diff options
Diffstat (limited to 'board/xilinx/xilinx_enet/xemac_intr.c')
-rw-r--r-- | board/xilinx/xilinx_enet/xemac_intr.c | 402 |
1 files changed, 0 insertions, 402 deletions
diff --git a/board/xilinx/xilinx_enet/xemac_intr.c b/board/xilinx/xilinx_enet/xemac_intr.c deleted file mode 100644 index b9a2621564..0000000000 --- a/board/xilinx/xilinx_enet/xemac_intr.c +++ /dev/null @@ -1,402 +0,0 @@ -/****************************************************************************** -* -* Author: Xilinx, Inc. -* -* -* This program is free software; you can redistribute it and/or modify it -* under the terms of the GNU General Public License as published by the -* Free Software Foundation; either version 2 of the License, or (at your -* option) any later version. -* -* -* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A -* COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS -* ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR STANDARD, -* XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS FREE -* FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE FOR OBTAINING -* ANY THIRD PARTY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION. -* XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO -* THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY -* WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM -* CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND -* FITNESS FOR A PARTICULAR PURPOSE. -* -* -* Xilinx hardware products are not intended for use in life support -* appliances, devices, or systems. Use in such applications is -* expressly prohibited. -* -* -* (c) Copyright 2002-2004 Xilinx Inc. -* All rights reserved. -* -* -* You should have received a copy of the GNU General Public License along -* with this program; if not, write to the Free Software Foundation, Inc., -* 675 Mass Ave, Cambridge, MA 02139, USA. -* -******************************************************************************/ -/*****************************************************************************/ -/** -* -* @file xemac_intr.c -* -* This file contains general interrupt-related functions of the XEmac driver. -* -* <pre> -* MODIFICATION HISTORY: -* -* Ver Who Date Changes -* ----- ---- -------- ----------------------------------------------- -* 1.00a rpm 07/31/01 First release -* 1.00b rpm 02/20/02 Repartitioned files and functions -* 1.00c rpm 12/05/02 New version includes support for simple DMA -* 1.00c rpm 03/31/03 Added comment to indicate that no Receive Length FIFO -* overrun interrupts occur in v1.00l and later of the EMAC -* device. This avoids the need to reset the device on -* receive overruns. -* </pre> -* -******************************************************************************/ - -/***************************** Include Files *********************************/ - -#include "xbasic_types.h" -#include "xemac_i.h" -#include "xio.h" -#include "xipif_v1_23_b.h" /* Uses v1.23b of the IPIF */ - -/************************** Constant Definitions *****************************/ - -/**************************** Type Definitions *******************************/ - -/***************** Macros (Inline Functions) Definitions *********************/ - -/************************** Variable Definitions *****************************/ - -/************************** Function Prototypes ******************************/ - -/*****************************************************************************/ -/** -* -* Set the callback function for handling asynchronous errors. The upper layer -* software should call this function during initialization. -* -* The error callback is invoked by the driver within interrupt context, so it -* needs to do its job quickly. If there are potentially slow operations within -* the callback, these should be done at task-level. -* -* The Xilinx errors that must be handled by the callback are: -* - XST_DMA_ERROR indicates an unrecoverable DMA error occurred. This is -* typically a bus error or bus timeout. The handler must reset and -* re-configure the device. -* - XST_FIFO_ERROR indicates an unrecoverable FIFO error occurred. This is a -* deadlock condition in the packet FIFO. The handler must reset and -* re-configure the device. -* - XST_RESET_ERROR indicates an unrecoverable MAC error occurred, usually an -* overrun or underrun. The handler must reset and re-configure the device. -* - XST_DMA_SG_NO_LIST indicates an attempt was made to access a scatter-gather -* DMA list that has not yet been created. -* - XST_DMA_SG_LIST_EMPTY indicates the driver tried to get a descriptor from -* the receive descriptor list, but the list was empty. -* -* @param InstancePtr is a pointer to the XEmac instance to be worked on. -* @param CallBackRef is a reference pointer to be passed back to the adapter in -* the callback. This helps the adapter correlate the callback to a -* particular driver. -* @param FuncPtr is the pointer to the callback function. -* -* @return -* -* None. -* -* @note -* -* None. -* -******************************************************************************/ -void -XEmac_SetErrorHandler(XEmac * InstancePtr, void *CallBackRef, - XEmac_ErrorHandler FuncPtr) -{ - XASSERT_VOID(InstancePtr != NULL); - XASSERT_VOID(FuncPtr != NULL); - XASSERT_VOID(InstancePtr->IsReady == XCOMPONENT_IS_READY); - - InstancePtr->ErrorHandler = FuncPtr; - InstancePtr->ErrorRef = CallBackRef; -} - -/****************************************************************************/ -/* -* -* Check the interrupt status bits of the Ethernet MAC for errors. Errors -* currently handled are: -* - Receive length FIFO overrun. Indicates data was lost due to the receive -* length FIFO becoming full during the reception of a packet. Only a device -* reset clears this condition. -* - Receive length FIFO underrun. An attempt to read an empty FIFO. Only a -* device reset clears this condition. -* - Transmit status FIFO overrun. Indicates data was lost due to the transmit -* status FIFO becoming full following the transmission of a packet. Only a -* device reset clears this condition. -* - Transmit status FIFO underrun. An attempt to read an empty FIFO. Only a -* device reset clears this condition. -* - Transmit length FIFO overrun. Indicates data was lost due to the transmit -* length FIFO becoming full following the transmission of a packet. Only a -* device reset clears this condition. -* - Transmit length FIFO underrun. An attempt to read an empty FIFO. Only a -* device reset clears this condition. -* - Receive data FIFO overrun. Indicates data was lost due to the receive data -* FIFO becoming full during the reception of a packet. -* - Receive data errors: -* - Receive missed frame error. Valid data was lost by the MAC. -* - Receive collision error. Data was lost by the MAC due to a collision. -* - Receive FCS error. Data was dicarded by the MAC due to FCS error. -* - Receive length field error. Data was dicarded by the MAC due to an invalid -* length field in the packet. -* - Receive short error. Data was dicarded by the MAC because a packet was -* shorter than allowed. -* - Receive long error. Data was dicarded by the MAC because a packet was -* longer than allowed. -* - Receive alignment error. Data was truncated by the MAC because its length -* was not byte-aligned. -* -* @param InstancePtr is a pointer to the XEmac instance to be worked on. -* @param IntrStatus is the contents of the interrupt status register to be checked -* -* @return -* -* None. -* -* @note -* -* This function is intended for internal use only. -* -******************************************************************************/ -void -XEmac_CheckEmacError(XEmac * InstancePtr, u32 IntrStatus) -{ - u32 ResetError = FALSE; - - /* - * First check for receive fifo overrun/underrun errors. Most require a - * reset by the user to clear, but the data FIFO overrun error does not. - */ - if (IntrStatus & XEM_EIR_RECV_DFIFO_OVER_MASK) { - InstancePtr->Stats.RecvOverrunErrors++; - InstancePtr->Stats.FifoErrors++; - } - - if (IntrStatus & XEM_EIR_RECV_LFIFO_OVER_MASK) { - /* - * Receive Length FIFO overrun interrupts no longer occur in v1.00l - * and later of the EMAC device. Frames are just dropped by the EMAC - * if the length FIFO is full. The user would notice the Receive Missed - * Frame count incrementing without any other errors being reported. - * This code is left here for backward compatibility with v1.00k and - * older EMAC devices. - */ - InstancePtr->Stats.RecvOverrunErrors++; - InstancePtr->Stats.FifoErrors++; - ResetError = TRUE; /* requires a reset */ - } - - if (IntrStatus & XEM_EIR_RECV_LFIFO_UNDER_MASK) { - InstancePtr->Stats.RecvUnderrunErrors++; - InstancePtr->Stats.FifoErrors++; - ResetError = TRUE; /* requires a reset */ - } - - /* - * Now check for general receive errors. Get the latest count where - * available, otherwise just bump the statistic so we know the interrupt - * occurred. - */ - if (IntrStatus & XEM_EIR_RECV_ERROR_MASK) { - if (IntrStatus & XEM_EIR_RECV_MISSED_FRAME_MASK) { - /* - * Caused by length FIFO or data FIFO overruns on receive side - */ - InstancePtr->Stats.RecvMissedFrameErrors = - XIo_In32(InstancePtr->BaseAddress + - XEM_RMFC_OFFSET); - } - - if (IntrStatus & XEM_EIR_RECV_COLLISION_MASK) { - InstancePtr->Stats.RecvCollisionErrors = - XIo_In32(InstancePtr->BaseAddress + XEM_RCC_OFFSET); - } - - if (IntrStatus & XEM_EIR_RECV_FCS_ERROR_MASK) { - InstancePtr->Stats.RecvFcsErrors = - XIo_In32(InstancePtr->BaseAddress + - XEM_RFCSEC_OFFSET); - } - - if (IntrStatus & XEM_EIR_RECV_LEN_ERROR_MASK) { - InstancePtr->Stats.RecvLengthFieldErrors++; - } - - if (IntrStatus & XEM_EIR_RECV_SHORT_ERROR_MASK) { - InstancePtr->Stats.RecvShortErrors++; - } - - if (IntrStatus & XEM_EIR_RECV_LONG_ERROR_MASK) { - InstancePtr->Stats.RecvLongErrors++; - } - - if (IntrStatus & XEM_EIR_RECV_ALIGN_ERROR_MASK) { - InstancePtr->Stats.RecvAlignmentErrors = - XIo_In32(InstancePtr->BaseAddress + - XEM_RAEC_OFFSET); - } - - /* - * Bump recv interrupts stats only if not scatter-gather DMA (this - * stat gets bumped elsewhere in that case) - */ - if (!XEmac_mIsSgDma(InstancePtr)) { - InstancePtr->Stats.RecvInterrupts++; /* TODO: double bump? */ - } - - } - - /* - * Check for transmit errors. These apply to both DMA and non-DMA modes - * of operation. The entire device should be reset after overruns or - * underruns. - */ - if (IntrStatus & (XEM_EIR_XMIT_SFIFO_OVER_MASK | - XEM_EIR_XMIT_LFIFO_OVER_MASK)) { - InstancePtr->Stats.XmitOverrunErrors++; - InstancePtr->Stats.FifoErrors++; - ResetError = TRUE; - } - - if (IntrStatus & (XEM_EIR_XMIT_SFIFO_UNDER_MASK | - XEM_EIR_XMIT_LFIFO_UNDER_MASK)) { - InstancePtr->Stats.XmitUnderrunErrors++; - InstancePtr->Stats.FifoErrors++; - ResetError = TRUE; - } - - if (ResetError) { - /* - * If a reset error occurred, disable the EMAC interrupts since the - * reset-causing interrupt(s) is latched in the EMAC - meaning it will - * keep occurring until the device is reset. In order to give the higher - * layer software time to reset the device, we have to disable the - * overrun/underrun interrupts until that happens. We trust that the - * higher layer resets the device. We are able to get away with disabling - * all EMAC interrupts since the only interrupts it generates are for - * error conditions, and we don't care about any more errors right now. - */ - XIIF_V123B_WRITE_IIER(InstancePtr->BaseAddress, 0); - - /* - * Invoke the error handler callback, which should result in a reset - * of the device by the upper layer software. - */ - InstancePtr->ErrorHandler(InstancePtr->ErrorRef, - XST_RESET_ERROR); - } -} - -/*****************************************************************************/ -/* -* -* Check the receive packet FIFO for errors. FIFO error interrupts are: -* - Deadlock. See the XPacketFifo component for a description of deadlock on a -* FIFO. -* -* @param InstancePtr is a pointer to the XEmac instance to be worked on. -* -* @return -* -* Although the function returns void, it can return an asynchronous error to the -* application through the error handler. It can return XST_FIFO_ERROR if a FIFO -* error occurred. -* -* @note -* -* This function is intended for internal use only. -* -******************************************************************************/ -void -XEmac_CheckFifoRecvError(XEmac * InstancePtr) -{ - /* - * Although the deadlock is currently the only interrupt from a packet - * FIFO, make sure it is deadlocked before taking action. There is no - * need to clear this interrupt since it requires a reset of the device. - */ - if (XPF_V100B_IS_DEADLOCKED(&InstancePtr->RecvFifo)) { - u32 IntrEnable; - - InstancePtr->Stats.FifoErrors++; - - /* - * Invoke the error callback function, which should result in a reset - * of the device by the upper layer software. We first need to disable - * the FIFO interrupt, since otherwise the upper layer thread that - * handles the reset may never run because this interrupt condition - * doesn't go away until a reset occurs (there is no way to ack it). - */ - IntrEnable = XIIF_V123B_READ_DIER(InstancePtr->BaseAddress); - XIIF_V123B_WRITE_DIER(InstancePtr->BaseAddress, - IntrEnable & ~XEM_IPIF_RECV_FIFO_MASK); - - InstancePtr->ErrorHandler(InstancePtr->ErrorRef, - XST_FIFO_ERROR); - } -} - -/*****************************************************************************/ -/* -* -* Check the send packet FIFO for errors. FIFO error interrupts are: -* - Deadlock. See the XPacketFifo component for a description of deadlock on a -* FIFO. -* -* @param InstancePtr is a pointer to the XEmac instance to be worked on. -* -* @return -* -* Although the function returns void, it can return an asynchronous error to the -* application through the error handler. It can return XST_FIFO_ERROR if a FIFO -* error occurred. -* -* @note -* -* This function is intended for internal use only. -* -******************************************************************************/ -void -XEmac_CheckFifoSendError(XEmac * InstancePtr) -{ - /* - * Although the deadlock is currently the only interrupt from a packet - * FIFO, make sure it is deadlocked before taking action. There is no - * need to clear this interrupt since it requires a reset of the device. - */ - if (XPF_V100B_IS_DEADLOCKED(&InstancePtr->SendFifo)) { - u32 IntrEnable; - - InstancePtr->Stats.FifoErrors++; - - /* - * Invoke the error callback function, which should result in a reset - * of the device by the upper layer software. We first need to disable - * the FIFO interrupt, since otherwise the upper layer thread that - * handles the reset may never run because this interrupt condition - * doesn't go away until a reset occurs (there is no way to ack it). - */ - IntrEnable = XIIF_V123B_READ_DIER(InstancePtr->BaseAddress); - XIIF_V123B_WRITE_DIER(InstancePtr->BaseAddress, - IntrEnable & ~XEM_IPIF_SEND_FIFO_MASK); - - InstancePtr->ErrorHandler(InstancePtr->ErrorRef, - XST_FIFO_ERROR); - } -} |