diff options
Diffstat (limited to 'cpu')
-rw-r--r-- | cpu/mpc85xx/cpu.c | 21 | ||||
-rw-r--r-- | cpu/mpc85xx/cpu_init.c | 42 | ||||
-rw-r--r-- | cpu/mpc85xx/spd_sdram.c | 1096 | ||||
-rw-r--r-- | cpu/mpc85xx/start.S | 6 | ||||
-rw-r--r-- | cpu/mpc85xx/tsec.c | 48 | ||||
-rw-r--r-- | cpu/mpc85xx/tsec.h | 10 |
6 files changed, 976 insertions, 247 deletions
diff --git a/cpu/mpc85xx/cpu.c b/cpu/mpc85xx/cpu.c index 4a1ccb05ba..f7fe22e3e1 100644 --- a/cpu/mpc85xx/cpu.c +++ b/cpu/mpc85xx/cpu.c @@ -38,6 +38,7 @@ int checkcpu (void) uint lcrr; /* local bus clock ratio register */ uint clkdiv; /* clock divider portion of lcrr */ uint pvr, svr; + uint fam; uint ver; uint major, minor; @@ -60,6 +61,12 @@ int checkcpu (void) case SVR_8560: puts("8560"); break; + case SVR_8548: + puts("8548"); + break; + case SVR_8548_E: + puts("8548_E"); + break; default: puts("Unknown"); break; @@ -67,13 +74,14 @@ int checkcpu (void) printf(", Version: %d.%d, (0x%08x)\n", major, minor, svr); pvr = get_pvr(); + fam = PVR_FAM(pvr); ver = PVR_VER(pvr); major = PVR_MAJ(pvr); minor = PVR_MIN(pvr); printf("Core: "); - switch (ver) { - case PVR_VER(PVR_85xx): + switch (fam) { + case PVR_FAM(PVR_85xx): puts("E500"); break; default: @@ -84,7 +92,7 @@ int checkcpu (void) get_sys_info(&sysinfo); - puts("Clocks Configuration:\n"); + puts("Clock Configuration:\n"); printf(" CPU:%4lu MHz, ", sysinfo.freqProcessor / 1000000); printf("CCB:%4lu MHz,\n", sysinfo.freqSystemBus / 1000000); printf(" DDR:%4lu MHz, ", sysinfo.freqSystemBus / 2000000); @@ -101,6 +109,13 @@ int checkcpu (void) #endif clkdiv = lcrr & 0x0f; if (clkdiv == 2 || clkdiv == 4 || clkdiv == 8) { +#ifdef CONFIG_MPC8548 + /* + * Yes, the entire PQ38 family use the same + * bit-representation for twice the clock divider values. + */ + clkdiv *= 2; +#endif printf("LBC:%4lu MHz\n", sysinfo.freqSystemBus / 1000000 / clkdiv); } else { diff --git a/cpu/mpc85xx/cpu_init.c b/cpu/mpc85xx/cpu_init.c index 79ea91f22a..efde9cc31a 100644 --- a/cpu/mpc85xx/cpu_init.c +++ b/cpu/mpc85xx/cpu_init.c @@ -178,42 +178,58 @@ void cpu_init_f (void) #endif } + /* - * We initialize L2 as cache here. + * Initialize L2 as cache. + * + * The newer 8548, etc, parts have twice as much cache, but + * use the same bit-encoding as the older 8555, etc, parts. + * + * FIXME: Use PVR_VER(pvr) == 1 test here instead of SVR_VER()? */ -int cpu_init_r (void) + +int cpu_init_r(void) { #if defined(CONFIG_L2_CACHE) - volatile immap_t *immap = (immap_t *)CFG_IMMR; + volatile immap_t *immap = (immap_t *)CFG_IMMR; volatile ccsr_l2cache_t *l2cache = &immap->im_l2cache; - volatile uint temp; + volatile uint cache_ctl; + uint svr, ver; + + svr = get_svr(); + ver = SVR_VER(svr); asm("msync;isync"); - temp = l2cache->l2ctl; - temp &= 0x30000000; - switch ( temp ) { + cache_ctl = l2cache->l2ctl; + + switch (cache_ctl & 0x30000000) { case 0x20000000: - printf ("L2 cache 256KB:"); + if (ver == SVR_8548 || ver == SVR_8548_E) { + printf ("L2 cache 512KB:"); + } else { + printf ("L2 cache 256KB:"); + } break; case 0x00000000: case 0x10000000: case 0x30000000: default: - printf ("L2 cache unknown size. Check the silicon!\n"); + printf ("L2 cache unknown size (0x%08x)\n", cache_ctl); return -1; } asm("msync;isync"); l2cache->l2ctl = 0x68000000; /* invalidate */ - temp = l2cache->l2ctl; + cache_ctl = l2cache->l2ctl; asm("msync;isync"); + l2cache->l2ctl = 0xa8000000; /* enable 256KB L2 cache */ - temp = l2cache->l2ctl; + cache_ctl = l2cache->l2ctl; asm("msync;isync"); - printf("enabled\n"); + printf(" enabled\n"); #else - printf("L2: disabled.\n"); + printf("L2 cache: disabled\n"); #endif return 0; diff --git a/cpu/mpc85xx/spd_sdram.c b/cpu/mpc85xx/spd_sdram.c index 5a1dbe2b53..049ba67e45 100644 --- a/cpu/mpc85xx/spd_sdram.c +++ b/cpu/mpc85xx/spd_sdram.c @@ -28,10 +28,11 @@ #include <spd.h> #include <asm/mmu.h> -#if defined(CONFIG_DDR_ECC) -extern void dma_init (void); + +#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) +extern void dma_init(void); extern uint dma_check(void); -extern int dma_xfer (void *dest, uint count, void *src); +extern int dma_xfer(void *dest, uint count, void *src); #endif #ifdef CONFIG_SPD_EEPROM @@ -40,6 +41,9 @@ extern int dma_xfer (void *dest, uint count, void *src); #define CFG_READ_SPD i2c_read #endif +static unsigned int setup_laws_and_tlbs(unsigned int memsize); + + /* * Convert picoseconds into clock cycles (rounding up if needed). */ @@ -57,311 +61,829 @@ picos_to_clk(int picos) return clks; } + +/* + * Calculate the Density of each Physical Rank. + * Returned size is in bytes. + * + * Study these table from Byte 31 of JEDEC SPD Spec. + * + * DDR I DDR II + * Bit Size Size + * --- ----- ------ + * 7 high 512MB 512MB + * 6 256MB 256MB + * 5 128MB 128MB + * 4 64MB 16GB + * 3 32MB 8GB + * 2 16MB 4GB + * 1 2GB 2GB + * 0 low 1GB 1GB + * + * Reorder Table to be linear by stripping the bottom + * 2 or 5 bits off and shifting them up to the top. + */ + +unsigned int +compute_banksize(unsigned int mem_type, unsigned char row_dens) +{ + unsigned int bsize; + + if (mem_type == SPD_MEMTYPE_DDR) { + /* Bottom 2 bits up to the top. */ + bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; + debug("DDR: DDR I rank density = 0x%08x\n", bsize); + } else { + /* Bottom 5 bits up to the top. */ + bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27; + debug("DDR: DDR II rank density = 0x%08x\n", bsize); + } + return bsize; +} + + +/* + * Convert a two-nibble BCD value into a cycle time. + * While the spec calls for nano-seconds, picos are returned. + * + * This implements the tables for bytes 9, 23 and 25 for both + * DDR I and II. No allowance for distinguishing the invalid + * fields absent for DDR I yet present in DDR II is made. + * (That is, cycle times of .25, .33, .66 and .75 ns are + * allowed for both DDR II and I.) + */ + unsigned int -banksize(unsigned char row_dens) +convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val) { - return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; + /* + * Table look up the lower nibble, allow DDR I & II. + */ + unsigned int tenths_ps[16] = { + 0, + 100, + 200, + 300, + 400, + 500, + 600, + 700, + 800, + 900, + 250, + 330, /* FIXME: Is 333 better/valid? */ + 660, /* FIXME: Is 667 better/valid? */ + 750, + 0, /* undefined */ + 0 /* undefined */ + }; + + unsigned int whole_ns = (spd_val & 0xF0) >> 4; + unsigned int tenth_ns = spd_val & 0x0F; + unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns]; + + return ps; } + long int spd_sdram(void) { volatile immap_t *immap = (immap_t *)CFG_IMMR; volatile ccsr_ddr_t *ddr = &immap->im_ddr; - volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm; + volatile ccsr_gur_t *gur = &immap->im_gur; spd_eeprom_t spd; - unsigned tmp, tmp1; + unsigned int n_ranks; + unsigned int rank_density; + unsigned int odt_rd_cfg, odt_wr_cfg; + unsigned int odt_cfg, mode_odt_enable; + unsigned int dqs_cfg; + unsigned char twr_clk, twtr_clk, twr_auto_clk; + unsigned int tCKmin_ps, tCKmax_ps; + unsigned int max_data_rate, effective_data_rate; + unsigned int busfreq; + unsigned sdram_cfg; unsigned int memsize; - unsigned int tlb_size; - unsigned int law_size; - unsigned char caslat; - unsigned int ram_tlb_index; - unsigned int ram_tlb_address; + unsigned char caslat, caslat_ctrl; + unsigned int trfc, trfc_clk, trfc_low, trfc_high; + unsigned int trcd_clk; + unsigned int trtp_clk; + unsigned char cke_min_clk; + unsigned char add_lat; + unsigned char wr_lat; + unsigned char wr_data_delay; + unsigned char four_act; + unsigned char cpo; + unsigned char burst_len; + unsigned int mode_caslat; + unsigned char sdram_type; + unsigned char d_init; - CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd)); + /* + * Read SPD information. + */ + CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd)); - if (spd.nrows > 2) { - puts("DDR:Only two chip selects are supported on ADS.\n"); + /* + * Check for supported memory module types. + */ + if (spd.mem_type != SPD_MEMTYPE_DDR && + spd.mem_type != SPD_MEMTYPE_DDR2) { + printf("Unable to locate DDR I or DDR II module.\n" + " Fundamental memory type is 0x%0x\n", + spd.mem_type); return 0; } - if (spd.nrow_addr < 12 - || spd.nrow_addr > 14 - || spd.ncol_addr < 8 - || spd.ncol_addr > 11) { - puts("DDR:Row or Col number unsupported.\n"); + /* + * These test gloss over DDR I and II differences in interpretation + * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks + * are not supported on DDR I; and not encoded on DDR II. + * + * Also note that the 8548 controller can support: + * 12 <= nrow <= 16 + * and + * 8 <= ncol <= 11 (still, for DDR) + * 6 <= ncol <= 9 (for FCRAM) + */ + if (spd.nrow_addr < 12 || spd.nrow_addr > 14) { + printf("DDR: Unsupported number of Row Addr lines: %d.\n", + spd.nrow_addr); + return 0; + } + if (spd.ncol_addr < 8 || spd.ncol_addr > 11) { + printf("DDR: Unsupported number of Column Addr lines: %d.\n", + spd.ncol_addr); return 0; } - ddr->cs0_bnds = (banksize(spd.row_dens) >> 24) - 1; - ddr->cs0_config = ( 1 << 31 - | (spd.nrow_addr - 12) << 8 - | (spd.ncol_addr - 8) ); - debug("\n"); - debug("cs0_bnds = 0x%08x\n",ddr->cs0_bnds); - debug("cs0_config = 0x%08x\n",ddr->cs0_config); - - if (spd.nrows == 2) { - ddr->cs1_bnds = ( (banksize(spd.row_dens) >> 8) - | ((banksize(spd.row_dens) >> 23) - 1) ); - ddr->cs1_config = ( 1<<31 - | (spd.nrow_addr-12) << 8 - | (spd.ncol_addr-8) ); - debug("cs1_bnds = 0x%08x\n",ddr->cs1_bnds); - debug("cs1_config = 0x%08x\n",ddr->cs1_config); + /* + * Determine the number of physical banks controlled by + * different Chip Select signals. This is not quite the + * same as the number of DIMM modules on the board. Feh. + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + n_ranks = spd.nrows; + } else { + n_ranks = (spd.nrows & 0x7) + 1; } - if (spd.mem_type != 0x07) { - puts("No DDR module found!\n"); + debug("DDR: number of ranks = %d\n", n_ranks); + + if (n_ranks > 2) { + printf("DDR: Only 2 chip selects are supported: %d\n", + n_ranks); return 0; } /* - * Figure out memory size in Megabytes. + * Adjust DDR II IO voltage biasing. It just makes it work. */ - memsize = spd.nrows * banksize(spd.row_dens) / 0x100000; + if (spd.mem_type == SPD_MEMTYPE_DDR2) { + gur->ddrioovcr = (0 + | 0x80000000 /* Enable */ + | 0x10000000 /* VSEL to 1.8V */ + ); + } /* - * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord. + * Determine the size of each Rank in bytes. */ - law_size = 19 + __ilog2(memsize); + rank_density = compute_banksize(spd.mem_type, spd.row_dens); + /* - * Determine size of each TLB1 entry. + * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg */ - switch (memsize) { - case 16: - case 32: - tlb_size = BOOKE_PAGESZ_16M; - break; - case 64: - case 128: - tlb_size = BOOKE_PAGESZ_64M; - break; - case 256: - case 512: - case 1024: - case 2048: - tlb_size = BOOKE_PAGESZ_256M; - break; - default: - puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G DDR I are supported.\n"); - return 0; - break; - } + ddr->cs0_bnds = (rank_density >> 24) - 1; /* - * Configure DDR TLB1 entries. - * Starting at TLB1 8, use no more than 8 TLB1 entries. + * ODT configuration recommendation from DDR Controller Chapter. */ - ram_tlb_index = 8; - ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE; - while (ram_tlb_address < (memsize * 1024 * 1024) - && ram_tlb_index < 16) { - mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0)); - mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size)); - mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), - 0, 0, 0, 0, 0, 0, 0, 0)); - mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), - 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); - asm volatile("isync;msync;tlbwe;isync"); + odt_rd_cfg = 0; /* Never assert ODT */ + odt_wr_cfg = 0; /* Never assert ODT */ + if (spd.mem_type == SPD_MEMTYPE_DDR2) { + odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */ +#if 0 + /* FIXME: How to determine the number of dimm modules? */ + if (n_dimm_modules == 2) { + odt_rd_cfg = 1; /* Assert ODT on reads to CS0 */ + } +#endif + } - debug("DDR:MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0)); - debug("DDR:MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size)); - debug("DDR:MAS2=0x%08x\n", - TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), - 0, 0, 0, 0, 0, 0, 0, 0)); - debug("DDR:MAS3=0x%08x\n", - TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), - 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); + ddr->cs0_config = ( 1 << 31 + | (odt_rd_cfg << 20) + | (odt_wr_cfg << 16) + | (spd.nrow_addr - 12) << 8 + | (spd.ncol_addr - 8) ); + debug("\n"); + debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds); + debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config); - ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2)); - ram_tlb_index++; + if (n_ranks == 2) { + /* + * Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg + */ + ddr->cs1_bnds = ( (rank_density >> 8) + | ((rank_density >> (24 - 1)) - 1) ); + ddr->cs1_config = ( 1<<31 + | (odt_rd_cfg << 20) + | (odt_wr_cfg << 16) + | (spd.nrow_addr - 12) << 8 + | (spd.ncol_addr - 8) ); + debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds); + debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config); } + /* - * Set up LAWBAR for all of DDR. + * Find the largest CAS by locating the highest 1 bit + * in the spd.cas_lat field. Translate it to a DDR + * controller field value: + * + * CAS Lat DDR I DDR II Ctrl + * Clocks SPD Bit SPD Bit Value + * ------- ------- ------- ----- + * 1.0 0 0001 + * 1.5 1 0010 + * 2.0 2 2 0011 + * 2.5 3 0100 + * 3.0 4 3 0101 + * 3.5 5 0110 + * 4.0 4 0111 + * 4.5 1000 + * 5.0 5 1001 */ - ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff); - ecm->lawar1 = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size)); - debug("DDR:LAWBAR1=0x%08x\n", ecm->lawbar1); - debug("DDR:LARAR1=0x%08x\n", ecm->lawar1); - - /* - * find the largest CAS - */ - if(spd.cas_lat & 0x40) { - caslat = 7; - } else if (spd.cas_lat & 0x20) { - caslat = 6; - } else if (spd.cas_lat & 0x10) { - caslat = 5; - } else if (spd.cas_lat & 0x08) { - caslat = 4; - } else if (spd.cas_lat & 0x04) { - caslat = 3; - } else if (spd.cas_lat & 0x02) { - caslat = 2; - } else if (spd.cas_lat & 0x01) { - caslat = 1; - } else { - puts("DDR:no valid CAS Latency information.\n"); + caslat = __ilog2(spd.cas_lat); + if ((spd.mem_type == SPD_MEMTYPE_DDR) + && (caslat > 5)) { + printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat); + return 0; + + } else if (spd.mem_type == SPD_MEMTYPE_DDR2 + && (caslat < 2 || caslat > 5)) { + printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n", + spd.cas_lat); return 0; } + debug("DDR: caslat SPD bit is %d\n", caslat); + + /* + * Calculate the Maximum Data Rate based on the Minimum Cycle time. + * The SPD clk_cycle field (tCKmin) is measured in tenths of + * nanoseconds and represented as BCD. + */ + tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle); + debug("DDR: tCKmin = %d ps\n", tCKmin_ps); + + /* + * Double-data rate, scaled 1000 to picoseconds, and back down to MHz. + */ + max_data_rate = 2 * 1000 * 1000 / tCKmin_ps; + debug("DDR: Module max data rate = %d Mhz\n", max_data_rate); + - tmp = 20000 / (((spd.clk_cycle & 0xF0) >> 4) * 10 - + (spd.clk_cycle & 0x0f)); - debug("DDR:Module maximum data rate is: %dMhz\n", tmp); + /* + * Adjust the CAS Latency to allow for bus speeds that + * are slower than the DDR module. + */ + busfreq = get_bus_freq(0) / 1000000; /* MHz */ - tmp1 = get_bus_freq(0) / 1000000; - if (tmp1 < 230 && tmp1 >= 90 && tmp >= 230) { - /* 90~230 range, treated as DDR 200 */ - if (spd.clk_cycle3 == 0xa0) + effective_data_rate = max_data_rate; + if (busfreq < 90) { + /* DDR rate out-of-range */ + puts("DDR: platform frequency is not fit for DDR rate\n"); + return 0; + + } else if (90 <= busfreq && busfreq < 230 && max_data_rate >= 230) { + /* + * busfreq 90~230 range, treated as DDR 200. + */ + effective_data_rate = 200; + if (spd.clk_cycle3 == 0xa0) /* 10 ns */ caslat -= 2; - else if(spd.clk_cycle2 == 0xa0) + else if (spd.clk_cycle2 == 0xa0) caslat--; - } else if (tmp1 < 280 && tmp1 >= 230 && tmp >= 280) { - /* 230-280 range, treated as DDR 266 */ - if (spd.clk_cycle3 == 0x75) + + } else if (230 <= busfreq && busfreq < 280 && max_data_rate >= 280) { + /* + * busfreq 230~280 range, treated as DDR 266. + */ + effective_data_rate = 266; + if (spd.clk_cycle3 == 0x75) /* 7.5 ns */ caslat -= 2; else if (spd.clk_cycle2 == 0x75) caslat--; - } else if (tmp1 < 350 && tmp1 >= 280 && tmp >= 350) { - /* 280~350 range, treated as DDR 333 */ - if (spd.clk_cycle3 == 0x60) + + } else if (280 <= busfreq && busfreq < 350 && max_data_rate >= 350) { + /* + * busfreq 280~350 range, treated as DDR 333. + */ + effective_data_rate = 333; + if (spd.clk_cycle3 == 0x60) /* 6.0 ns */ caslat -= 2; else if (spd.clk_cycle2 == 0x60) caslat--; - } else if (tmp1 < 90 || tmp1 >= 350) { - /* DDR rate out-of-range */ - puts("DDR:platform frequency is not fit for DDR rate\n"); + + } else if (350 <= busfreq && busfreq < 460 && max_data_rate >= 460) { + /* + * busfreq 350~460 range, treated as DDR 400. + */ + effective_data_rate = 400; + if (spd.clk_cycle3 == 0x50) /* 5.0 ns */ + caslat -= 2; + else if (spd.clk_cycle2 == 0x50) + caslat--; + + } else if (460 <= busfreq && busfreq < 560 && max_data_rate >= 560) { + /* + * busfreq 460~560 range, treated as DDR 533. + */ + effective_data_rate = 533; + if (spd.clk_cycle3 == 0x3D) /* 3.75 ns */ + caslat -= 2; + else if (spd.clk_cycle2 == 0x3D) + caslat--; + + } else if (560 <= busfreq && busfreq < 700 && max_data_rate >= 700) { + /* + * busfreq 560~700 range, treated as DDR 667. + */ + effective_data_rate = 667; + if (spd.clk_cycle3 == 0x30) /* 3.0 ns */ + caslat -= 2; + else if (spd.clk_cycle2 == 0x30) + caslat--; + + } else if (700 <= busfreq) { + /* + * DDR rate out-of-range + */ + printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n", + busfreq, max_data_rate); return 0; } + /* - * note: caslat must also be programmed into ddr->sdram_mode - * register. - * - * note: WRREC(Twr) and WRTORD(Twtr) are not in SPD, - * use conservative value here. + * Convert caslat clocks to DDR controller value. + * Force caslat_ctrl to be DDR Controller field-sized. + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + caslat_ctrl = (caslat + 1) & 0x07; + } else { + caslat_ctrl = (2 * caslat - 1) & 0x0f; + } + + debug("DDR: effective data rate is %d MHz\n", effective_data_rate); + debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n", + caslat, caslat_ctrl); + + /* + * Timing Config 0. + * Avoid writing for DDR I. The new PQ38 DDR controller + * dreams up non-zero default values to be backwards compatible. */ + if (spd.mem_type == SPD_MEMTYPE_DDR2) { + unsigned char taxpd_clk = 8; /* By the book. */ + unsigned char tmrd_clk = 2; /* By the book. */ + unsigned char act_pd_exit = 2; /* Empirical? */ + unsigned char pre_pd_exit = 6; /* Empirical? */ + + ddr->timing_cfg_0 = (0 + | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */ + | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */ + | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */ + | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */ + ); +#if 0 + ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */ +#endif + debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); + + } else { +#if 0 + /* + * Force extra cycles with 0xaa bits. + * Incidentally supply the dreamt-up backwards compat value! + */ + ddr->timing_cfg_0 = 0x00110105; /* backwards compat value */ + ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */ + debug("DDR: HACK timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); +#endif + } + + + /* + * Some Timing Config 1 values now. + * Sneak Extended Refresh Recovery in here too. + */ + + /* + * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD, + * use conservative value. + * For DDR II, they are bytes 36 and 37, in quarter nanos. + */ + + if (spd.mem_type == SPD_MEMTYPE_DDR) { + twr_clk = 3; /* Clocks */ + twtr_clk = 1; /* Clocks */ + } else { + twr_clk = picos_to_clk(spd.twr * 250); + twtr_clk = picos_to_clk(spd.twtr * 250); + } + + /* + * Calculate Trfc, in picos. + * DDR I: Byte 42 straight up in ns. + * DDR II: Byte 40 and 42 swizzled some, in ns. + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + trfc = spd.trfc * 1000; /* up to ps */ + } else { + unsigned int byte40_table_ps[8] = { + 0, + 250, + 330, + 500, + 660, + 750, + 0, + 0 + }; + + trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000 + + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7]; + } + trfc_clk = picos_to_clk(trfc); + + /* + * Trcd, Byte 29, from quarter nanos to ps and clocks. + */ + trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7; + + /* + * Convert trfc_clk to DDR controller fields. DDR I should + * fit in the REFREC field (16-19) of TIMING_CFG_1, but the + * 8548 controller has an extended REFREC field of three bits. + * The controller automatically adds 8 clocks to this value, + * so preadjust it down 8 first before splitting it up. + */ + trfc_low = (trfc_clk - 8) & 0xf; + trfc_high = ((trfc_clk - 8) >> 4) & 0x3; + + /* + * Sneak in some Extended Refresh Recovery. + */ + ddr->ext_refrec = (trfc_high << 16); + debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec); + ddr->timing_cfg_1 = - (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | - ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | - ((picos_to_clk(spd.trcd * 250) & 0x07) << 20 ) | - ((caslat & 0x07) << 16 ) | - (((picos_to_clk(spd.sset[6] * 1000) - 8) & 0x0f) << 12 ) | - ( 0x300 ) | - ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | 1); + (0 + | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */ + | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */ + | (trcd_clk << 20) /* ACTTORW */ + | (caslat_ctrl << 16) /* CASLAT */ + | (trfc_low << 12) /* REFEC */ + | ((twr_clk & 0x07) << 8) /* WRRREC */ + | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */ + | ((twtr_clk & 0x07) << 0) /* WRTORD */ + ); - ddr->timing_cfg_2 = 0x00000800; + debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1); - debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1); - debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2); /* - * Only DDR I is supported - * DDR I and II have different mode-register-set definition + * Timing_Config_2 + * Was: 0x00000800; */ - /* burst length is always 4 */ - switch(caslat) { - case 2: - ddr->sdram_mode = 0x52; /* 1.5 */ - break; - case 3: - ddr->sdram_mode = 0x22; /* 2.0 */ - break; - case 4: - ddr->sdram_mode = 0x62; /* 2.5 */ - break; - case 5: - ddr->sdram_mode = 0x32; /* 3.0 */ - break; - default: - puts("DDR:only CAS Latency 1.5, 2.0, 2.5, 3.0 is supported.\n"); - return 0; + /* + * Additive Latency + * For DDR I, 0. + * For DDR II, with ODT enabled, use "a value" less than ACTTORW, + * which comes from Trcd, and also note that: + * add_lat + caslat must be >= 4 + */ + add_lat = 0; + if (spd.mem_type == SPD_MEMTYPE_DDR2 + && (odt_wr_cfg || odt_rd_cfg) + && (caslat < 4)) { + add_lat = 4 - caslat; + if (add_lat > trcd_clk) { + add_lat = trcd_clk - 1; + } } - debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode); - switch(spd.refresh) { - case 0x00: - case 0x80: - tmp = picos_to_clk(15625000); - break; - case 0x01: - case 0x81: - tmp = picos_to_clk(3900000); - break; - case 0x02: - case 0x82: - tmp = picos_to_clk(7800000); - break; - case 0x03: - case 0x83: - tmp = picos_to_clk(31300000); - break; - case 0x04: - case 0x84: - tmp = picos_to_clk(62500000); - break; - case 0x05: - case 0x85: - tmp = picos_to_clk(125000000); - break; - default: - tmp = 0x512; - break; + /* + * Write Data Delay + * Historically 0x2 == 4/8 clock delay. + * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266. + */ + wr_data_delay = 3; + + /* + * Write Latency + * Read to Precharge + * Minimum CKE Pulse Width. + * Four Activate Window + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + /* + * This is a lie. It should really be 1, but if it is + * set to 1, bits overlap into the old controller's + * otherwise unused ACSM field. If we leave it 0, then + * the HW will magically treat it as 1 for DDR 1. Oh Yea. + */ + wr_lat = 0; + + trtp_clk = 2; /* By the book. */ + cke_min_clk = 1; /* By the book. */ + four_act = 1; /* By the book. */ + + } else { + wr_lat = caslat - 1; + + /* Convert SPD value from quarter nanos to picos. */ + trtp_clk = picos_to_clk(spd.trtp * 250); + + cke_min_clk = 3; /* By the book. */ + four_act = picos_to_clk(37500); /* By the book. 1k pages? */ + } + + /* + * Empirically set ~MCAS-to-preamble override for DDR 2. + * Your milage will vary. + */ + cpo = 0; + if (spd.mem_type == SPD_MEMTYPE_DDR2) { + if (effective_data_rate == 266 || effective_data_rate == 333) { + cpo = 0x7; /* READ_LAT + 5/4 */ + } else if (effective_data_rate == 400) { + cpo = 0x9; /* READ_LAT + 7/4 */ + } else { + /* Pure speculation */ + cpo = 0xb; + } + } + + ddr->timing_cfg_2 = (0 + | ((add_lat & 0x7) << 28) /* ADD_LAT */ + | ((cpo & 0x1f) << 23) /* CPO */ + | ((wr_lat & 0x7) << 19) /* WR_LAT */ + | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */ + | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */ + | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */ + | ((four_act & 0x1f) << 0) /* FOUR_ACT */ + ); + + debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2); + + + /* + * Determine the Mode Register Set. + * + * This is nominally part specific, but it appears to be + * consistent for all DDR I devices, and for all DDR II devices. + * + * caslat must be programmed + * burst length is always 4 + * burst type is sequential + * + * For DDR I: + * operating mode is "normal" + * + * For DDR II: + * other stuff + */ + + mode_caslat = 0; + + /* + * Table lookup from DDR I or II Device Operation Specs. + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + if (1 <= caslat && caslat <= 4) { + unsigned char mode_caslat_table[4] = { + 0x5, /* 1.5 clocks */ + 0x2, /* 2.0 clocks */ + 0x6, /* 2.5 clocks */ + 0x3 /* 3.0 clocks */ + }; + mode_caslat = mode_caslat_table[caslat - 1]; + } else { + puts("DDR I: Only CAS Latencies of 1.5, 2.0, " + "2.5 and 3.0 clocks are supported.\n"); + return 0; + } + + } else { + if (2 <= caslat && caslat <= 5) { + mode_caslat = caslat; + } else { + puts("DDR II: Only CAS Latencies of 2.0, 3.0, " + "4.0 and 5.0 clocks are supported.\n"); + return 0; + } + } + + /* + * Encoded Burst Lenght of 4. + */ + burst_len = 2; /* Fiat. */ + + if (spd.mem_type == SPD_MEMTYPE_DDR) { + twr_auto_clk = 0; /* Historical */ + } else { + /* + * Determine tCK max in picos. Grab tWR and convert to picos. + * Auto-precharge write recovery is: + * WR = roundup(tWR_ns/tCKmax_ns). + * + * Ponder: Is twr_auto_clk different than twr_clk? + */ + tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax); + twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps; + } + + + /* + * Mode Reg in bits 16 ~ 31, + * Extended Mode Reg 1 in bits 0 ~ 15. + */ + mode_odt_enable = 0x0; /* Default disabled */ + if (odt_wr_cfg || odt_rd_cfg) { + /* + * Bits 6 and 2 in Extended MRS(1) + * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules. + * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module. + */ + mode_odt_enable = 0x40; /* 150 Ohm */ } + ddr->sdram_mode = + (0 + | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */ + | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */ + | (twr_auto_clk << 9) /* Write Recovery Autopre */ + | (mode_caslat << 4) /* caslat */ + | (burst_len << 0) /* Burst length */ + ); + + debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode); + + + /* + * Clear EMRS2 and EMRS3. + */ + ddr->sdram_mode_2 = 0; + debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2); + + /* - * Set BSTOPRE to 0x100 for page mode - * If auto-charge is used, set BSTOPRE = 0 + * Determine Refresh Rate. Ignore self refresh bit on DDR I. + * Table from SPD Spec, Byte 12, converted to picoseconds and + * filled in with "default" normal values. */ - ddr->sdram_interval = ((tmp & 0x3fff) << 16) | 0x100; - debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval); + { + unsigned int refresh_clk; + unsigned int refresh_time_ns[8] = { + 15625000, /* 0 Normal 1.00x */ + 3900000, /* 1 Reduced .25x */ + 7800000, /* 2 Extended .50x */ + 31300000, /* 3 Extended 2.00x */ + 62500000, /* 4 Extended 4.00x */ + 125000000, /* 5 Extended 8.00x */ + 15625000, /* 6 Normal 1.00x filler */ + 15625000, /* 7 Normal 1.00x filler */ + }; + + refresh_clk = picos_to_clk(refresh_time_ns[spd.refresh & 0x7]); + + /* + * Set BSTOPRE to 0x100 for page mode + * If auto-charge is used, set BSTOPRE = 0 + */ + ddr->sdram_interval = + (0 + | (refresh_clk & 0x3fff) << 16 + | 0x100 + ); + debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval); + } /* * Is this an ECC DDR chip? + * But don't mess with it if the DDR controller will init mem. */ -#if defined(CONFIG_DDR_ECC) +#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) if (spd.config == 0x02) { ddr->err_disable = 0x0000000d; ddr->err_sbe = 0x00ff0000; } - debug("DDR:err_disable=0x%08x\n", ddr->err_disable); - debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe); + debug("DDR: err_disable = 0x%08x\n", ddr->err_disable); + debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe); #endif - asm("sync;isync;msync"); + asm("sync;isync;msync"); udelay(500); -#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL - /* Setup the clock control (8555 and later) - * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1 - * SDRAM_CLK_CNTL[5-7] = Clock Adjust == 3 (3/4 cycle late) + /* + * SDRAM Cfg 2 + */ + + /* + * When ODT is enabled, Chap 9 suggests asserting ODT to + * internal IOs only during reads. + */ + odt_cfg = 0; + if (odt_rd_cfg | odt_wr_cfg) { + odt_cfg = 0x2; /* ODT to IOs during reads */ + } + + /* + * Try to use differential DQS with DDR II. */ - ddr->sdram_clk_cntl = 0x83000000; + if (spd.mem_type == SPD_MEMTYPE_DDR) { + dqs_cfg = 0; /* No Differential DQS for DDR I */ + } else { + dqs_cfg = 0x1; /* Differential DQS for DDR II */ + } + +#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) + /* + * Use the DDR controller to auto initialize memory. + */ + d_init = 1; + ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE; + debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init); +#else + /* + * Memory will be initialized via DMA, or not at all. + */ + d_init = 0; +#endif + + ddr->sdram_cfg_2 = (0 + | (dqs_cfg << 26) /* Differential DQS */ + | (odt_cfg << 21) /* ODT */ + | (d_init << 4) /* D_INIT auto init DDR */ + ); + + debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2); + + +#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL + { + unsigned char clk_adjust; + + /* + * Setup the clock control. + * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1 + * SDRAM_CLK_CNTL[5-7] = Clock Adjust + * 0110 3/4 cycle late + * 0111 7/8 cycle late + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + clk_adjust = 0x6; + } else { + clk_adjust = 0x7; + } + + ddr->sdram_clk_cntl = (0 + | 0x80000000 + | (clk_adjust << 23) + ); + debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl); + } #endif /* - * Figure out the settings for the sdram_cfg register. Build up - * the entire register in 'tmp' before writing since the write into - * the register will actually enable the memory controller, and all - * settings must be done before enabling. + * Figure out the settings for the sdram_cfg register. + * Build up the entire register in 'sdram_cfg' before writing + * since the write into the register will actually enable the + * memory controller; all settings must be done before enabling. * * sdram_cfg[0] = 1 (ddr sdram logic enable) * sdram_cfg[1] = 1 (self-refresh-enable) - * sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM) + * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM) + * 010 DDR 1 SDRAM + * 011 DDR 2 SDRAM */ - tmp = 0xc2000000; + sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3; + sdram_cfg = (0 + | (1 << 31) /* Enable */ + | (1 << 30) /* Self refresh */ + | (sdram_type << 24) /* SDRAM type */ + ); /* * sdram_cfg[3] = RD_EN - registered DIMM enable * A value of 0x26 indicates micron registered DIMMS (micron.com) */ - if (spd.mod_attr == 0x26) { - tmp |= 0x10000000; + if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) { + sdram_cfg |= 0x10000000; /* RD_EN */ } #if defined(CONFIG_DDR_ECC) @@ -369,7 +891,7 @@ spd_sdram(void) * If the user wanted ECC (enabled via sdram_cfg[2]) */ if (spd.config == 0x02) { - tmp |= 0x20000000; + sdram_cfg |= 0x20000000; /* ECC_EN */ } #endif @@ -385,27 +907,160 @@ spd_sdram(void) /* * Enable 2T timing by setting sdram_cfg[16]. */ - tmp |= 0x8000; + sdram_cfg |= 0x8000; /* 2T_EN */ #endif } } - ddr->sdram_cfg = tmp; + /* + * 200 painful micro-seconds must elapse between + * the DDR clock setup and the DDR config enable. + */ + udelay(200); + + /* + * Go! + */ + ddr->sdram_cfg = sdram_cfg; asm("sync;isync;msync"); udelay(500); - debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg); + debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg); + + +#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) + /* + * Poll until memory is initialized. + * 512 Meg at 400 might hit this 200 times or so. + */ + while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) { + udelay(1000); + } +#endif + + + /* + * Figure out memory size in Megabytes. + */ + memsize = n_ranks * rank_density / 0x100000; + + /* + * Establish Local Access Window and TLB mappings for DDR memory. + */ + memsize = setup_laws_and_tlbs(memsize); + if (memsize == 0) { + return 0; + } return memsize * 1024 * 1024; } + + +/* + * Setup Local Access Window and TLB1 mappings for the requested + * amount of memory. Returns the amount of memory actually mapped + * (usually the original request size), or 0 on error. + */ + +static unsigned int +setup_laws_and_tlbs(unsigned int memsize) +{ + volatile immap_t *immap = (immap_t *)CFG_IMMR; + volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm; + unsigned int tlb_size; + unsigned int law_size; + unsigned int ram_tlb_index; + unsigned int ram_tlb_address; + + /* + * Determine size of each TLB1 entry. + */ + switch (memsize) { + case 16: + case 32: + tlb_size = BOOKE_PAGESZ_16M; + break; + case 64: + case 128: + tlb_size = BOOKE_PAGESZ_64M; + break; + case 256: + case 512: + case 1024: + case 2048: + tlb_size = BOOKE_PAGESZ_256M; + break; + default: + puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G are supported.\n"); + + /* + * The memory was not able to be mapped. + */ + return 0; + break; + } + + /* + * Configure DDR TLB1 entries. + * Starting at TLB1 8, use no more than 8 TLB1 entries. + */ + ram_tlb_index = 8; + ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE; + while (ram_tlb_address < (memsize * 1024 * 1024) + && ram_tlb_index < 16) { + mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0)); + mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size)); + mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), + 0, 0, 0, 0, 0, 0, 0, 0)); + mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), + 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); + asm volatile("isync;msync;tlbwe;isync"); + + debug("DDR: MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0)); + debug("DDR: MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size)); + debug("DDR: MAS2=0x%08x\n", + TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), + 0, 0, 0, 0, 0, 0, 0, 0)); + debug("DDR: MAS3=0x%08x\n", + TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), + 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); + + ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2)); + ram_tlb_index++; + } + + + /* + * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord. + */ + law_size = 19 + __ilog2(memsize); + + /* + * Set up LAWBAR for all of DDR. + */ + ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff); + ecm->lawar1 = (LAWAR_EN + | LAWAR_TRGT_IF_DDR + | (LAWAR_SIZE & law_size)); + debug("DDR: LAWBAR1=0x%08x\n", ecm->lawbar1); + debug("DDR: LARAR1=0x%08x\n", ecm->lawar1); + + /* + * Confirm that the requested amount of memory was mapped. + */ + return memsize; +} + #endif /* CONFIG_SPD_EEPROM */ -#if defined(CONFIG_DDR_ECC) +#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) + /* * Initialize all of memory for ECC, then enable errors. */ + void ddr_enable_ecc(unsigned int dram_size) { @@ -420,7 +1075,7 @@ ddr_enable_ecc(unsigned int dram_size) if (((unsigned int)p & 0x1f) == 0) { ppcDcbz((unsigned long) p); } - *p = (unsigned int)0xdeadbeef; + *p = (unsigned int)CONFIG_MEM_INIT_VALUE; if (((unsigned int)p & 0x1c) == 0x1c) { ppcDcbf((unsigned long) p); } @@ -454,7 +1109,10 @@ ddr_enable_ecc(unsigned int dram_size) /* * Enable errors for ECC. */ + debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable); ddr->err_disable = 0x00000000; asm("sync;isync;msync"); + debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable); } -#endif /* CONFIG_DDR_ECC */ + +#endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */ diff --git a/cpu/mpc85xx/start.S b/cpu/mpc85xx/start.S index 7bca008b58..dd8189931a 100644 --- a/cpu/mpc85xx/start.S +++ b/cpu/mpc85xx/start.S @@ -174,6 +174,9 @@ _start_e500: mtspr BUCSR,r0 /* disable branch prediction */ mtspr MAS4,r0 mtspr MAS6,r0 +#if defined(CONFIG_ENABLE_36BIT_PHYS) + mtspr MAS7,r0 +#endif isync /* Setup interrupt vectors */ @@ -358,6 +361,9 @@ _start: /* Enable Time Base and Select Time Base Clock */ lis r0,HID0_EMCP@h /* Enable machine check */ ori r0,r0,0x4000 /* time base is processor clock */ +#if defined(CONFIG_ENABLE_36BIT_PHYS) + ori r0,r0,0x0080 /* enable MAS7 updates */ +#endif mtspr HID0,r0 #if defined(CONFIG_ADDR_STREAMING) diff --git a/cpu/mpc85xx/tsec.c b/cpu/mpc85xx/tsec.c index d327a6decb..5ac6334322 100644 --- a/cpu/mpc85xx/tsec.c +++ b/cpu/mpc85xx/tsec.c @@ -35,7 +35,7 @@ typedef volatile struct rtxbd { struct tsec_info_struct { unsigned int phyaddr; - unsigned int gigabit; + u32 flags; unsigned int phyregidx; }; @@ -48,8 +48,9 @@ struct tsec_info_struct { * phyaddr - The address of the PHY which is attached to * the given device. * - * gigabit - This variable indicates whether the device - * supports gigabit speed ethernet + * flags - This variable indicates whether the device + * supports gigabit speed ethernet, and whether it should be + * in reduced mode. * * phyregidx - This variable specifies which ethernet device * controls the MII Management registers which are connected @@ -70,23 +71,32 @@ struct tsec_info_struct { */ static struct tsec_info_struct tsec_info[] = { #ifdef CONFIG_MPC85XX_TSEC1 - {TSEC1_PHY_ADDR, 1, TSEC1_PHYIDX}, + {TSEC1_PHY_ADDR, TSEC_GIGABIT, TSEC1_PHYIDX}, #else { 0, 0, 0}, #endif #ifdef CONFIG_MPC85XX_TSEC2 - {TSEC2_PHY_ADDR, 1, TSEC2_PHYIDX}, + {TSEC2_PHY_ADDR, TSEC_GIGABIT, TSEC2_PHYIDX}, #else { 0, 0, 0}, #endif #ifdef CONFIG_MPC85XX_FEC {FEC_PHY_ADDR, 0, FEC_PHYIDX}, #else +# ifdef CONFIG_MPC85XX_TSEC3 + {TSEC3_PHY_ADDR, TSEC_GIGABIT | TSEC_REDUCED, TSEC3_PHYIDX}, +# else { 0, 0, 0}, +# endif +# ifdef CONFIG_MPC85XX_TSEC4 + {TSEC4_PHY_ADDR, TSEC_REDUCED, TSEC4_PHYIDX}, +# else + { 0, 0, 0}, +# endif #endif }; -#define MAXCONTROLLERS 3 +#define MAXCONTROLLERS (4) static int relocated = 0; @@ -115,7 +125,7 @@ static void relocate_cmds(void); /* Initialize device structure. Returns success if PHY * initialization succeeded (i.e. if it recognizes the PHY) */ -int tsec_initialize(bd_t *bis, int index) +int tsec_initialize(bd_t *bis, int index, char *devname) { struct eth_device* dev; int i; @@ -139,9 +149,9 @@ int tsec_initialize(bd_t *bis, int index) tsec_info[index].phyregidx*TSEC_SIZE); priv->phyaddr = tsec_info[index].phyaddr; - priv->gigabit = tsec_info[index].gigabit; + priv->flags = tsec_info[index].flags; - sprintf(dev->name, "ENET%d", index); + sprintf(dev->name, devname); dev->iobase = 0; dev->priv = priv; dev->init = tsec_init; @@ -318,7 +328,7 @@ static int init_phy(struct eth_device *dev) /* For 10/100, the value is slightly different */ uint mii_cr_init(uint mii_reg, struct tsec_private *priv) { - if(priv->gigabit) + if(priv->flags & TSEC_GIGABIT) return MIIM_CONTROL_INIT; else return MIIM_CR_INIT; @@ -438,6 +448,13 @@ uint mii_cis8204_fixled(uint mii_reg, struct tsec_private *priv) return MIIM_CIS8204_SLEDCON_INIT; } +uint mii_cis8204_setmode(uint mii_reg, struct tsec_private *priv) +{ + if (priv->flags & TSEC_REDUCED) + return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII; + else + return MIIM_CIS8204_EPHYCON_INIT; +} /* Initialized required registers to appropriate values, zeroing * those we don't care about (unless zero is bad, in which case, @@ -507,6 +524,15 @@ static void adjust_link(struct eth_device *dev) case 10: regs->maccfg2 = ((regs->maccfg2&~(MACCFG2_IF)) | MACCFG2_MII); + + /* If We're in reduced mode, we + * need to say whether we're 10 + * or 100 MB. */ + if ((priv->speed == 100) + && (priv->flags & TSEC_REDUCED)) + regs->ecntrl |= ECNTRL_R100; + else + regs->ecntrl &= ~(ECNTRL_R100); break; default: printf("%s: Speed was bad\n", dev->name); @@ -731,7 +757,7 @@ struct phy_info phy_info_cis8204 = { /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT, &mii_cis8204_fixled}, - {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT, NULL}, + {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT, &mii_cis8204_setmode}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ diff --git a/cpu/mpc85xx/tsec.h b/cpu/mpc85xx/tsec.h index e24351a2e9..d1c70aa89f 100644 --- a/cpu/mpc85xx/tsec.h +++ b/cpu/mpc85xx/tsec.h @@ -51,6 +51,7 @@ #define ECNTRL_INIT_SETTINGS 0x00001000 #define ECNTRL_TBI_MODE 0x00000020 +#define ECNTRL_R100 0x00000008 #define miim_end -2 #define miim_read -1 @@ -107,6 +108,7 @@ /* Cicada 8204 Extended PHY Control Register 1 */ #define MIIM_CIS8204_EPHY_CON 0x17 #define MIIM_CIS8204_EPHYCON_INIT 0x0006 +#define MIIM_CIS8204_EPHYCON_RGMII 0x1000 /* Cicada 8204 Serial LED Control Register */ #define MIIM_CIS8204_SLED_CON 0x1b @@ -424,12 +426,18 @@ typedef struct tsec uint resc00[256]; } tsec_t; +#define TSEC_GIGABIT (1) + +/* This flag currently only has + * meaning if we're using the eTSEC */ +#define TSEC_REDUCED (1 << 1) + struct tsec_private { volatile tsec_t *regs; volatile tsec_t *phyregs; struct phy_info *phyinfo; uint phyaddr; - uint gigabit; + u32 flags; uint link; uint duplexity; uint speed; |