value)
{
base = (1ull << 63) | (base + offset);
switch (size) {
case 4:
cvmx_write64_uint32(base, value);
break;
case 8:
cvmx_write64_uint64(base, value);
break;
default:
break;
}
}
/**
* This function returns the address of the bootmem descriptor lock.
*
* @return 64-bit address in KSEG0 of the bootmem descriptor block
*/
static inline u64 __cvmx_bootmem_get_lock_addr(void)
{
return (1ull << 63) |
(cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc, lock));
}
/**
* This function retrieves the string name of a named block. It is
* more complicated than a simple memcpy() since the named block
* descriptor may not be directly accessible.
*
* @param addr Physical address of the named block descriptor
* @param str String to receive the named block string name
* @param len Length of the string buffer, which must match the length
* stored in the bootmem descriptor.
*/
static void CVMX_BOOTMEM_NAMED_GET_NAME(u64 addr, char *str, int len)
{
int l = len;
char *ptr = str;
addr |= (1ull << 63);
addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
while (l) {
/*
* With big-endian in memory byte order, this gives uniform
* results for the CPU in either big or Little endian mode.
*/
u64 blob = cvmx_read64_uint64(addr);
int sa = 56;
addr += sizeof(u64);
while (l && sa >= 0) {
*ptr++ = (char)(blob >> sa);
l--;
sa -= 8;
}
}
str[len] = 0;
}
/**
* This function stores the string name of a named block. It is
* more complicated than a simple memcpy() since the named block
* descriptor may not be directly accessible.
*
* @param addr Physical address of the named block descriptor
* @param str String to store into the named block string name
* @param len Length of the string buffer, which must match the length
* stored in the bootmem descriptor.
*/
void CVMX_BOOTMEM_NAMED_SET_NAME(u64 addr, const char *str, int len)
{
int l = len;
addr |= (1ull << 63);
addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
while (l) {
/*
* With big-endian in memory byte order, this gives uniform
* results for the CPU in either big or Little endian mode.
*/
u64 blob = 0;
int sa = 56;
while (l && sa >= 0) {
u64 c = (u8)(*str++);
l--;
if (l == 0)
c = 0;
blob |= c << sa;
sa -= 8;
}
cvmx_write64_uint64(addr, blob);
addr += sizeof(u64);
}
}
/* See header file for descriptions of functions */
/*
* Wrapper functions are provided for reading/writing the size and next block
* values as these may not be directly addressible (in 32 bit applications, for
* instance.)
*
* Offsets of data elements in bootmem list, must match
* struct cvmx_bootmem_block_header
*/
#define NEXT_OFFSET 0
#define SIZE_OFFSET 8
static void cvmx_bootmem_phy_set_size(u64 addr, u64 size)
{
cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
}
static void cvmx_bootmem_phy_set_next(u64 addr, u64 next)
{
cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
}
static u64 cvmx_bootmem_phy_get_size(u64 addr)
{
return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
}
static u64 cvmx_bootmem_phy_get_next(u64 addr)
{
return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
}
/**
* Check the version information on the bootmem descriptor
*
* @param exact_match
* Exact major version to check against. A zero means
* check that the version supports named blocks.
*
* @return Zero if the version is correct. Negative if the version is
* incorrect. Failures also cause a message to be displayed.
*/
static int __cvmx_bootmem_check_version(int exact_match)
{
int major_version;
major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version);
if (major_version > 3 ||
(exact_match && major_version) != exact_match) {
debug("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n",
major_version,
(int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version),
CAST_ULL(cvmx_bootmem_desc_addr));
return -1;
} else {
return 0;
}
}
/**
* Get the low level bootmem descriptor lock. If no locking
* is specified in the flags, then nothing is done.
*
* @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
* nothing. This is used to support nested bootmem calls.
*/
static inline void __cvmx_bootmem_lock(u32 flags)
{
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
/*
* Unfortunately we can't use the normal cvmx-spinlock code as
* the memory for the bootmem descriptor may be not accessible
* by a C pointer. We use a 64bit XKPHYS address to access the
* memory directly
*/
u64 lock_addr = (1ull << 63) |
(cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc,
lock));
unsigned int tmp;
__asm__ __volatile__(".set noreorder\n"
"1: ll %[tmp], 0(%[addr])\n"
" bnez %[tmp], 1b\n"
" li %[tmp], 1\n"
" sc %[tmp], 0(%[addr])\n"
" beqz %[tmp], 1b\n"
" nop\n"
".set reorder\n"
: [tmp] "=&r"(tmp)
: [addr] "r"(lock_addr)
: "memory");
}
}
/**
* Release the low level bootmem descriptor lock. If no locking
* is specified in the flags, then nothing is done.
*
* @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
* nothing. This is used to support nested bootmem calls.
*/
static inline void __cvmx_bootmem_unlock(u32 flags)
{
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
/*
* Unfortunately we can't use the normal cvmx-spinlock code as
* the memory for the bootmem descriptor may be not accessible
* by a C pointer. We use a 64bit XKPHYS address to access the
* memory directly
*/
u64 lock_addr = __cvmx_bootmem_get_lock_addr();
CVMX_SYNCW;
__asm__ __volatile__("sw $0, 0(%[addr])\n"
: : [addr] "r"(lock_addr)
: "memory");
CVMX_SYNCW;
}
}
/*
* Some of the cvmx-bootmem functions dealing with C pointers are not
* supported when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This
* ifndef removes these functions when they aren't needed.
*
* This functions takes an address range and adjusts it as necessary
* to match the ABI that is currently being used. This is required to
* ensure that bootmem_alloc* functions only return valid pointers for
* 32 bit ABIs
*/
static int __cvmx_validate_mem_range(u64 *min_addr_ptr,
u64 *max_addr_ptr)
{
u64 max_phys = (1ull << 29) - 0x10; /* KSEG0 */
*min_addr_ptr = min_t(u64, max_t(u64, *min_addr_ptr, 0x0), max_phys);
if (!*max_addr_ptr) {
*max_addr_ptr = max_phys;
} else {
*max_addr_ptr = max_t(u64, min_t(u64, *max_addr_ptr,
max_phys), 0x0);
}
return 0;
}
u64 cvmx_bootmem_phy_alloc_range(u64 size, u64 alignment,
u64 min_addr, u64 max_addr)
{
s64 address;
__cvmx_validate_mem_range(&min_addr, &max_addr);
address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
alignment, 0);
if (address > 0)
return address;
else
return 0;
}
void *cvmx_bootmem_alloc_range(u64 size, u64 alignment,
u64 min_addr, u64 max_addr)
{
s64 address;
__cvmx_validate_mem_range(&min_addr, &max_addr);
address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
alignment, 0);
if (address > 0)
return cvmx_phys_to_ptr(address);
else
return NULL;
}
void *cvmx_bootmem_alloc_address(u64 size, u64 address,
u64 alignment)
{
return cvmx_bootmem_alloc_range(size, alignment, address,
address + size);
}
void *cvmx_bootmem_alloc_node(u64 node, u64 size, u64 alignment)
{
return cvmx_bootmem_alloc_range(size, alignment,
node << CVMX_NODE_MEM_SHIFT,
((node + 1) << CVMX_NODE_MEM_SHIFT) - 1);
}
void *cvmx_bootmem_alloc(u64 size, u64 alignment)
{
return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
}
void *cvmx_bootmem_alloc_named_range_once(u64 size, u64 min_addr,
u64 max_addr, u64 align,
const char *name,
void (*init)(void *))
{
u64 named_block_desc_addr;
void *ptr;
s64 addr;
__cvmx_bootmem_lock(0);
__cvmx_validate_mem_range(&min_addr, &max_addr);
named_block_desc_addr =
cvmx_bootmem_phy_named_block_find(name,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_desc_addr) {
addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr,
base_addr);
__cvmx_bootmem_unlock(0);
return cvmx_phys_to_ptr(addr);
}
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
align, name,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (addr < 0) {
__cvmx_bootmem_unlock(0);
return NULL;
}
ptr = cvmx_phys_to_ptr(addr);
if (init)
init(ptr);
else
memset(ptr, 0, size);
__cvmx_bootmem_unlock(0);
return ptr;
}
void *cvmx_bootmem_alloc_named_range_flags(u64 size, u64 min_addr,
u64 max_addr, u64 align,
const char *name, u32 flags)
{
s64 addr;
__cvmx_validate_mem_range(&min_addr, &max_addr);
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
align, name, flags);
if (addr >= 0)
return cvmx_phys_to_ptr(addr);
else
return NULL;
}
void *cvmx_bootmem_alloc_named_range(u64 size, u64 min_addr,
u64 max_addr, u64 align,
const char *name)
{
return cvmx_bootmem_alloc_named_range_flags(size, min_addr, max_addr,
align, name, 0);
}
void *cvmx_bootmem_alloc_named_address(u64 size, u64 address,
const char *name)
{
return cvmx_bootmem_alloc_named_range(size, address, address + size,
0, name);
}
void *cvmx_bootmem_alloc_named(u64 size, u64 alignment,
const char *name)
{
return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
}
void *cvmx_bootmem_alloc_named_flags(u64 size, u64 alignment,
const char *name, u32 flags)
{
return cvmx_bootmem_alloc_named_range_flags(size, 0, 0, alignment,
name, flags);
}
int cvmx_bootmem_free_named(const char *name)
{
return cvmx_bootmem_phy_named_block_free(name, 0);
}
/**
* Find a named block with flags
*
* @param name is the block name
* @param flags indicates the need to use locking during search
* @return pointer to named block descriptor
*
* Note: this function returns a pointer to a static structure,
* and is therefore not re-entrant.
* Making this function re-entrant will break backward compatibility.
*/
const struct cvmx_bootmem_named_block_desc *
__cvmx_bootmem_find_named_block_flags(const char *name, u32 flags)
{
static struct cvmx_bootmem_named_block_desc desc;
u64 named_addr = cvmx_bootmem_phy_named_block_find(name, flags);
if (named_addr) {
desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr,
base_addr);
desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
strncpy(desc.name, name, sizeof(desc.name));
desc.name[sizeof(desc.name) - 1] = 0;
return &desc;
} else {
return NULL;
}
}
const struct cvmx_bootmem_named_block_desc *
cvmx_bootmem_find_named_block(const char *name)
{
return __cvmx_bootmem_find_named_block_flags(name, 0);
}
void cvmx_bootmem_print_named(void)
{
cvmx_bootmem_phy_named_block_print();
}
int cvmx_bootmem_init(u64 mem_desc_addr)
{
if (!cvmx_bootmem_desc_addr)
cvmx_bootmem_desc_addr = mem_desc_addr;
return 0;
}
u64 cvmx_bootmem_available_mem(u64 min_block_size)
{
return cvmx_bootmem_phy_available_mem(min_block_size);
}
/*
* The cvmx_bootmem_phy* functions below return 64 bit physical
* addresses, and expose more features that the cvmx_bootmem_functions
* above. These are required for full memory space access in 32 bit
* applications, as well as for using some advance features. Most
* applications should not need to use these.
*/
s64 cvmx_bootmem_phy_alloc(u64 req_size, u64 address_min,
u64 address_max, u64 alignment,
u32 flags)
{
u64 head_addr, ent_addr, ent_size;
u64 target_ent_addr = 0, target_prev_addr = 0;
u64 target_size = ~0ull;
u64 free_start, free_end;
u64 next_addr, prev_addr = 0;
u64 new_ent_addr = 0, new_ent_size;
u64 desired_min_addr, usable_max;
u64 align, align_mask;
debug("%s: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
__func__, CAST_ULL(req_size), CAST_ULL(address_min),
CAST_ULL(address_max), CAST_ULL(alignment));
if (__cvmx_bootmem_check_version(0))
return -1;
/*
* Do a variety of checks to validate the arguments. The
* allocator code will later assume that these checks have
* been made. We validate that the requested constraints are
* not self-contradictory before we look through the list of
* available memory
*/
/* 0 is not a valid req_size for this allocator */
if (!req_size)
return -1;
/* Round req_size up to multiple of minimum alignment bytes */
req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
/* Make sure alignment is power of 2, and at least the minimum */
for (align = CVMX_BOOTMEM_ALIGNMENT_SIZE;
align < (1ull << 48);
align <<= 1) {
if (align >= alignment)
break;
}
align_mask = ~(align - 1);
/*
* Adjust address minimum based on requested alignment (round
* up to meet alignment). Do this here so we can reject
* impossible requests up front. (NOP for address_min == 0)
*/
address_min = (address_min + (align - 1)) & align_mask;
/*
* Convert !0 address_min and 0 address_max to special case of
* range that specifies an exact memory block to allocate. Do
* this before other checks and adjustments so that this
* tranformation will be validated
*/
if (address_min && !address_max)
address_max = address_min + req_size;
else if (!address_min && !address_max)
address_max = ~0ull; /* If no limits given, use max */
/*
* Reject inconsistent args. We have adjusted these, so this
* may fail due to our internal changes even if this check
* would pass for the values the user supplied.
*/
if (req_size > address_max - address_min)
return -1;
__cvmx_bootmem_lock(flags);
/* Walk through the list entries to find the right fit */
head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
for (ent_addr = head_addr;
ent_addr != 0ULL && ent_addr < address_max;
prev_addr = ent_addr,
ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
/* Raw free block size */
ent_size = cvmx_bootmem_phy_get_size(ent_addr);
next_addr = cvmx_bootmem_phy_get_next(ent_addr);
/* Validate the free list ascending order */
if (ent_size < CVMX_BOOTMEM_ALIGNMENT_SIZE ||
(next_addr && ent_addr > next_addr)) {
debug("ERROR: %s: bad free list ent: %#llx, next: %#llx\n",
__func__, CAST_ULL(ent_addr),
CAST_ULL(next_addr));
goto error_out;
}
/* adjust free block edges for alignment */
free_start = (ent_addr + align - 1) & align_mask;
free_end = (ent_addr + ent_size) & align_mask;
/* check that free block is large enough */
if ((free_start + req_size) > free_end)
continue;
/* check that desired start is within the free block */
if (free_end < address_min || free_start > address_max)
continue;
if ((free_end - address_min) < req_size)
continue;
if ((address_max - free_start) < req_size)
continue;
/* Found usebale free block */
target_ent_addr = ent_addr;
target_prev_addr = prev_addr;
target_size = ent_size;
/* Continue looking for highest/best block that fits */
}
/* Bail if the search has resulted in no eligible free blocks */
if (target_ent_addr == 0) {
debug("%s: eligible free block not found\n", __func__);
goto error_out;
}
/* Found the free block to allocate from */
ent_addr = target_ent_addr;
prev_addr = target_prev_addr;
ent_size = target_size;
debug("%s: using free block at %#010llx size %#llx\n",
__func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
/* Always allocate from the end of a free block */
usable_max = min_t(u64, address_max, ent_addr + ent_size);
desired_min_addr = usable_max - req_size;
desired_min_addr &= align_mask;
/* Split current free block into up to 3 free blocks */
/* Check for head room */
if (desired_min_addr > ent_addr) {
/* Create a new free block at the allocation address */
new_ent_addr = desired_min_addr;
new_ent_size = ent_size - (desired_min_addr - ent_addr);
cvmx_bootmem_phy_set_next(new_ent_addr,
cvmx_bootmem_phy_get_next(ent_addr));
cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
/* Split out head room into a new free block */
ent_size -= new_ent_size;
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
cvmx_bootmem_phy_set_size(ent_addr, ent_size);
debug("%s: splitting head, addr %#llx size %#llx\n",
__func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
/* Make the allocation target the current free block */
prev_addr = ent_addr;
ent_addr = new_ent_addr;
ent_size = new_ent_size;
}
/* Check for tail room */
if ((desired_min_addr + req_size) < (ent_addr + ent_size)) {
new_ent_addr = ent_addr + req_size;
new_ent_size = ent_size - req_size;
/* Create a new free block from tail room */
cvmx_bootmem_phy_set_next(new_ent_addr,
cvmx_bootmem_phy_get_next(ent_addr));
cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
debug("%s: splitting tail, addr %#llx size %#llx\n",
__func__, CAST_ULL(new_ent_addr), CAST_ULL(new_ent_size));
/* Adjust the current block to exclude tail room */
ent_size = ent_size - new_ent_size;
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
cvmx_bootmem_phy_set_size(ent_addr, ent_size);
}
/* The current free block IS the allocation target */
if (desired_min_addr != ent_addr || ent_size != req_size)
debug("ERROR: %s: internal error - addr %#llx %#llx size %#llx %#llx\n",
__func__, CAST_ULL(desired_min_addr), CAST_ULL(ent_addr),
CAST_ULL(ent_size), CAST_ULL(req_size));
/* Remove the current free block from list */
if (prev_addr) {
cvmx_bootmem_phy_set_next(prev_addr,
cvmx_bootmem_phy_get_next(ent_addr));
} else {
/* head of list being returned, so update head ptr */
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr,
cvmx_bootmem_phy_get_next(ent_addr));
}
__cvmx_bootmem_unlock(flags);
debug("%s: allocated size: %#llx, at addr: %#010llx\n",
__func__,
CAST_ULL(req_size),
CAST_ULL(desired_min_addr));
return desired_min_addr;
error_out:
/* Requested memory not found or argument error */
__cvmx_bootmem_unlock(flags);
return -1;
}
int __cvmx_bootmem_phy_free(u64 phy_addr, u64 size, u32 flags)
{
u64 cur_addr;
u64 prev_addr = 0; /* zero is invalid */
int retval = 0;
debug("%s addr: %#llx, size: %#llx\n", __func__,
CAST_ULL(phy_addr), CAST_ULL(size));
if (__cvmx_bootmem_check_version(0))
return 0;
/* 0 is not a valid size for this allocator */
if (!size || !phy_addr)
return 0;
/* Round size up to mult of minimum alignment bytes */
size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
__cvmx_bootmem_lock(flags);
cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
if (cur_addr == 0 || phy_addr < cur_addr) {
/* add at front of list - special case with changing head ptr */
if (cur_addr && phy_addr + size > cur_addr)
goto bootmem_free_done; /* error, overlapping section */
else if (phy_addr + size == cur_addr) {
/* Add to front of existing first block */
cvmx_bootmem_phy_set_next(phy_addr,
cvmx_bootmem_phy_get_next(cur_addr));
cvmx_bootmem_phy_set_size(phy_addr,
cvmx_bootmem_phy_get_size(cur_addr) + size);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
} else {
/* New block before first block */
/* OK if cur_addr is 0 */
cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
cvmx_bootmem_phy_set_size(phy_addr, size);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
}
retval = 1;
goto bootmem_free_done;
}
/* Find place in list to add block */
while (cur_addr && phy_addr > cur_addr) {
prev_addr = cur_addr;
cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
}
if (!cur_addr) {
/*
* We have reached the end of the list, add on to end, checking
* to see if we need to combine with last block
*/
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
cvmx_bootmem_phy_set_size(prev_addr,
cvmx_bootmem_phy_get_size(prev_addr) + size);
} else {
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
cvmx_bootmem_phy_set_size(phy_addr, size);
cvmx_bootmem_phy_set_next(phy_addr, 0);
}
retval = 1;
goto bootmem_free_done;
} else {
/*
* insert between prev and cur nodes, checking for merge with
* either/both
*/
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
/* Merge with previous */
cvmx_bootmem_phy_set_size(prev_addr,
cvmx_bootmem_phy_get_size(prev_addr) + size);
if (phy_addr + size == cur_addr) {
/* Also merge with current */
cvmx_bootmem_phy_set_size(prev_addr,
cvmx_bootmem_phy_get_size(cur_addr) +
cvmx_bootmem_phy_get_size(prev_addr));
cvmx_bootmem_phy_set_next(prev_addr,
cvmx_bootmem_phy_get_next(cur_addr));
}
retval = 1;
goto bootmem_free_done;
} else if (phy_addr + size == cur_addr) {
/* Merge with current */
cvmx_bootmem_phy_set_size(phy_addr,
cvmx_bootmem_phy_get_size(cur_addr) + size);
cvmx_bootmem_phy_set_next(phy_addr,
cvmx_bootmem_phy_get_next(cur_addr));
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
retval = 1;
goto bootmem_free_done;
}
/* It is a standalone block, add in between prev and cur */
cvmx_bootmem_phy_set_size(phy_addr, size);
cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
}
retval = 1;
bootmem_free_done:
__cvmx_bootmem_unlock(flags);
return retval;
}
void cvmx_bootmem_phy_list_print(void)
{
u64 addr;
addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
printf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx, head is 0x%llx\n",
CAST_ULL(cvmx_bootmem_desc_addr), CAST_ULL(addr));
printf("Descriptor version: %d.%d\n",
(int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version),
(int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version));
if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3)
debug("Warning: Bootmem descriptor version is newer than expected\n");
if (!addr)
printf("mem list is empty!\n");
while (addr) {
printf("Block address: 0x%08llx, size: 0x%08llx, next: 0x%08llx\n", CAST_ULL(addr),
CAST_ULL(cvmx_bootmem_phy_get_size(addr)),
CAST_ULL(cvmx_bootmem_phy_get_next(addr)));
addr = cvmx_bootmem_phy_get_next(addr);
}
printf("\n\n");
}
u64 cvmx_bootmem_phy_available_mem(u64 min_block_size)
{
u64 addr;
u64 available_mem = 0;
__cvmx_bootmem_lock(0);
addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
while (addr) {
if (cvmx_bootmem_phy_get_size(addr) >= min_block_size)
available_mem += cvmx_bootmem_phy_get_size(addr);
addr = cvmx_bootmem_phy_get_next(addr);
}
__cvmx_bootmem_unlock(0);
return available_mem;
}
u64 cvmx_bootmem_phy_named_block_find(const char *name, u32 flags)
{
u64 result = 0;
debug("%s: %s\n", __func__, name);
__cvmx_bootmem_lock(flags);
if (!__cvmx_bootmem_check_version(3)) {
int i;
u64 named_block_array_addr =
CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
int num_blocks =
CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
int name_length =
CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
u64 named_addr = named_block_array_addr;
for (i = 0; i < num_blocks; i++) {
u64 named_size =
CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
if (name && named_size) {
char name_tmp[name_length + 1];
CVMX_BOOTMEM_NAMED_GET_NAME(named_addr,
name_tmp,
name_length);
if (!strncmp(name, name_tmp, name_length)) {
result = named_addr;
break;
}
} else if (!name && !named_size) {
result = named_addr;
break;
}
named_addr +=
sizeof(struct cvmx_bootmem_named_block_desc);
}
}
__cvmx_bootmem_unlock(flags);
return result;
}
int cvmx_bootmem_phy_named_block_free(const char *name, u32 flags)
{
u64 named_block_addr;
if (__cvmx_bootmem_check_version(3))
return 0;
debug("%s: %s\n", __func__, name);
/*
* Take lock here, as name lookup/block free/name free need to be
* atomic
*/
__cvmx_bootmem_lock(flags);
named_block_addr = cvmx_bootmem_phy_named_block_find(name,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_addr) {
u64 named_addr =
CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
base_addr);
u64 named_size =
CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
debug("%s: %s, base: 0x%llx, size: 0x%llx\n",
__func__, name, CAST_ULL(named_addr),
CAST_ULL(named_size));
__cvmx_bootmem_phy_free(named_addr, named_size,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
/* Set size to zero to indicate block not used. */
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0);
}
__cvmx_bootmem_unlock(flags);
return !!named_block_addr; /* 0 on failure, 1 on success */
}
s64 cvmx_bootmem_phy_named_block_alloc(u64 size, u64 min_addr,
u64 max_addr,
u64 alignment, const char *name,
u32 flags)
{
s64 addr_allocated;
u64 named_block_desc_addr;
debug("%s: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
__func__, CAST_ULL(size), CAST_ULL(min_addr), CAST_ULL(max_addr),
CAST_ULL(alignment), name);
if (__cvmx_bootmem_check_version(3))
return -1;
/*
* Take lock here, as name lookup/block alloc/name add need to be
* atomic
*/
__cvmx_bootmem_lock(flags);
named_block_desc_addr =
cvmx_bootmem_phy_named_block_find(name, flags |
CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_desc_addr) {
__cvmx_bootmem_unlock(flags);
return -1;
}
/* Get pointer to first available named block descriptor */
named_block_desc_addr =
cvmx_bootmem_phy_named_block_find(NULL, flags |
CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (!named_block_desc_addr) {
__cvmx_bootmem_unlock(flags);
return -1;
}
/*
* Round size up to mult of minimum alignment bytes
* We need the actual size allocated to allow for blocks to be
* coallesced when they are freed. The alloc routine does the
* same rounding up on all allocations.
*/
size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
alignment,
flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (addr_allocated >= 0) {
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr,
addr_allocated);
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size);
CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name,
CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len));
}
__cvmx_bootmem_unlock(flags);
return addr_allocated;
}
void cvmx_bootmem_phy_named_block_print(void)
{
int i;
int printed = 0;
u64 named_block_array_addr =
CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
u64 named_block_addr = named_block_array_addr;
debug("%s: desc addr: 0x%llx\n",
__func__, CAST_ULL(cvmx_bootmem_desc_addr));
if (__cvmx_bootmem_check_version(3))
return;
printf("List of currently allocated named bootmem blocks:\n");
for (i = 0; i < num_blocks; i++) {
u64 named_size =
CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
if (named_size) {
char name_tmp[name_length + 1];
u64 named_addr =
CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
base_addr);
CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp,
name_length);
printed++;
printf("Name: %s, address: 0x%08llx, size: 0x%08llx, index: %d\n", name_tmp,
CAST_ULL(named_addr),
CAST_ULL(named_size), i);
}
named_block_addr +=
sizeof(struct cvmx_bootmem_named_block_desc);
}
if (!printed)
printf("No named bootmem blocks exist.\n");
}
s64 cvmx_bootmem_phy_mem_list_init(u64 mem_size,
u32 low_reserved_bytes,
struct cvmx_bootmem_desc *desc_buffer)
{
u64 cur_block_addr;
s64 addr;
int i;
debug("%s (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
__func__, desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
/*
* Descriptor buffer needs to be in 32 bit addressable space to be
* compatible with 32 bit applications
*/
if (!desc_buffer) {
debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
return 0;
}
if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
mem_size = OCTEON_MAX_PHY_MEM_SIZE;
debug("ERROR: requested memory size too large, truncating to maximum size\n");
}
if (cvmx_bootmem_desc_addr)
return 1;
/* Initialize cvmx pointer to descriptor */
cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
/* Fill the bootmem descriptor */
CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
/*
* Set up global pointer to start of list, exclude low 64k for exception
* vectors, space for global descriptor
*/
cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes);
if (mem_size <= OCTEON_DDR0_SIZE) {
__cvmx_bootmem_phy_free(cur_block_addr,
mem_size - low_reserved_bytes, 0);
goto frees_done;
}
__cvmx_bootmem_phy_free(cur_block_addr,
OCTEON_DDR0_SIZE - low_reserved_bytes, 0);
mem_size -= OCTEON_DDR0_SIZE;
/* Add DDR2 block next if present */
if (mem_size > OCTEON_DDR1_SIZE) {
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
mem_size - OCTEON_DDR1_SIZE, 0);
} else {
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
}
frees_done:
/* Initialize the named block structure */
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
/* Allocate this near the top of the low 256 MBytes of memory */
addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
sizeof(struct cvmx_bootmem_named_block_desc),
0, 0x10000000, 0,
CVMX_BOOTMEM_FLAG_END_ALLOC);
if (addr >= 0)
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
debug("%s: named_block_array_addr: 0x%llx)\n",
__func__, CAST_ULL(addr));
if (addr < 0) {
debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
return 0;
}
for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
addr += sizeof(struct cvmx_bootmem_named_block_desc);
}
return 1;
}
s64 cvmx_bootmem_phy_mem_list_init_multi(u8 node_mask,
u32 mem_sizes[],
u32 low_reserved_bytes,
struct cvmx_bootmem_desc *desc_buffer)
{
u64 cur_block_addr;
u64 mem_size;
s64 addr;
int i;
int node;
u64 node_base; /* Make u64 to reduce type casting */
mem_sizes[0] = gd->ram_size / (1024 * 1024);
debug("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
/*
* Descriptor buffer needs to be in 32 bit addressable space to be
* compatible with 32 bit applications
*/
if (!desc_buffer) {
debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
return 0;
}
cvmx_coremask_for_each_node(node, node_mask) {
if ((mem_sizes[node] * 1024 * 1024) > OCTEON_MAX_PHY_MEM_SIZE) {
mem_sizes[node] = OCTEON_MAX_PHY_MEM_SIZE /
(1024 * 1024);
debug("ERROR node#%lld: requested memory size too large, truncating to maximum size\n",
CAST_ULL(node));
}
}
if (cvmx_bootmem_desc_addr)
return 1;
/* Initialize cvmx pointer to descriptor */
cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
/* Fill the bootmem descriptor */
CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
cvmx_coremask_for_each_node(node, node_mask) {
if (node != 0) /* do not reserve memory on remote nodes */
low_reserved_bytes = 0;
mem_size = (u64)mem_sizes[node] * (1024 * 1024); /* MBytes */
/*
* Set up global pointer to start of list, exclude low 64k
* for exception vectors, space for global descriptor
*/
node_base = (u64)node << CVMX_NODE_MEM_SHIFT;
cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes) |
node_base;
if (mem_size <= OCTEON_DDR0_SIZE) {
__cvmx_bootmem_phy_free(cur_block_addr,
mem_size - low_reserved_bytes,
0);
continue;
}
__cvmx_bootmem_phy_free(cur_block_addr,
OCTEON_DDR0_SIZE - low_reserved_bytes,
0);
mem_size -= OCTEON_DDR0_SIZE;
/* Add DDR2 block next if present */
if (mem_size > OCTEON_DDR1_SIZE) {
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
node_base,
OCTEON_DDR1_SIZE, 0);
__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE |
node_base,
mem_size - OCTEON_DDR1_SIZE, 0);
} else {
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
node_base,
mem_size, 0);
}
}
debug("%s: Initialize the named block\n", __func__);
/* Initialize the named block structure */
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
/* Allocate this near the top of the low 256 MBytes of memory */
addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
sizeof(struct cvmx_bootmem_named_block_desc),
0, 0x10000000, 0,
CVMX_BOOTMEM_FLAG_END_ALLOC);
if (addr >= 0)
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
debug("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n",
CAST_ULL(addr));
if (addr < 0) {
debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
return 0;
}
for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
addr += sizeof(struct cvmx_bootmem_named_block_desc);
}
// test-only: DEBUG ifdef???
cvmx_bootmem_phy_list_print();
return 1;
}
int cvmx_bootmem_reserve_memory(u64 start_addr, u64 size,
const char *name, u32 flags)
{
u64 addr;
int rc = 1;
static unsigned int block_num;
char block_name[CVMX_BOOTMEM_NAME_LEN];
debug("%s: start %#llx, size: %#llx, name: %s, flags:%#x)\n",
__func__, CAST_ULL(start_addr), CAST_ULL(size), name, flags);
if (__cvmx_bootmem_check_version(3))
return 0;
addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
if (!addr)
return 0;
if (!name)
name = "__cvmx_bootmem_reserved";
while (addr && rc) {
u64 block_size = cvmx_bootmem_phy_get_size(addr);
u64 reserve_size = 0;
if (addr >= start_addr && addr < start_addr + size) {
reserve_size = size - (addr - start_addr);
if (block_size < reserve_size)
reserve_size = block_size;
} else if (start_addr > addr &&
start_addr < (addr + block_size)) {
reserve_size = block_size - (start_addr - addr);
}
if (reserve_size) {
snprintf(block_name, sizeof(block_name),
"%.32s_%012llx_%u",
name, (unsigned long long)start_addr,
(unsigned int)block_num);
debug("%s: Reserving 0x%llx bytes at address 0x%llx with name %s\n",
__func__, CAST_ULL(reserve_size),
CAST_ULL(addr), block_name);
if (cvmx_bootmem_phy_named_block_alloc(reserve_size,
addr, 0, 0,
block_name,
flags) == -1) {
debug("%s: Failed to reserve 0x%llx bytes at address 0x%llx\n",
__func__, CAST_ULL(reserve_size),
(unsigned long long)addr);
rc = 0;
break;
}
debug("%s: Reserved 0x%llx bytes at address 0x%llx with name %s\n",
__func__, CAST_ULL(reserve_size),
CAST_ULL(addr), block_name);
}
addr = cvmx_bootmem_phy_get_next(addr);
block_num++;
}
return rc;
}
void cvmx_bootmem_lock(void)
{
__cvmx_bootmem_lock(0);
}
void cvmx_bootmem_unlock(void)
{
__cvmx_bootmem_unlock(0);
}
void *__cvmx_phys_addr_to_ptr(u64 phys, int size)
{
void *tmp;
if (sizeof(void *) == 8) {
tmp = CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, phys));
} else {
u32 phy32 = (u32)(phys & 0x7fffffffULL);
tmp = CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
phy32));
}
return tmp;
}
void *__cvmx_bootmem_internal_get_desc_ptr(void)
{
return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr);
}
|