summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
authorTom Rini <trini@konsulko.com>2015-04-10 09:38:38 -0400
committerTom Rini <trini@konsulko.com>2015-04-10 11:54:07 -0400
commit59064346dd2713e5259a32d5ef55792a8f91171b (patch)
tree2192fa718f041119e9ba64a9d76f7fe7c546d480 /drivers
parent6d0f45260846b8cafcae6a815178ff8ece7dea7a (diff)
parent412ae53aadb53cd63e754d638bafe6e426aeafee (diff)
downloadu-boot-59064346dd2713e5259a32d5ef55792a8f91171b.tar.gz
Merge branch 'master' of git://git.denx.de/u-boot-arm
Diffstat (limited to 'drivers')
-rw-r--r--drivers/gpio/Kconfig7
-rw-r--r--drivers/gpio/Makefile1
-rw-r--r--drivers/gpio/lpc32xx_gpio.c293
-rw-r--r--drivers/hwmon/Makefile1
-rw-r--r--drivers/hwmon/ds620.c65
-rw-r--r--drivers/i2c/Makefile1
-rw-r--r--drivers/i2c/lpc32xx_i2c.c249
-rw-r--r--drivers/mtd/nand/Makefile1
-rw-r--r--drivers/mtd/nand/lpc32xx_nand_mlc.c764
-rw-r--r--drivers/net/Makefile1
-rw-r--r--drivers/net/lpc32xx_eth.c637
-rw-r--r--drivers/spi/Makefile1
-rw-r--r--drivers/spi/lpc32xx_ssp.c144
13 files changed, 2165 insertions, 0 deletions
diff --git a/drivers/gpio/Kconfig b/drivers/gpio/Kconfig
index b609e73bba..7b5178a23a 100644
--- a/drivers/gpio/Kconfig
+++ b/drivers/gpio/Kconfig
@@ -7,3 +7,10 @@ config DM_GPIO
the GPIO uclass. Drivers provide methods to query the
particular GPIOs that they provide. The uclass interface
is defined in include/asm-generic/gpio.h.
+
+config LPC32XX_GPIO
+ bool "LPC32XX GPIO driver"
+ depends on DM
+ default n
+ help
+ Support for the LPC32XX GPIO driver.
diff --git a/drivers/gpio/Makefile b/drivers/gpio/Makefile
index fe9a3b2396..85f71c5d4a 100644
--- a/drivers/gpio/Makefile
+++ b/drivers/gpio/Makefile
@@ -41,3 +41,4 @@ obj-$(CONFIG_ADI_GPIO2) += adi_gpio2.o
obj-$(CONFIG_TCA642X) += tca642x.o
oby-$(CONFIG_SX151X) += sx151x.o
obj-$(CONFIG_SUNXI_GPIO) += sunxi_gpio.o
+obj-$(CONFIG_LPC32XX_GPIO) += lpc32xx_gpio.o
diff --git a/drivers/gpio/lpc32xx_gpio.c b/drivers/gpio/lpc32xx_gpio.c
new file mode 100644
index 0000000000..96b312592b
--- /dev/null
+++ b/drivers/gpio/lpc32xx_gpio.c
@@ -0,0 +1,293 @@
+/*
+ * LPC32xxGPIO driver
+ *
+ * (C) Copyright 2014 DENX Software Engineering GmbH
+ * Written-by: Albert ARIBAUD <albert.aribaud@3adev.fr>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <asm/io.h>
+#include <asm/arch-lpc32xx/cpu.h>
+#include <asm/arch-lpc32xx/gpio.h>
+#include <asm-generic/gpio.h>
+#include <dm.h>
+
+/**
+ * LPC32xx GPIOs work in banks but are non-homogeneous:
+ * - each bank holds a different number of GPIOs
+ * - some GPIOs are input/ouput, some input only, some output only;
+ * - some GPIOs have different meanings as an input and as an output;
+ * - some GPIOs are controlled on a given port and bit index, but
+ * read on another one.
+*
+ * In order to keep this code simple, GPIOS are considered here as
+ * homogeneous and linear, from 0 to 127.
+ *
+ * ** WARNING #1 **
+ *
+ * Client code is responsible for properly using valid GPIO numbers,
+ * including cases where a single physical GPIO has differing numbers
+ * for setting its direction, reading it and/or writing to it.
+ *
+ * ** WARNING #2 **
+ *
+ * Please read NOTE in description of lpc32xx_gpio_get_function().
+ */
+
+#define LPC32XX_GPIOS 128
+
+struct lpc32xx_gpio_platdata {
+ struct gpio_regs *regs;
+ /* GPIO FUNCTION: SEE WARNING #2 */
+ signed char function[LPC32XX_GPIOS];
+};
+
+/**
+ * We have 4 GPIO ports of 32 bits each
+ */
+
+#define MAX_GPIO 128
+
+#define GPIO_TO_PORT(gpio) ((gpio / 32) & 3)
+#define GPIO_TO_RANK(gpio) (gpio % 32)
+#define GPIO_TO_MASK(gpio) (1 << (gpio % 32))
+
+/**
+ * Configure a GPIO number 'offset' as input
+ */
+
+static int lpc32xx_gpio_direction_input(struct udevice *dev, unsigned offset)
+{
+ int port, mask;
+ struct lpc32xx_gpio_platdata *gpio_platdata = dev_get_platdata(dev);
+ struct gpio_regs *regs = gpio_platdata->regs;
+
+ port = GPIO_TO_PORT(offset);
+ mask = GPIO_TO_MASK(offset);
+
+ switch (port) {
+ case 0:
+ writel(mask, &regs->p0_dir_clr);
+ break;
+ case 1:
+ writel(mask, &regs->p1_dir_clr);
+ break;
+ case 2:
+ /* ports 2 and 3 share a common direction */
+ case 3:
+ writel(mask, &regs->p2_p3_dir_clr);
+ break;
+ default:
+ return -1;
+ }
+
+ /* GPIO FUNCTION: SEE WARNING #2 */
+ gpio_platdata->function[offset] = GPIOF_INPUT;
+
+ return 0;
+}
+
+/**
+ * Get the value of a GPIO
+ */
+
+static int lpc32xx_gpio_get_value(struct udevice *dev, unsigned offset)
+{
+ int port, rank, mask, value;
+ struct lpc32xx_gpio_platdata *gpio_platdata = dev_get_platdata(dev);
+ struct gpio_regs *regs = gpio_platdata->regs;
+
+ port = GPIO_TO_PORT(offset);
+
+ switch (port) {
+ case 0:
+ value = readl(&regs->p0_inp_state);
+ break;
+ case 1:
+ value = readl(&regs->p1_inp_state);
+ break;
+ case 2:
+ value = readl(&regs->p2_inp_state);
+ break;
+ case 3:
+ value = readl(&regs->p3_inp_state);
+ break;
+ default:
+ return -1;
+ }
+
+ rank = GPIO_TO_RANK(offset);
+ mask = GPIO_TO_MASK(offset);
+
+ return (value & mask) >> rank;
+}
+
+/**
+ * Set a GPIO
+ */
+
+static int gpio_set(struct udevice *dev, unsigned gpio)
+{
+ int port, mask;
+ struct lpc32xx_gpio_platdata *gpio_platdata = dev_get_platdata(dev);
+ struct gpio_regs *regs = gpio_platdata->regs;
+
+ port = GPIO_TO_PORT(gpio);
+ mask = GPIO_TO_MASK(gpio);
+
+ switch (port) {
+ case 0:
+ writel(mask, &regs->p0_outp_set);
+ break;
+ case 1:
+ writel(mask, &regs->p1_outp_set);
+ break;
+ case 2:
+ writel(mask, &regs->p2_outp_set);
+ break;
+ case 3:
+ writel(mask, &regs->p3_outp_set);
+ break;
+ default:
+ return -1;
+ }
+ return 0;
+}
+
+/**
+ * Clear a GPIO
+ */
+
+static int gpio_clr(struct udevice *dev, unsigned gpio)
+{
+ int port, mask;
+ struct lpc32xx_gpio_platdata *gpio_platdata = dev_get_platdata(dev);
+ struct gpio_regs *regs = gpio_platdata->regs;
+
+ port = GPIO_TO_PORT(gpio);
+ mask = GPIO_TO_MASK(gpio);
+
+ switch (port) {
+ case 0:
+ writel(mask, &regs->p0_outp_clr);
+ break;
+ case 1:
+ writel(mask, &regs->p1_outp_clr);
+ break;
+ case 2:
+ writel(mask, &regs->p2_outp_clr);
+ break;
+ case 3:
+ writel(mask, &regs->p3_outp_clr);
+ break;
+ default:
+ return -1;
+ }
+ return 0;
+}
+
+/**
+ * Set the value of a GPIO
+ */
+
+static int lpc32xx_gpio_set_value(struct udevice *dev, unsigned offset,
+ int value)
+{
+ if (value)
+ return gpio_set(dev, offset);
+ else
+ return gpio_clr(dev, offset);
+}
+
+/**
+ * Configure a GPIO number 'offset' as output with given initial value.
+ */
+
+static int lpc32xx_gpio_direction_output(struct udevice *dev, unsigned offset,
+ int value)
+{
+ int port, mask;
+ struct lpc32xx_gpio_platdata *gpio_platdata = dev_get_platdata(dev);
+ struct gpio_regs *regs = gpio_platdata->regs;
+
+ port = GPIO_TO_PORT(offset);
+ mask = GPIO_TO_MASK(offset);
+
+ switch (port) {
+ case 0:
+ writel(mask, &regs->p0_dir_set);
+ break;
+ case 1:
+ writel(mask, &regs->p1_dir_set);
+ break;
+ case 2:
+ /* ports 2 and 3 share a common direction */
+ case 3:
+ writel(mask, &regs->p2_p3_dir_set);
+ break;
+ default:
+ return -1;
+ }
+
+ /* GPIO FUNCTION: SEE WARNING #2 */
+ gpio_platdata->function[offset] = GPIOF_OUTPUT;
+
+ return lpc32xx_gpio_set_value(dev, offset, value);
+}
+
+/**
+ * GPIO functions are supposed to be computed from their current
+ * configuration, but that's way too complicated in LPC32XX. A simpler
+ * approach is used, where the GPIO functions are cached in an array.
+ * When the GPIO is in use, its function is either "input" or "output"
+ * depending on its direction, otherwise its function is "unknown".
+ *
+ * ** NOTE **
+ *
+ * THIS APPROACH WAS CHOSEN DU TO THE COMPLEX NATURE OF THE LPC32XX
+ * GPIOS; DO NOT TAKE THIS AS AN EXAMPLE FOR NEW CODE.
+ */
+
+static int lpc32xx_gpio_get_function(struct udevice *dev, unsigned offset)
+{
+ struct lpc32xx_gpio_platdata *gpio_platdata = dev_get_platdata(dev);
+ return gpio_platdata->function[offset];
+}
+
+static const struct dm_gpio_ops gpio_lpc32xx_ops = {
+ .direction_input = lpc32xx_gpio_direction_input,
+ .direction_output = lpc32xx_gpio_direction_output,
+ .get_value = lpc32xx_gpio_get_value,
+ .set_value = lpc32xx_gpio_set_value,
+ .get_function = lpc32xx_gpio_get_function,
+};
+
+static int lpc32xx_gpio_probe(struct udevice *dev)
+{
+ struct lpc32xx_gpio_platdata *gpio_platdata = dev_get_platdata(dev);
+ struct gpio_dev_priv *uc_priv = dev->uclass_priv;
+
+ if (dev->of_offset == -1) {
+ /* Tell the uclass how many GPIOs we have */
+ uc_priv->gpio_count = LPC32XX_GPIOS;
+ }
+
+ /* set base address for GPIO registers */
+ gpio_platdata->regs = (struct gpio_regs *)GPIO_BASE;
+
+ /* all GPIO functions are unknown until requested */
+ /* GPIO FUNCTION: SEE WARNING #2 */
+ memset(gpio_platdata->function, GPIOF_UNKNOWN,
+ sizeof(gpio_platdata->function));
+
+ return 0;
+}
+
+U_BOOT_DRIVER(gpio_lpc32xx) = {
+ .name = "gpio_lpc32xx",
+ .id = UCLASS_GPIO,
+ .ops = &gpio_lpc32xx_ops,
+ .probe = lpc32xx_gpio_probe,
+ .priv_auto_alloc_size = sizeof(struct lpc32xx_gpio_platdata),
+};
diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile
index 25b8e8a2d7..b4fb057c16 100644
--- a/drivers/hwmon/Makefile
+++ b/drivers/hwmon/Makefile
@@ -15,6 +15,7 @@ obj-$(CONFIG_DTT_ADT7460) += adt7460.o
obj-$(CONFIG_DTT_DS1621) += ds1621.o
obj-$(CONFIG_DTT_DS1722) += ds1722.o
obj-$(CONFIG_DTT_DS1775) += ds1775.o
+obj-$(CONFIG_DTT_DS620) += ds620.o
obj-$(CONFIG_DTT_LM63) += lm63.o
obj-$(CONFIG_DTT_LM73) += lm73.o
obj-$(CONFIG_DTT_LM75) += lm75.o
diff --git a/drivers/hwmon/ds620.c b/drivers/hwmon/ds620.c
new file mode 100644
index 0000000000..1ecc3da799
--- /dev/null
+++ b/drivers/hwmon/ds620.c
@@ -0,0 +1,65 @@
+/*
+ * DS620 DTT support
+ *
+ * (C) Copyright 2014 3ADEV <http://www.3adev.com>
+ * Written-by: Albert ARIBAUD <albert.aribaud@3adev.fr>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+/*
+ * Dallas Semiconductor's DS1621/1631 Digital Thermometer and Thermostat.
+ */
+
+#include <common.h>
+#include <i2c.h>
+#include <dtt.h>
+
+/*
+ * Device code
+ */
+#define DTT_I2C_DEV_CODE 0x48
+#define DTT_START_CONVERT 0x51
+#define DTT_TEMP 0xAA
+#define DTT_CONFIG 0xAC
+
+/*
+ * Config register MSB bits
+ */
+#define DTT_CONFIG_1SHOT 0x01
+#define DTT_CONFIG_AUTOC 0x02
+#define DTT_CONFIG_R0 0x04 /* always 1 */
+#define DTT_CONFIG_R1 0x08 /* always 1 */
+#define DTT_CONFIG_TLF 0x10
+#define DTT_CONFIG_THF 0x20
+#define DTT_CONFIG_NVB 0x40
+#define DTT_CONFIG_DONE 0x80
+
+#define CHIP(sensor) (DTT_I2C_DEV_CODE + (sensor & 0x07))
+
+int dtt_init_one(int sensor)
+{
+ uint8_t config = DTT_CONFIG_1SHOT
+ | DTT_CONFIG_R0
+ | DTT_CONFIG_R1;
+ return i2c_write(CHIP(sensor), DTT_CONFIG, 1, &config, 1);
+}
+
+int dtt_get_temp(int sensor)
+{
+ uint8_t status;
+ uint8_t temp[2];
+
+ /* Start a conversion, may take up to 1 second. */
+ i2c_write(CHIP(sensor), DTT_START_CONVERT, 1, NULL, 0);
+ do {
+ if (i2c_read(CHIP(sensor), DTT_CONFIG, 1, &status, 1))
+ /* bail out if I2C error */
+ status |= DTT_CONFIG_DONE;
+ } while (!(status & DTT_CONFIG_DONE));
+ if (i2c_read(CHIP(sensor), DTT_TEMP, 1, temp, 2))
+ /* bail out if I2C error */
+ return -274; /* below absolute zero == error */
+
+ return ((int16_t)(temp[1] | (temp[0] << 8))) >> 7;
+}
diff --git a/drivers/i2c/Makefile b/drivers/i2c/Makefile
index 774bc94a4a..26ea854ec8 100644
--- a/drivers/i2c/Makefile
+++ b/drivers/i2c/Makefile
@@ -20,6 +20,7 @@ obj-$(CONFIG_SYS_I2C_FSL) += fsl_i2c.o
obj-$(CONFIG_SYS_I2C_FTI2C010) += fti2c010.o
obj-$(CONFIG_SYS_I2C_IHS) += ihs_i2c.o
obj-$(CONFIG_SYS_I2C_KONA) += kona_i2c.o
+obj-$(CONFIG_SYS_I2C_LPC32XX) += lpc32xx_i2c.o
obj-$(CONFIG_SYS_I2C_MVTWSI) += mvtwsi.o
obj-$(CONFIG_SYS_I2C_MXC) += mxc_i2c.o
obj-$(CONFIG_SYS_I2C_MXS) += mxs_i2c.o
diff --git a/drivers/i2c/lpc32xx_i2c.c b/drivers/i2c/lpc32xx_i2c.c
new file mode 100644
index 0000000000..78d26e48c3
--- /dev/null
+++ b/drivers/i2c/lpc32xx_i2c.c
@@ -0,0 +1,249 @@
+/*
+ * LPC32xx I2C interface driver
+ *
+ * (C) Copyright 2014 DENX Software Engineering GmbH
+ * Written-by: Albert ARIBAUD - 3ADEV <albert.aribaud@3adev.fr>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <i2c.h>
+#include <asm/errno.h>
+#include <asm/arch/clk.h>
+
+/*
+ * Provide default speed and slave if target did not
+ */
+
+#if !defined(CONFIG_SYS_I2C_LPC32XX_SPEED)
+#define CONFIG_SYS_I2C_LPC32XX_SPEED 350000
+#endif
+
+#if !defined(CONFIG_SYS_I2C_LPC32XX_SLAVE)
+#define CONFIG_SYS_I2C_LPC32XX_SLAVE 0
+#endif
+
+/* i2c register set */
+struct lpc32xx_i2c_registers {
+ union {
+ u32 rx;
+ u32 tx;
+ };
+ u32 stat;
+ u32 ctrl;
+ u32 clk_hi;
+ u32 clk_lo;
+ u32 adr;
+ u32 rxfl;
+ u32 txfl;
+ u32 rxb;
+ u32 txb;
+ u32 stx;
+ u32 stxfl;
+};
+
+/* TX register fields */
+#define LPC32XX_I2C_TX_START 0x00000100
+#define LPC32XX_I2C_TX_STOP 0x00000200
+
+/* Control register values */
+#define LPC32XX_I2C_SOFT_RESET 0x00000100
+
+/* Status register values */
+#define LPC32XX_I2C_STAT_TFF 0x00000400
+#define LPC32XX_I2C_STAT_RFE 0x00000200
+#define LPC32XX_I2C_STAT_DRMI 0x00000008
+#define LPC32XX_I2C_STAT_NAI 0x00000004
+#define LPC32XX_I2C_STAT_TDI 0x00000001
+
+static struct lpc32xx_i2c_registers *lpc32xx_i2c[] = {
+ (struct lpc32xx_i2c_registers *)I2C1_BASE,
+ (struct lpc32xx_i2c_registers *)I2C2_BASE
+};
+
+/* Set I2C bus speed */
+static unsigned int lpc32xx_i2c_set_bus_speed(struct i2c_adapter *adap,
+ unsigned int speed)
+{
+ int half_period;
+
+ if (speed == 0)
+ return -EINVAL;
+
+ half_period = (105000000 / speed) / 2;
+
+ if ((half_period > 255) || (half_period < 0))
+ return -EINVAL;
+
+ writel(half_period, &lpc32xx_i2c[adap->hwadapnr]->clk_hi);
+ writel(half_period, &lpc32xx_i2c[adap->hwadapnr]->clk_lo);
+ return 0;
+}
+
+/* I2C init called by cmd_i2c when doing 'i2c reset'. */
+static void _i2c_init(struct i2c_adapter *adap,
+ int requested_speed, int slaveadd)
+{
+ struct lpc32xx_i2c_registers *i2c = lpc32xx_i2c[adap->hwadapnr];
+
+ /* soft reset (auto-clears) */
+ writel(LPC32XX_I2C_SOFT_RESET, &i2c->ctrl);
+ /* set HI and LO periods for about 350 kHz */
+ lpc32xx_i2c_set_bus_speed(adap, requested_speed);
+}
+
+/* I2C probe called by cmd_i2c when doing 'i2c probe'. */
+static int lpc32xx_i2c_probe(struct i2c_adapter *adap, u8 dev)
+{
+ struct lpc32xx_i2c_registers *i2c = lpc32xx_i2c[adap->hwadapnr];
+ int stat;
+
+ /* Soft-reset the controller */
+ writel(LPC32XX_I2C_SOFT_RESET, &i2c->ctrl);
+ while (readl(&i2c->ctrl) & LPC32XX_I2C_SOFT_RESET)
+ ;
+ /* Addre slave for write with start before and stop after */
+ writel((dev<<1) | LPC32XX_I2C_TX_START | LPC32XX_I2C_TX_STOP,
+ &i2c->tx);
+ /* wait for end of transation */
+ while (!((stat = readl(&i2c->stat)) & LPC32XX_I2C_STAT_TDI))
+ ;
+ /* was there no acknowledge? */
+ return (stat & LPC32XX_I2C_STAT_NAI) ? -1 : 0;
+}
+
+/*
+ * I2C read called by cmd_i2c when doing 'i2c read' and by cmd_eeprom.c
+ * Begin write, send address byte(s), begin read, receive data bytes, end.
+ */
+static int lpc32xx_i2c_read(struct i2c_adapter *adap, u8 dev, uint addr,
+ int alen, u8 *data, int length)
+{
+ struct lpc32xx_i2c_registers *i2c = lpc32xx_i2c[adap->hwadapnr];
+ int stat, wlen;
+
+ /* Soft-reset the controller */
+ writel(LPC32XX_I2C_SOFT_RESET, &i2c->ctrl);
+ while (readl(&i2c->ctrl) & LPC32XX_I2C_SOFT_RESET)
+ ;
+ /* do we need to write an address at all? */
+ if (alen) {
+ /* Address slave in write mode */
+ writel((dev<<1) | LPC32XX_I2C_TX_START, &i2c->tx);
+ /* write address bytes */
+ while (alen--) {
+ /* compute address byte + stop for the last one */
+ int a = (addr >> (8 * alen)) & 0xff;
+ if (!alen)
+ a |= LPC32XX_I2C_TX_STOP;
+ /* Send address byte */
+ writel(a, &i2c->tx);
+ }
+ /* wait for end of transation */
+ while (!((stat = readl(&i2c->stat)) & LPC32XX_I2C_STAT_TDI))
+ ;
+ /* clear end-of-transaction flag */
+ writel(1, &i2c->stat);
+ }
+ /* do we have to read data at all? */
+ if (length) {
+ /* Address slave in read mode */
+ writel(1 | (dev<<1) | LPC32XX_I2C_TX_START, &i2c->tx);
+ wlen = length;
+ /* get data */
+ while (length | wlen) {
+ /* read status for TFF and RFE */
+ stat = readl(&i2c->stat);
+ /* must we, can we write a trigger byte? */
+ if ((wlen > 0)
+ & (!(stat & LPC32XX_I2C_STAT_TFF))) {
+ wlen--;
+ /* write trigger byte + stop if last */
+ writel(wlen ? 0 :
+ LPC32XX_I2C_TX_STOP, &i2c->tx);
+ }
+ /* must we, can we read a data byte? */
+ if ((length > 0)
+ & (!(stat & LPC32XX_I2C_STAT_RFE))) {
+ length--;
+ /* read byte */
+ *(data++) = readl(&i2c->rx);
+ }
+ }
+ }
+ /* wait for end of transation */
+ while (!((stat = readl(&i2c->stat)) & LPC32XX_I2C_STAT_TDI))
+ ;
+ /* clear end-of-transaction flag */
+ writel(1, &i2c->stat);
+ /* success */
+ return 0;
+}
+
+/*
+ * I2C write called by cmd_i2c when doing 'i2c write' and by cmd_eeprom.c
+ * Begin write, send address byte(s), send data bytes, end.
+ */
+static int lpc32xx_i2c_write(struct i2c_adapter *adap, u8 dev, uint addr,
+ int alen, u8 *data, int length)
+{
+ struct lpc32xx_i2c_registers *i2c = lpc32xx_i2c[adap->hwadapnr];
+ int stat;
+
+ /* Soft-reset the controller */
+ writel(LPC32XX_I2C_SOFT_RESET, &i2c->ctrl);
+ while (readl(&i2c->ctrl) & LPC32XX_I2C_SOFT_RESET)
+ ;
+ /* do we need to write anything at all? */
+ if (alen | length)
+ /* Address slave in write mode */
+ writel((dev<<1) | LPC32XX_I2C_TX_START, &i2c->tx);
+ /* write address bytes */
+ while (alen) {
+ /* wait for transmit fifo not full */
+ stat = readl(&i2c->stat);
+ if (!(stat & LPC32XX_I2C_STAT_TFF)) {
+ alen--;
+ int a = (addr >> (8 * alen)) & 0xff;
+ if (!(alen | length))
+ a |= LPC32XX_I2C_TX_STOP;
+ /* Send address byte */
+ writel(a, &i2c->tx);
+ }
+ }
+ while (length) {
+ /* wait for transmit fifo not full */
+ stat = readl(&i2c->stat);
+ if (!(stat & LPC32XX_I2C_STAT_TFF)) {
+ /* compute data byte, add stop if length==0 */
+ length--;
+ int d = *(data++);
+ if (!length)
+ d |= LPC32XX_I2C_TX_STOP;
+ /* Send data byte */
+ writel(d, &i2c->tx);
+ }
+ }
+ /* wait for end of transation */
+ while (!((stat = readl(&i2c->stat)) & LPC32XX_I2C_STAT_TDI))
+ ;
+ /* clear end-of-transaction flag */
+ writel(1, &i2c->stat);
+ return 0;
+}
+
+U_BOOT_I2C_ADAP_COMPLETE(lpc32xx_0, _i2c_init, lpc32xx_i2c_probe,
+ lpc32xx_i2c_read, lpc32xx_i2c_write,
+ lpc32xx_i2c_set_bus_speed,
+ CONFIG_SYS_I2C_LPC32XX_SPEED,
+ CONFIG_SYS_I2C_LPC32XX_SLAVE,
+ 0)
+
+U_BOOT_I2C_ADAP_COMPLETE(lpc32xx_1, _i2c_init, lpc32xx_i2c_probe,
+ lpc32xx_i2c_read, lpc32xx_i2c_write,
+ lpc32xx_i2c_set_bus_speed,
+ CONFIG_SYS_I2C_LPC32XX_SPEED,
+ CONFIG_SYS_I2C_LPC32XX_SLAVE,
+ 1)
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 1f02bfc35f..347ea62e0b 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -52,6 +52,7 @@ obj-$(CONFIG_NAND_JZ4740) += jz4740_nand.o
obj-$(CONFIG_NAND_KB9202) += kb9202_nand.o
obj-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
obj-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o
+obj-$(CONFIG_NAND_LPC32XX_MLC) += lpc32xx_nand_mlc.o
obj-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o
obj-$(CONFIG_NAND_VF610_NFC) += vf610_nfc.o
obj-$(CONFIG_NAND_MXC) += mxc_nand.o
diff --git a/drivers/mtd/nand/lpc32xx_nand_mlc.c b/drivers/mtd/nand/lpc32xx_nand_mlc.c
new file mode 100644
index 0000000000..8156fe9613
--- /dev/null
+++ b/drivers/mtd/nand/lpc32xx_nand_mlc.c
@@ -0,0 +1,764 @@
+/*
+ * LPC32xx MLC NAND flash controller driver
+ *
+ * (C) Copyright 2014 3ADEV <http://3adev.com>
+ * Written by Albert ARIBAUD <albert.aribaud@3adev.fr>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ *
+ * NOTE:
+ *
+ * The MLC NAND flash controller provides hardware Reed-Solomon ECC
+ * covering in- and out-of-band data together. Therefore, in- and out-
+ * of-band data must be written together in order to have a valid ECC.
+ *
+ * Consequently, pages with meaningful in-band data are written with
+ * blank (all-ones) out-of-band data and a valid ECC, and any later
+ * out-of-band data write will void the ECC.
+ *
+ * Therefore, code which reads such late-written out-of-band data
+ * should not rely on the ECC validity.
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <asm/errno.h>
+#include <asm/io.h>
+#include <nand.h>
+#include <asm/arch/clk.h>
+#include <asm/arch/sys_proto.h>
+
+/*
+ * MLC NAND controller registers.
+ */
+struct lpc32xx_nand_mlc_registers {
+ u8 buff[32768]; /* controller's serial data buffer */
+ u8 data[32768]; /* NAND's raw data buffer */
+ u32 cmd;
+ u32 addr;
+ u32 ecc_enc_reg;
+ u32 ecc_dec_reg;
+ u32 ecc_auto_enc_reg;
+ u32 ecc_auto_dec_reg;
+ u32 rpr;
+ u32 wpr;
+ u32 rubp;
+ u32 robp;
+ u32 sw_wp_add_low;
+ u32 sw_wp_add_hig;
+ u32 icr;
+ u32 time_reg;
+ u32 irq_mr;
+ u32 irq_sr;
+ u32 lock_pr;
+ u32 isr;
+ u32 ceh;
+};
+
+/* LOCK_PR register defines */
+#define LOCK_PR_UNLOCK_KEY 0x0000A25E /* Magic unlock value */
+
+/* ICR defines */
+#define ICR_LARGE_BLOCKS 0x00000004 /* configure for 2KB blocks */
+#define ICR_ADDR4 0x00000002 /* configure for 4-word addrs */
+
+/* CEH defines */
+#define CEH_NORMAL_CE 0x00000001 /* do not force CE ON */
+
+/* ISR register defines */
+#define ISR_NAND_READY 0x00000001
+#define ISR_CONTROLLER_READY 0x00000002
+#define ISR_ECC_READY 0x00000004
+#define ISR_DECODER_ERRORS(s) ((((s) >> 4) & 3)+1)
+#define ISR_DECODER_FAILURE 0x00000040
+#define ISR_DECODER_ERROR 0x00000008
+
+/* time-out for NAND chip / controller loops, in us */
+#define LPC32X_NAND_TIMEOUT 5000
+
+/*
+ * There is a single instance of the NAND MLC controller
+ */
+
+static struct lpc32xx_nand_mlc_registers __iomem *lpc32xx_nand_mlc_registers
+ = (struct lpc32xx_nand_mlc_registers __iomem *)MLC_NAND_BASE;
+
+#define clkdiv(v, w, o) (((1+(clk/v)) & w) << o)
+
+/**
+ * OOB data in each small page are 6 'free' then 10 ECC bytes.
+ * To make things easier, when reading large pages, the four pages'
+ * 'free' OOB bytes are grouped in the first 24 bytes of the OOB buffer,
+ * while the the four ECC bytes are groupe in its last 40 bytes.
+ *
+ * The struct below represents how free vs ecc oob bytes are stored
+ * in the buffer.
+ *
+ * Note: the OOB bytes contain the bad block marker at offsets 0 and 1.
+ */
+
+struct lpc32xx_oob {
+ struct {
+ uint8_t free_oob_bytes[6];
+ } free[4];
+ struct {
+ uint8_t ecc_oob_bytes[10];
+ } ecc[4];
+};
+
+/*
+ * Initialize the controller
+ */
+
+static void lpc32xx_nand_init(void)
+{
+ unsigned int clk;
+
+ /* Configure controller for no software write protection, x8 bus
+ width, large block device, and 4 address words */
+
+ /* unlock controller registers with magic key */
+ writel(LOCK_PR_UNLOCK_KEY,
+ &lpc32xx_nand_mlc_registers->lock_pr);
+
+ /* enable large blocks and large NANDs */
+ writel(ICR_LARGE_BLOCKS | ICR_ADDR4,
+ &lpc32xx_nand_mlc_registers->icr);
+
+ /* Make sure MLC interrupts are disabled */
+ writel(0, &lpc32xx_nand_mlc_registers->irq_mr);
+
+ /* Normal chip enable operation */
+ writel(CEH_NORMAL_CE,
+ &lpc32xx_nand_mlc_registers->ceh);
+
+ /* Setup NAND timing */
+ clk = get_hclk_clk_rate();
+
+ writel(
+ clkdiv(CONFIG_LPC32XX_NAND_MLC_TCEA_DELAY, 0x03, 24) |
+ clkdiv(CONFIG_LPC32XX_NAND_MLC_BUSY_DELAY, 0x1F, 19) |
+ clkdiv(CONFIG_LPC32XX_NAND_MLC_NAND_TA, 0x07, 16) |
+ clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_HIGH, 0x0F, 12) |
+ clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_LOW, 0x0F, 8) |
+ clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_HIGH, 0x0F, 4) |
+ clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_LOW, 0x0F, 0),
+ &lpc32xx_nand_mlc_registers->time_reg);
+}
+
+#if !defined(CONFIG_SPL_BUILD)
+
+/**
+ * lpc32xx_cmd_ctrl - write command to either cmd or data register
+ */
+
+static void lpc32xx_cmd_ctrl(struct mtd_info *mtd, int cmd,
+ unsigned int ctrl)
+{
+ if (cmd == NAND_CMD_NONE)
+ return;
+
+ if (ctrl & NAND_CLE)
+ writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->cmd);
+ else if (ctrl & NAND_ALE)
+ writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->addr);
+}
+
+/**
+ * lpc32xx_read_byte - read a byte from the NAND
+ * @mtd: MTD device structure
+ */
+
+static uint8_t lpc32xx_read_byte(struct mtd_info *mtd)
+{
+ return readb(&lpc32xx_nand_mlc_registers->data);
+}
+
+/**
+ * lpc32xx_dev_ready - test if NAND device (actually controller) is ready
+ * @mtd: MTD device structure
+ * @mode: mode to set the ECC HW to.
+ */
+
+static int lpc32xx_dev_ready(struct mtd_info *mtd)
+{
+ /* means *controller* ready for us */
+ int status = readl(&lpc32xx_nand_mlc_registers->isr);
+ return status & ISR_CONTROLLER_READY;
+}
+
+/**
+ * ECC layout -- this is needed whatever ECC mode we are using.
+ * In a 2KB (4*512B) page, R/S codes occupy 40 (4*10) bytes.
+ * To make U-Boot's life easier, we pack 'useable' OOB at the
+ * front and R/S ECC at the back.
+ */
+
+static struct nand_ecclayout lpc32xx_largepage_ecclayout = {
+ .eccbytes = 40,
+ .eccpos = {24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
+ 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
+ 44, 45, 46, 47, 48, 48, 50, 51, 52, 53,
+ 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+ },
+ .oobfree = {
+ /* bytes 0 and 1 are used for the bad block marker */
+ {
+ .offset = 2,
+ .length = 22
+ },
+ }
+};
+
+/**
+ * lpc32xx_read_page_hwecc - read in- and out-of-band data with ECC
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Use large block Auto Decode Read Mode(1) as described in User Manual
+ * section 8.6.2.1.
+ *
+ * The initial Read Mode and Read Start commands are sent by the caller.
+ *
+ * ECC will be false if out-of-band data has been updated since in-band
+ * data was initially written.
+ */
+
+static int lpc32xx_read_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf, int oob_required,
+ int page)
+{
+ unsigned int i, status, timeout, err, max_bitflips = 0;
+ struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+ /* go through all four small pages */
+ for (i = 0; i < 4; i++) {
+ /* start auto decode (reads 528 NAND bytes) */
+ writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
+ /* wait for controller to return to ready state */
+ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+ status = readl(&lpc32xx_nand_mlc_registers->isr);
+ if (status & ISR_CONTROLLER_READY)
+ break;
+ udelay(1);
+ }
+ /* if decoder failed, return failure */
+ if (status & ISR_DECODER_FAILURE)
+ return -1;
+ /* keep count of maximum bitflips performed */
+ if (status & ISR_DECODER_ERROR) {
+ err = ISR_DECODER_ERRORS(status);
+ if (err > max_bitflips)
+ max_bitflips = err;
+ }
+ /* copy first 512 bytes into buffer */
+ memcpy(buf+512*i, lpc32xx_nand_mlc_registers->buff, 512);
+ /* copy next 6 bytes at front of OOB buffer */
+ memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
+ /* copy last 10 bytes (R/S ECC) at back of OOB buffer */
+ memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10);
+ }
+ return max_bitflips;
+}
+
+/**
+ * lpc32xx_read_page_raw - read raw (in-band, out-of-band and ECC) data
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Read NAND directly; can read pages with invalid ECC.
+ */
+
+static int lpc32xx_read_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf, int oob_required,
+ int page)
+{
+ unsigned int i, status, timeout;
+ struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+ /* when we get here we've already had the Read Mode(1) */
+
+ /* go through all four small pages */
+ for (i = 0; i < 4; i++) {
+ /* wait for NAND to return to ready state */
+ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+ status = readl(&lpc32xx_nand_mlc_registers->isr);
+ if (status & ISR_NAND_READY)
+ break;
+ udelay(1);
+ }
+ /* if NAND stalled, return failure */
+ if (!(status & ISR_NAND_READY))
+ return -1;
+ /* copy first 512 bytes into buffer */
+ memcpy(buf+512*i, lpc32xx_nand_mlc_registers->data, 512);
+ /* copy next 6 bytes at front of OOB buffer */
+ memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->data, 6);
+ /* copy last 10 bytes (R/S ECC) at back of OOB buffer */
+ memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->data, 10);
+ }
+ return 0;
+}
+
+/**
+ * lpc32xx_read_oob - read out-of-band data
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ *
+ * Read out-of-band data. User Manual section 8.6.4 suggests using Read
+ * Mode(3) which the controller will turn into a Read Mode(1) internally
+ * but nand_base.c will turn Mode(3) into Mode(0), so let's use Mode(0)
+ * directly.
+ *
+ * ECC covers in- and out-of-band data and was written when out-of-band
+ * data was blank. Therefore, if the out-of-band being read here is not
+ * blank, then the ECC will be false and the read will return bitflips,
+ * even in case of ECC failure where we will return 5 bitflips. The
+ * caller should be prepared to handle this.
+ */
+
+static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ unsigned int i, status, timeout, err, max_bitflips = 0;
+ struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+ /* No command was sent before calling read_oob() so send one */
+
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+
+ /* go through all four small pages */
+ for (i = 0; i < 4; i++) {
+ /* start auto decode (reads 528 NAND bytes) */
+ writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
+ /* wait for controller to return to ready state */
+ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+ status = readl(&lpc32xx_nand_mlc_registers->isr);
+ if (status & ISR_CONTROLLER_READY)
+ break;
+ udelay(1);
+ }
+ /* if decoder failure, count 'one too many' bitflips */
+ if (status & ISR_DECODER_FAILURE)
+ max_bitflips = 5;
+ /* keep count of maximum bitflips performed */
+ if (status & ISR_DECODER_ERROR) {
+ err = ISR_DECODER_ERRORS(status);
+ if (err > max_bitflips)
+ max_bitflips = err;
+ }
+ /* set read pointer to OOB area */
+ writel(0, &lpc32xx_nand_mlc_registers->robp);
+ /* copy next 6 bytes at front of OOB buffer */
+ memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
+ /* copy next 10 bytes (R/S ECC) at back of OOB buffer */
+ memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10);
+ }
+ return max_bitflips;
+}
+
+/**
+ * lpc32xx_write_page_hwecc - write in- and out-of-band data with ECC
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ *
+ * Use large block Auto Encode as per User Manual section 8.6.4.
+ *
+ * The initial Write Serial Input and final Auto Program commands are
+ * sent by the caller.
+ */
+
+static int lpc32xx_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf, int oob_required)
+{
+ unsigned int i, status, timeout;
+ struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+ /* when we get here we've already had the SEQIN */
+ for (i = 0; i < 4; i++) {
+ /* start encode (expects 518 writes to buff) */
+ writel(0, &lpc32xx_nand_mlc_registers->ecc_enc_reg);
+ /* copy first 512 bytes from buffer */
+ memcpy(&lpc32xx_nand_mlc_registers->buff, buf+512*i, 512);
+ /* copy next 6 bytes from OOB buffer -- excluding ECC */
+ memcpy(&lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6);
+ /* wait for ECC to return to ready state */
+ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+ status = readl(&lpc32xx_nand_mlc_registers->isr);
+ if (status & ISR_ECC_READY)
+ break;
+ udelay(1);
+ }
+ /* if ECC stalled, return failure */
+ if (!(status & ISR_ECC_READY))
+ return -1;
+ /* Trigger auto encode (writes 528 bytes to NAND) */
+ writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_enc_reg);
+ /* wait for controller to return to ready state */
+ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+ status = readl(&lpc32xx_nand_mlc_registers->isr);
+ if (status & ISR_CONTROLLER_READY)
+ break;
+ udelay(1);
+ }
+ /* if controller stalled, return error */
+ if (!(status & ISR_CONTROLLER_READY))
+ return -1;
+ }
+ return 0;
+}
+
+/**
+ * lpc32xx_write_page_raw - write raw (in-band, out-of-band and ECC) data
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Use large block write but without encode.
+ *
+ * The initial Write Serial Input and final Auto Program commands are
+ * sent by the caller.
+ *
+ * This function will write the full out-of-band data, including the
+ * ECC area. Therefore, it can write pages with valid *or* invalid ECC.
+ */
+
+static int lpc32xx_write_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf, int oob_required)
+{
+ unsigned int i;
+ struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+ /* when we get here we've already had the Read Mode(1) */
+ for (i = 0; i < 4; i++) {
+ /* copy first 512 bytes from buffer */
+ memcpy(lpc32xx_nand_mlc_registers->buff, buf+512*i, 512);
+ /* copy next 6 bytes into OOB buffer -- excluding ECC */
+ memcpy(lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6);
+ /* copy next 10 bytes into OOB buffer -- that is 'ECC' */
+ memcpy(lpc32xx_nand_mlc_registers->buff, &oob->ecc[i], 10);
+ }
+ return 0;
+}
+
+/**
+ * lpc32xx_write_oob - write out-of-band data
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ *
+ * Since ECC covers in- and out-of-band data, writing out-of-band data
+ * with ECC will render the page ECC wrong -- or, if the page was blank,
+ * then it will produce a good ECC but a later in-band data write will
+ * render it wrong.
+ *
+ * Therefore, do not compute or write any ECC, and always return success.
+ *
+ * This implies that we do four writes, since non-ECC out-of-band data
+ * are not contiguous in a large page.
+ */
+
+static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ /* update oob on all 4 subpages in sequence */
+ unsigned int i, status, timeout;
+ struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+ for (i = 0; i < 4; i++) {
+ /* start data input */
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x200+0x210*i, page);
+ /* copy 6 non-ECC out-of-band bytes directly into NAND */
+ memcpy(lpc32xx_nand_mlc_registers->data, &oob->free[i], 6);
+ /* program page */
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+ /* wait for NAND to return to ready state */
+ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+ status = readl(&lpc32xx_nand_mlc_registers->isr);
+ if (status & ISR_NAND_READY)
+ break;
+ udelay(1);
+ }
+ /* if NAND stalled, return error */
+ if (!(status & ISR_NAND_READY))
+ return -1;
+ }
+ return 0;
+}
+
+/**
+ * lpc32xx_waitfunc - wait until a command is done
+ * @mtd: MTD device structure
+ * @chip: NAND chip structure
+ *
+ * Wait for controller and FLASH to both be ready.
+ */
+
+static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ int status;
+ unsigned int timeout;
+ /* wait until both controller and NAND are ready */
+ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+ status = readl(&lpc32xx_nand_mlc_registers->isr);
+ if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY))
+ == (ISR_CONTROLLER_READY || ISR_NAND_READY))
+ break;
+ udelay(1);
+ }
+ /* if controller or NAND stalled, return error */
+ if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY))
+ != (ISR_CONTROLLER_READY || ISR_NAND_READY))
+ return -1;
+ /* write NAND status command */
+ writel(NAND_CMD_STATUS, &lpc32xx_nand_mlc_registers->cmd);
+ /* read back status and return it */
+ return readb(&lpc32xx_nand_mlc_registers->data);
+}
+
+/*
+ * We are self-initializing, so we need our own chip struct
+ */
+
+static struct nand_chip lpc32xx_chip;
+
+/*
+ * Initialize the controller
+ */
+
+void board_nand_init(void)
+{
+ /* we have only one device anyway */
+ struct mtd_info *mtd = &nand_info[0];
+ /* chip is struct nand_chip, and is now provided by the driver. */
+ mtd->priv = &lpc32xx_chip;
+ /* to store return status in case we need to print it */
+ int ret;
+
+ /* Set all BOARDSPECIFIC (actually core-specific) fields */
+
+ lpc32xx_chip.IO_ADDR_R = &lpc32xx_nand_mlc_registers->buff;
+ lpc32xx_chip.IO_ADDR_W = &lpc32xx_nand_mlc_registers->buff;
+ lpc32xx_chip.cmd_ctrl = lpc32xx_cmd_ctrl;
+ /* do not set init_size: nand_base.c will read sizes from chip */
+ lpc32xx_chip.dev_ready = lpc32xx_dev_ready;
+ /* do not set setup_read_retry: this is NAND-chip-specific */
+ /* do not set chip_delay: we have dev_ready defined. */
+ lpc32xx_chip.options |= NAND_NO_SUBPAGE_WRITE;
+
+ /* Set needed ECC fields */
+
+ lpc32xx_chip.ecc.mode = NAND_ECC_HW;
+ lpc32xx_chip.ecc.layout = &lpc32xx_largepage_ecclayout;
+ lpc32xx_chip.ecc.size = 512;
+ lpc32xx_chip.ecc.bytes = 10;
+ lpc32xx_chip.ecc.strength = 4;
+ lpc32xx_chip.ecc.read_page = lpc32xx_read_page_hwecc;
+ lpc32xx_chip.ecc.read_page_raw = lpc32xx_read_page_raw;
+ lpc32xx_chip.ecc.write_page = lpc32xx_write_page_hwecc;
+ lpc32xx_chip.ecc.write_page_raw = lpc32xx_write_page_raw;
+ lpc32xx_chip.ecc.read_oob = lpc32xx_read_oob;
+ lpc32xx_chip.ecc.write_oob = lpc32xx_write_oob;
+ lpc32xx_chip.waitfunc = lpc32xx_waitfunc;
+
+ lpc32xx_chip.read_byte = lpc32xx_read_byte; /* FIXME: NEEDED? */
+
+ /* BBT options: read from last two pages */
+ lpc32xx_chip.bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_LASTBLOCK
+ | NAND_BBT_SCANLASTPAGE | NAND_BBT_SCAN2NDPAGE
+ | NAND_BBT_WRITE;
+
+ /* Initialize NAND interface */
+ lpc32xx_nand_init();
+
+ /* identify chip */
+ ret = nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_CHIPS, NULL);
+ if (ret) {
+ error("nand_scan_ident returned %i", ret);
+ return;
+ }
+
+ /* finish scanning the chip */
+ ret = nand_scan_tail(mtd);
+ if (ret) {
+ error("nand_scan_tail returned %i", ret);
+ return;
+ }
+
+ /* chip is good, register it */
+ ret = nand_register(0);
+ if (ret)
+ error("nand_register returned %i", ret);
+}
+
+#else /* defined(CONFIG_SPL_BUILD) */
+
+void nand_init(void)
+{
+ /* enable NAND controller */
+ lpc32xx_mlc_nand_init();
+ /* initialize NAND controller */
+ lpc32xx_nand_init();
+}
+
+void nand_deselect(void)
+{
+ /* nothing to do, but SPL requires this function */
+}
+
+static int read_single_page(uint8_t *dest, int page,
+ struct lpc32xx_oob *oob)
+{
+ int status, i, timeout, err, max_bitflips = 0;
+
+ /* enter read mode */
+ writel(NAND_CMD_READ0, &lpc32xx_nand_mlc_registers->cmd);
+ /* send column (lsb then MSB) and page (lsb to MSB) */
+ writel(0, &lpc32xx_nand_mlc_registers->addr);
+ writel(0, &lpc32xx_nand_mlc_registers->addr);
+ writel(page & 0xff, &lpc32xx_nand_mlc_registers->addr);
+ writel((page>>8) & 0xff, &lpc32xx_nand_mlc_registers->addr);
+ writel((page>>16) & 0xff, &lpc32xx_nand_mlc_registers->addr);
+ /* start reading */
+ writel(NAND_CMD_READSTART, &lpc32xx_nand_mlc_registers->cmd);
+
+ /* large page auto decode read */
+ for (i = 0; i < 4; i++) {
+ /* start auto decode (reads 528 NAND bytes) */
+ writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
+ /* wait for controller to return to ready state */
+ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+ status = readl(&lpc32xx_nand_mlc_registers->isr);
+ if (status & ISR_CONTROLLER_READY)
+ break;
+ udelay(1);
+ }
+ /* if controller stalled, return error */
+ if (!(status & ISR_CONTROLLER_READY))
+ return -1;
+ /* if decoder failure, return error */
+ if (status & ISR_DECODER_FAILURE)
+ return -1;
+ /* keep count of maximum bitflips performed */
+ if (status & ISR_DECODER_ERROR) {
+ err = ISR_DECODER_ERRORS(status);
+ if (err > max_bitflips)
+ max_bitflips = err;
+ }
+ /* copy first 512 bytes into buffer */
+ memcpy(dest+i*512, lpc32xx_nand_mlc_registers->buff, 512);
+ /* copy next 6 bytes bytes into OOB buffer */
+ memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
+ }
+ return max_bitflips;
+}
+
+/*
+ * Load U-Boot signed image.
+ * This loads an image from NAND, skipping bad blocks.
+ * A block is declared bad if at least one of its readable pages has
+ * a bad block marker in its OOB at position 0.
+ * If all pages ion a block are unreadable, the block is considered
+ * bad (i.e., assumed not to be part of the image) and skipped.
+ *
+ * IMPORTANT NOTE:
+ *
+ * If the first block of the image is fully unreadable, it will be
+ * ignored and skipped as if it had been marked bad. If it was not
+ * actually marked bad at the time of writing the image, the resulting
+ * image loaded will lack a header and magic number. It could thus be
+ * considered as a raw, headerless, image and SPL might erroneously
+ * jump into it.
+ *
+ * In order to avoid this risk, LPC32XX-based boards which use this
+ * driver MUST define CONFIG_SPL_PANIC_ON_RAW_IMAGE.
+ */
+
+#define BYTES_PER_PAGE 2048
+#define PAGES_PER_BLOCK 64
+#define BYTES_PER_BLOCK (BYTES_PER_PAGE * PAGES_PER_BLOCK)
+#define PAGES_PER_CHIP_MAX 524288
+
+int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
+{
+ int bytes_left = size;
+ int pages_left = DIV_ROUND_UP(size, BYTES_PER_PAGE);
+ int blocks_left = DIV_ROUND_UP(size, BYTES_PER_BLOCK);
+ int block = 0;
+ int page = offs / BYTES_PER_PAGE;
+ /* perform reads block by block */
+ while (blocks_left) {
+ /* compute first page number to read */
+ void *block_page_dst = dst;
+ /* read at most one block, possibly less */
+ int block_bytes_left = bytes_left;
+ if (block_bytes_left > BYTES_PER_BLOCK)
+ block_bytes_left = BYTES_PER_BLOCK;
+ /* keep track of good, failed, and "bad" pages */
+ int block_pages_good = 0;
+ int block_pages_bad = 0;
+ int block_pages_err = 0;
+ /* we shall read a full block of pages, maybe less */
+ int block_pages_left = pages_left;
+ if (block_pages_left > PAGES_PER_BLOCK)
+ block_pages_left = PAGES_PER_BLOCK;
+ int block_pages = block_pages_left;
+ int block_page = page;
+ /* while pages are left and the block is not known as bad */
+ while ((block_pages > 0) && (block_pages_bad == 0)) {
+ /* we will read OOB, too, for bad block markers */
+ struct lpc32xx_oob oob;
+ /* read page */
+ int res = read_single_page(block_page_dst, block_page,
+ &oob);
+ /* count readable pages */
+ if (res >= 0) {
+ /* this page is good */
+ block_pages_good++;
+ /* this page is bad */
+ if ((oob.free[0].free_oob_bytes[0] != 0xff)
+ | (oob.free[0].free_oob_bytes[1] != 0xff))
+ block_pages_bad++;
+ } else
+ /* count errors */
+ block_pages_err++;
+ /* we're done with this page */
+ block_page++;
+ block_page_dst += BYTES_PER_PAGE;
+ if (block_pages)
+ block_pages--;
+ }
+ /* a fully unreadable block is considered bad */
+ if (block_pages_good == 0)
+ block_pages_bad = block_pages_err;
+ /* errors are fatal only in good blocks */
+ if ((block_pages_err > 0) && (block_pages_bad == 0))
+ return -1;
+ /* we keep reads only of good blocks */
+ if (block_pages_bad == 0) {
+ dst += block_bytes_left;
+ bytes_left -= block_bytes_left;
+ pages_left -= block_pages_left;
+ blocks_left--;
+ }
+ /* good or bad, we're done with this block */
+ block++;
+ page += PAGES_PER_BLOCK;
+ }
+
+ /* report success */
+ return 0;
+}
+
+#endif /* CONFIG_SPL_BUILD */
diff --git a/drivers/net/Makefile b/drivers/net/Makefile
index 3ff86b703f..5a5269aa06 100644
--- a/drivers/net/Makefile
+++ b/drivers/net/Makefile
@@ -35,6 +35,7 @@ obj-$(CONFIG_GRETH) += greth.o
obj-$(CONFIG_DRIVER_TI_KEYSTONE_NET) += keystone_net.o
obj-$(CONFIG_KS8851_MLL) += ks8851_mll.o
obj-$(CONFIG_LAN91C96) += lan91c96.o
+obj-$(CONFIG_LPC32XX_ETH) += lpc32xx_eth.o
obj-$(CONFIG_MACB) += macb.o
obj-$(CONFIG_MCFFEC) += mcffec.o mcfmii.o
obj-$(CONFIG_MPC5xxx_FEC) += mpc5xxx_fec.o
diff --git a/drivers/net/lpc32xx_eth.c b/drivers/net/lpc32xx_eth.c
new file mode 100644
index 0000000000..fcadf0c77f
--- /dev/null
+++ b/drivers/net/lpc32xx_eth.c
@@ -0,0 +1,637 @@
+/*
+ * LPC32xx Ethernet MAC interface driver
+ *
+ * (C) Copyright 2014 DENX Software Engineering GmbH
+ * Written-by: Albert ARIBAUD - 3ADEV <albert.aribaud@3adev.fr>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <net.h>
+#include <malloc.h>
+#include <miiphy.h>
+#include <asm/io.h>
+#include <asm/errno.h>
+#include <asm/types.h>
+#include <asm/system.h>
+#include <asm/byteorder.h>
+#include <asm/arch/cpu.h>
+#include <asm/arch/config.h>
+
+/*
+ * Notes:
+ *
+ * 1. Unless specified otherwise, all references to tables or paragraphs
+ * are to UM10326, "LPC32x0 and LPC32x0/01 User manual".
+ *
+ * 2. Only bitfield masks/values which are actually used by the driver
+ * are defined.
+ */
+
+/* a single RX descriptor. The controller has an array of these */
+struct lpc32xx_eth_rxdesc {
+ u32 packet; /* Receive packet pointer */
+ u32 control; /* Descriptor command status */
+};
+
+#define LPC32XX_ETH_RX_DESC_SIZE (sizeof(struct lpc32xx_eth_rxdesc))
+
+/* RX control bitfields/masks (see Table 330) */
+#define LPC32XX_ETH_RX_CTRL_SIZE_MASK 0x000007FF
+#define LPC32XX_ETH_RX_CTRL_UNUSED 0x7FFFF800
+#define LPC32XX_ETH_RX_CTRL_INTERRUPT 0x80000000
+
+/* a single RX status. The controller has an array of these */
+struct lpc32xx_eth_rxstat {
+ u32 statusinfo; /* Transmit Descriptor status */
+ u32 statushashcrc; /* Transmit Descriptor CRCs */
+};
+
+#define LPC32XX_ETH_RX_STAT_SIZE (sizeof(struct lpc32xx_eth_rxstat))
+
+/* RX statusinfo bitfields/masks (see Table 333) */
+#define RX_STAT_RXSIZE 0x000007FF
+/* Helper: OR of all errors except RANGE */
+#define RX_STAT_ERRORS 0x1B800000
+
+/* a single TX descriptor. The controller has an array of these */
+struct lpc32xx_eth_txdesc {
+ u32 packet; /* Transmit packet pointer */
+ u32 control; /* Descriptor control */
+};
+
+#define LPC32XX_ETH_TX_DESC_SIZE (sizeof(struct lpc32xx_eth_txdesc))
+
+/* TX control bitfields/masks (see Table 335) */
+#define TX_CTRL_TXSIZE 0x000007FF
+#define TX_CTRL_LAST 0x40000000
+
+/* a single TX status. The controller has an array of these */
+struct lpc32xx_eth_txstat {
+ u32 statusinfo; /* Transmit Descriptor status */
+};
+
+#define LPC32XX_ETH_TX_STAT_SIZE (sizeof(struct lpc32xx_eth_txstat))
+
+/* Ethernet MAC interface registers (see Table 283) */
+struct lpc32xx_eth_registers {
+ /* MAC registers - 0x3106_0000 to 0x3106_01FC */
+ u32 mac1; /* MAC configuration register 1 */
+ u32 mac2; /* MAC configuration register 2 */
+ u32 ipgt; /* Back-to-back Inter-Packet Gap reg. */
+ u32 ipgr; /* Non-back-to-back IPG register */
+ u32 clrt; /* Collision Window / Retry register */
+ u32 maxf; /* Maximum Frame register */
+ u32 supp; /* Phy Support register */
+ u32 test;
+ u32 mcfg; /* MII management configuration reg. */
+ u32 mcmd; /* MII management command register */
+ u32 madr; /* MII management address register */
+ u32 mwtd; /* MII management wite data register */
+ u32 mrdd; /* MII management read data register */
+ u32 mind; /* MII management indicators register */
+ u32 reserved1[2];
+ u32 sa0; /* Station address register 0 */
+ u32 sa1; /* Station address register 1 */
+ u32 sa2; /* Station address register 2 */
+ u32 reserved2[45];
+ /* Control registers */
+ u32 command;
+ u32 status;
+ u32 rxdescriptor;
+ u32 rxstatus;
+ u32 rxdescriptornumber; /* actually, number MINUS ONE */
+ u32 rxproduceindex; /* head of rx desc fifo */
+ u32 rxconsumeindex; /* tail of rx desc fifo */
+ u32 txdescriptor;
+ u32 txstatus;
+ u32 txdescriptornumber; /* actually, number MINUS ONE */
+ u32 txproduceindex; /* head of rx desc fifo */
+ u32 txconsumeindex; /* tail of rx desc fifo */
+ u32 reserved3[10];
+ u32 tsv0; /* Transmit status vector register 0 */
+ u32 tsv1; /* Transmit status vector register 1 */
+ u32 rsv; /* Receive status vector register */
+ u32 reserved4[3];
+ u32 flowcontrolcounter;
+ u32 flowcontrolstatus;
+ u32 reserved5[34];
+ /* RX filter registers - 0x3106_0200 to 0x3106_0FDC */
+ u32 rxfilterctrl;
+ u32 rxfilterwolstatus;
+ u32 rxfilterwolclear;
+ u32 reserved6;
+ u32 hashfilterl;
+ u32 hashfilterh;
+ u32 reserved7[882];
+ /* Module control registers - 0x3106_0FE0 to 0x3106_0FF8 */
+ u32 intstatus; /* Interrupt status register */
+ u32 intenable;
+ u32 intclear;
+ u32 intset;
+ u32 reserved8;
+ u32 powerdown;
+ u32 reserved9;
+};
+
+/* MAC1 register bitfields/masks and offsets (see Table 283) */
+#define MAC1_RECV_ENABLE 0x00000001
+#define MAC1_PASS_ALL_RX_FRAMES 0x00000002
+#define MAC1_SOFT_RESET 0x00008000
+/* Helper: general reset */
+#define MAC1_RESETS 0x0000CF00
+
+/* MAC2 register bitfields/masks and offsets (see Table 284) */
+#define MAC2_FULL_DUPLEX 0x00000001
+#define MAC2_CRC_ENABLE 0x00000010
+#define MAC2_PAD_CRC_ENABLE 0x00000020
+
+/* SUPP register bitfields/masks and offsets (see Table 290) */
+#define SUPP_SPEED 0x00000100
+
+/* MCFG register bitfields/masks and offsets (see Table 292) */
+#define MCFG_CLOCK_SELECT_MASK 0x0000001C
+/* divide clock by 28 (see Table 293) */
+#define MCFG_CLOCK_SELECT_DIV28 0x0000001C
+
+/* MADR register bitfields/masks and offsets (see Table 295) */
+#define MADR_REG_MASK 0x0000001F
+#define MADR_PHY_MASK 0x00001F00
+#define MADR_REG_OFFSET 0
+#define MADR_PHY_OFFSET 8
+
+/* MIND register bitfields/masks (see Table 298) */
+#define MIND_BUSY 0x00000001
+
+/* COMMAND register bitfields/masks and offsets (see Table 283) */
+#define COMMAND_RXENABLE 0x00000001
+#define COMMAND_TXENABLE 0x00000002
+#define COMMAND_PASSRUNTFRAME 0x00000040
+#define COMMAND_FULL_DUPLEX 0x00000400
+/* Helper: general reset */
+#define COMMAND_RESETS 0x0000001C
+
+/* STATUS register bitfields/masks and offsets (see Table 283) */
+#define STATUS_RXSTATUS 0x00000001
+#define STATUS_TXSTATUS 0x00000002
+
+/* RXFILTERCTRL register bitfields/masks (see Table 319) */
+#define RXFILTERCTRL_ACCEPTBROADCAST 0x00000002
+#define RXFILTERCTRL_ACCEPTPERFECT 0x00000020
+
+/* Buffers and descriptors */
+
+#define ATTRS(n) __aligned(n)
+
+#define TX_BUF_COUNT 4
+#define RX_BUF_COUNT 4
+
+struct lpc32xx_eth_buffers {
+ ATTRS(4) struct lpc32xx_eth_txdesc tx_desc[TX_BUF_COUNT];
+ ATTRS(4) struct lpc32xx_eth_txstat tx_stat[TX_BUF_COUNT];
+ ATTRS(PKTALIGN) u8 tx_buf[TX_BUF_COUNT*PKTSIZE_ALIGN];
+ ATTRS(4) struct lpc32xx_eth_rxdesc rx_desc[RX_BUF_COUNT];
+ ATTRS(8) struct lpc32xx_eth_rxstat rx_stat[RX_BUF_COUNT];
+ ATTRS(PKTALIGN) u8 rx_buf[RX_BUF_COUNT*PKTSIZE_ALIGN];
+};
+
+/* port device data struct */
+struct lpc32xx_eth_device {
+ struct eth_device dev;
+ struct lpc32xx_eth_registers *regs;
+ struct lpc32xx_eth_buffers *bufs;
+};
+
+#define LPC32XX_ETH_DEVICE_SIZE (sizeof(struct lpc32xx_eth_device))
+
+/* generic macros */
+#define to_lpc32xx_eth(_d) container_of(_d, struct lpc32xx_eth_device, dev)
+
+/* timeout for MII polling */
+#define MII_TIMEOUT 10000000
+
+/* limits for PHY and register addresses */
+#define MII_MAX_REG (MADR_REG_MASK >> MADR_REG_OFFSET)
+
+#define MII_MAX_PHY (MADR_PHY_MASK >> MADR_PHY_OFFSET)
+
+DECLARE_GLOBAL_DATA_PTR;
+
+#if defined(CONFIG_PHYLIB) || defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
+/*
+ * mii_reg_read - miiphy_read callback function.
+ *
+ * Returns 16bit phy register value, or 0xffff on error
+ */
+static int mii_reg_read(const char *devname, u8 phy_adr, u8 reg_ofs, u16 *data)
+{
+ struct eth_device *dev = eth_get_dev_by_name(devname);
+ struct lpc32xx_eth_device *dlpc32xx_eth = to_lpc32xx_eth(dev);
+ struct lpc32xx_eth_registers *regs = dlpc32xx_eth->regs;
+ u32 mind_reg;
+ u32 timeout;
+
+ /* check parameters */
+ if (phy_adr > MII_MAX_PHY) {
+ printf("%s:%u: Invalid PHY address %d\n",
+ __func__, __LINE__, phy_adr);
+ return -EFAULT;
+ }
+ if (reg_ofs > MII_MAX_REG) {
+ printf("%s:%u: Invalid register offset %d\n",
+ __func__, __LINE__, reg_ofs);
+ return -EFAULT;
+ }
+
+ /* write the phy and reg addressse into the MII address reg */
+ writel((phy_adr << MADR_PHY_OFFSET) | (reg_ofs << MADR_REG_OFFSET),
+ &regs->madr);
+
+ /* write 1 to the MII command register to cause a read */
+ writel(1, &regs->mcmd);
+
+ /* wait till the MII is not busy */
+ timeout = MII_TIMEOUT;
+ do {
+ /* read MII indicators register */
+ mind_reg = readl(&regs->mind);
+ if (--timeout == 0)
+ break;
+ } while (mind_reg & MIND_BUSY);
+
+ /* write 0 to the MII command register to finish the read */
+ writel(0, &regs->mcmd);
+
+ if (timeout == 0) {
+ printf("%s:%u: MII busy timeout\n", __func__, __LINE__);
+ return -EFAULT;
+ }
+
+ *data = (u16) readl(&regs->mrdd);
+
+ debug("%s:(adr %d, off %d) => %04x\n", __func__, phy_adr,
+ reg_ofs, *data);
+
+ return 0;
+}
+
+/*
+ * mii_reg_write - imiiphy_write callback function.
+ *
+ * Returns 0 if write succeed, -EINVAL on bad parameters
+ * -ETIME on timeout
+ */
+static int mii_reg_write(const char *devname, u8 phy_adr, u8 reg_ofs, u16 data)
+{
+ struct eth_device *dev = eth_get_dev_by_name(devname);
+ struct lpc32xx_eth_device *dlpc32xx_eth = to_lpc32xx_eth(dev);
+ struct lpc32xx_eth_registers *regs = dlpc32xx_eth->regs;
+ u32 mind_reg;
+ u32 timeout;
+
+ /* check parameters */
+ if (phy_adr > MII_MAX_PHY) {
+ printf("%s:%u: Invalid PHY address %d\n",
+ __func__, __LINE__, phy_adr);
+ return -EFAULT;
+ }
+ if (reg_ofs > MII_MAX_REG) {
+ printf("%s:%u: Invalid register offset %d\n",
+ __func__, __LINE__, reg_ofs);
+ return -EFAULT;
+ }
+
+ /* wait till the MII is not busy */
+ timeout = MII_TIMEOUT;
+ do {
+ /* read MII indicators register */
+ mind_reg = readl(&regs->mind);
+ if (--timeout == 0)
+ break;
+ } while (mind_reg & MIND_BUSY);
+
+ if (timeout == 0) {
+ printf("%s:%u: MII busy timeout\n", __func__,
+ __LINE__);
+ return -EFAULT;
+ }
+
+ /* write the phy and reg addressse into the MII address reg */
+ writel((phy_adr << MADR_PHY_OFFSET) | (reg_ofs << MADR_REG_OFFSET),
+ &regs->madr);
+
+ /* write data to the MII write register */
+ writel(data, &regs->mwtd);
+
+ /*debug("%s:(adr %d, off %d) <= %04x\n", __func__, phy_adr,
+ reg_ofs, data);*/
+
+ return 0;
+}
+#endif
+
+#if defined(CONFIG_PHYLIB)
+int lpc32xx_eth_phy_read(struct mii_dev *bus, int phy_addr, int dev_addr,
+ int reg_addr)
+{
+ u16 data;
+ int ret;
+ ret = mii_reg_read(bus->name, phy_addr, reg_addr, &data);
+ if (ret)
+ return ret;
+ return data;
+}
+
+int lpc32xx_eth_phy_write(struct mii_dev *bus, int phy_addr, int dev_addr,
+ int reg_addr, u16 data)
+{
+ return mii_reg_write(bus->name, phy_addr, reg_addr, data);
+}
+#endif
+
+/*
+ * Locate buffers in SRAM at 0x00001000 to avoid cache issues and
+ * maximize throughput.
+ */
+
+#define LPC32XX_ETH_BUFS 0x00001000
+
+static struct lpc32xx_eth_device lpc32xx_eth = {
+ .regs = (struct lpc32xx_eth_registers *)LPC32XX_ETH_BASE,
+ .bufs = (struct lpc32xx_eth_buffers *)LPC32XX_ETH_BUFS
+};
+
+#define TX_TIMEOUT 10000
+
+static int lpc32xx_eth_send(struct eth_device *dev, void *dataptr, int datasize)
+{
+ struct lpc32xx_eth_device *lpc32xx_eth_device =
+ container_of(dev, struct lpc32xx_eth_device, dev);
+ struct lpc32xx_eth_registers *regs = lpc32xx_eth_device->regs;
+ struct lpc32xx_eth_buffers *bufs = lpc32xx_eth_device->bufs;
+ int timeout, tx_index;
+
+ /* time out if transmit descriptor array remains full too long */
+ timeout = TX_TIMEOUT;
+ while ((readl(&regs->status) & STATUS_TXSTATUS) &&
+ (readl(&regs->txconsumeindex)
+ == readl(&regs->txproduceindex))) {
+ if (timeout-- == 0)
+ return -1;
+ }
+
+ /* determine next transmit packet index to use */
+ tx_index = readl(&regs->txproduceindex);
+
+ /* set up transmit packet */
+ writel((u32)dataptr, &bufs->tx_desc[tx_index].packet);
+ writel(TX_CTRL_LAST | ((datasize - 1) & TX_CTRL_TXSIZE),
+ &bufs->tx_desc[tx_index].control);
+ writel(0, &bufs->tx_stat[tx_index].statusinfo);
+
+ /* pass transmit packet to DMA engine */
+ tx_index = (tx_index + 1) % TX_BUF_COUNT;
+ writel(tx_index, &regs->txproduceindex);
+
+ /* transmission succeeded */
+ return 0;
+}
+
+#define RX_TIMEOUT 1000000
+
+static int lpc32xx_eth_recv(struct eth_device *dev)
+{
+ struct lpc32xx_eth_device *lpc32xx_eth_device =
+ container_of(dev, struct lpc32xx_eth_device, dev);
+ struct lpc32xx_eth_registers *regs = lpc32xx_eth_device->regs;
+ struct lpc32xx_eth_buffers *bufs = lpc32xx_eth_device->bufs;
+ int timeout, rx_index;
+
+ /* time out if receive descriptor array remains empty too long */
+ timeout = RX_TIMEOUT;
+ while (readl(&regs->rxproduceindex) == readl(&regs->rxconsumeindex)) {
+ if (timeout-- == 0)
+ return -1;
+ }
+
+ /* determine next receive packet index to use */
+ rx_index = readl(&regs->rxconsumeindex);
+
+ /* if data was valid, pass it on */
+ if (!(bufs->rx_stat[rx_index].statusinfo & RX_STAT_ERRORS))
+ NetReceive(&(bufs->rx_buf[rx_index*PKTSIZE_ALIGN]),
+ (bufs->rx_stat[rx_index].statusinfo
+ & RX_STAT_RXSIZE) + 1);
+
+ /* pass receive slot back to DMA engine */
+ rx_index = (rx_index + 1) % RX_BUF_COUNT;
+ writel(rx_index, &regs->rxconsumeindex);
+
+ /* reception successful */
+ return 0;
+}
+
+static int lpc32xx_eth_write_hwaddr(struct eth_device *dev)
+{
+ struct lpc32xx_eth_device *lpc32xx_eth_device =
+ container_of(dev, struct lpc32xx_eth_device, dev);
+ struct lpc32xx_eth_registers *regs = lpc32xx_eth_device->regs;
+
+ /* Save station address */
+ writel((unsigned long) (dev->enetaddr[0] |
+ (dev->enetaddr[1] << 8)), &regs->sa2);
+ writel((unsigned long) (dev->enetaddr[2] |
+ (dev->enetaddr[3] << 8)), &regs->sa1);
+ writel((unsigned long) (dev->enetaddr[4] |
+ (dev->enetaddr[5] << 8)), &regs->sa0);
+
+ return 0;
+}
+
+static int lpc32xx_eth_init(struct eth_device *dev)
+{
+ struct lpc32xx_eth_device *lpc32xx_eth_device =
+ container_of(dev, struct lpc32xx_eth_device, dev);
+ struct lpc32xx_eth_registers *regs = lpc32xx_eth_device->regs;
+ struct lpc32xx_eth_buffers *bufs = lpc32xx_eth_device->bufs;
+ int index;
+
+ /* Release SOFT reset to let MII talk to PHY */
+ clrbits_le32(&regs->mac1, MAC1_SOFT_RESET);
+
+ /* Configure Full/Half Duplex mode */
+ if (miiphy_duplex(dev->name, CONFIG_PHY_ADDR) == FULL) {
+ setbits_le32(&regs->mac2, MAC2_FULL_DUPLEX);
+ setbits_le32(&regs->command, COMMAND_FULL_DUPLEX);
+ writel(0x15, &regs->ipgt);
+ } else {
+ writel(0x12, &regs->ipgt);
+ }
+
+ /* Configure 100MBit/10MBit mode */
+ if (miiphy_speed(dev->name, CONFIG_PHY_ADDR) == _100BASET)
+ writel(SUPP_SPEED, &regs->supp);
+ else
+ writel(0, &regs->supp);
+
+ /* Initial MAC initialization */
+ writel(MAC1_PASS_ALL_RX_FRAMES, &regs->mac1);
+ writel(MAC2_PAD_CRC_ENABLE | MAC2_CRC_ENABLE, &regs->mac2);
+ writel(PKTSIZE_ALIGN, &regs->maxf);
+
+ /* Retries: 15 (0xF). Collision window: 57 (0x37). */
+ writel(0x370F, &regs->clrt);
+
+ /* Set IP gap pt 2 to default 0x12 but pt 1 to non-default 0 */
+ writel(0x0012, &regs->ipgr);
+
+ /* pass runt (smaller than 64 bytes) frames */
+ writel(COMMAND_PASSRUNTFRAME, &regs->command);
+
+ /* Save station address */
+ writel((unsigned long) (dev->enetaddr[0] |
+ (dev->enetaddr[1] << 8)), &regs->sa2);
+ writel((unsigned long) (dev->enetaddr[2] |
+ (dev->enetaddr[3] << 8)), &regs->sa1);
+ writel((unsigned long) (dev->enetaddr[4] |
+ (dev->enetaddr[5] << 8)), &regs->sa0);
+
+ /* set up transmit buffers */
+ for (index = 0; index < TX_BUF_COUNT; index++) {
+ bufs->tx_desc[index].control = 0;
+ bufs->tx_stat[index].statusinfo = 0;
+ }
+ writel((u32)(&bufs->tx_desc), (u32 *)&regs->txdescriptor);
+ writel((u32)(&bufs->tx_stat), &regs->txstatus);
+ writel(TX_BUF_COUNT-1, &regs->txdescriptornumber);
+
+ /* set up receive buffers */
+ for (index = 0; index < RX_BUF_COUNT; index++) {
+ bufs->rx_desc[index].packet =
+ (u32) (bufs->rx_buf+index*PKTSIZE_ALIGN);
+ bufs->rx_desc[index].control = PKTSIZE_ALIGN - 1;
+ bufs->rx_stat[index].statusinfo = 0;
+ bufs->rx_stat[index].statushashcrc = 0;
+ }
+ writel((u32)(&bufs->rx_desc), &regs->rxdescriptor);
+ writel((u32)(&bufs->rx_stat), &regs->rxstatus);
+ writel(RX_BUF_COUNT-1, &regs->rxdescriptornumber);
+
+ /* Enable broadcast and matching address packets */
+ writel(RXFILTERCTRL_ACCEPTBROADCAST |
+ RXFILTERCTRL_ACCEPTPERFECT, &regs->rxfilterctrl);
+
+ /* Clear and disable interrupts */
+ writel(0xFFFF, &regs->intclear);
+ writel(0, &regs->intenable);
+
+ /* Enable receive and transmit mode of MAC ethernet core */
+ setbits_le32(&regs->command, COMMAND_RXENABLE | COMMAND_TXENABLE);
+ setbits_le32(&regs->mac1, MAC1_RECV_ENABLE);
+
+ /*
+ * Perform a 'dummy' first send to work around Ethernet.1
+ * erratum (see ES_LPC3250 rev. 9 dated 1 June 2011).
+ * Use zeroed "index" variable as the dummy.
+ */
+
+ index = 0;
+ lpc32xx_eth_send(dev, &index, 4);
+
+ return 0;
+}
+
+static int lpc32xx_eth_halt(struct eth_device *dev)
+{
+ struct lpc32xx_eth_device *lpc32xx_eth_device =
+ container_of(dev, struct lpc32xx_eth_device, dev);
+ struct lpc32xx_eth_registers *regs = lpc32xx_eth_device->regs;
+
+ /* Reset all MAC logic */
+ writel(MAC1_RESETS, &regs->mac1);
+ writel(COMMAND_RESETS, &regs->command);
+ /* Let reset condition settle */
+ udelay(2000);
+
+ return 0;
+}
+
+#if defined(CONFIG_PHYLIB)
+int lpc32xx_eth_phylib_init(struct eth_device *dev, int phyid)
+{
+ struct mii_dev *bus;
+ struct phy_device *phydev;
+ int ret;
+
+ bus = mdio_alloc();
+ if (!bus) {
+ printf("mdio_alloc failed\n");
+ return -ENOMEM;
+ }
+ bus->read = lpc32xx_eth_phy_read;
+ bus->write = lpc32xx_eth_phy_write;
+ sprintf(bus->name, dev->name);
+
+ ret = mdio_register(bus);
+ if (ret) {
+ printf("mdio_register failed\n");
+ free(bus);
+ return -ENOMEM;
+ }
+
+ phydev = phy_connect(bus, phyid, dev, PHY_INTERFACE_MODE_MII);
+ if (!phydev) {
+ printf("phy_connect failed\n");
+ return -ENODEV;
+ }
+
+ phy_config(phydev);
+ phy_startup(phydev);
+
+ return 0;
+}
+#endif
+
+int lpc32xx_eth_initialize(bd_t *bis)
+{
+ struct eth_device *dev = &lpc32xx_eth.dev;
+ struct lpc32xx_eth_registers *regs = lpc32xx_eth.regs;
+
+ /*
+ * Set RMII management clock rate. With HCLK at 104 MHz and
+ * a divider of 28, this will be 3.72 MHz.
+ */
+
+ writel(MCFG_CLOCK_SELECT_DIV28, &regs->mcfg);
+
+ /* Reset all MAC logic */
+ writel(MAC1_RESETS, &regs->mac1);
+ writel(COMMAND_RESETS, &regs->command);
+
+ /* wait 10 ms for the whole I/F to reset */
+ udelay(10000);
+
+ /* must be less than sizeof(dev->name) */
+ strcpy(dev->name, "eth0");
+
+ dev->init = (void *)lpc32xx_eth_init;
+ dev->halt = (void *)lpc32xx_eth_halt;
+ dev->send = (void *)lpc32xx_eth_send;
+ dev->recv = (void *)lpc32xx_eth_recv;
+ dev->write_hwaddr = (void *)lpc32xx_eth_write_hwaddr;
+
+ /* Release SOFT reset to let MII talk to PHY */
+ clrbits_le32(&regs->mac1, MAC1_SOFT_RESET);
+
+ /* register driver before talking to phy */
+ eth_register(dev);
+
+#if defined(CONFIG_PHYLIB)
+ lpc32xx_eth_phylib_init(dev, 0);
+#elif defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
+ miiphy_register(dev->name, mii_reg_read, mii_reg_write);
+#endif
+
+ return 0;
+}
diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
index edbd520141..ce6f1cc74e 100644
--- a/drivers/spi/Makefile
+++ b/drivers/spi/Makefile
@@ -32,6 +32,7 @@ obj-$(CONFIG_EXYNOS_SPI) += exynos_spi.o
obj-$(CONFIG_FTSSP010_SPI) += ftssp010_spi.o
obj-$(CONFIG_ICH_SPI) += ich.o
obj-$(CONFIG_KIRKWOOD_SPI) += kirkwood_spi.o
+obj-$(CONFIG_LPC32XX_SSP) += lpc32xx_ssp.o
obj-$(CONFIG_MPC52XX_SPI) += mpc52xx_spi.o
obj-$(CONFIG_MPC8XXX_SPI) += mpc8xxx_spi.o
obj-$(CONFIG_MXC_SPI) += mxc_spi.o
diff --git a/drivers/spi/lpc32xx_ssp.c b/drivers/spi/lpc32xx_ssp.c
new file mode 100644
index 0000000000..c5b766c0dd
--- /dev/null
+++ b/drivers/spi/lpc32xx_ssp.c
@@ -0,0 +1,144 @@
+/*
+ * LPC32xx SSP interface (SPI mode)
+ *
+ * (C) Copyright 2014 DENX Software Engineering GmbH
+ * Written-by: Albert ARIBAUD <albert.aribaud@3adev.fr>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <linux/compat.h>
+#include <asm/io.h>
+#include <malloc.h>
+#include <spi.h>
+#include <asm/arch/clk.h>
+
+/* SSP chip registers */
+struct ssp_regs {
+ u32 cr0;
+ u32 cr1;
+ u32 data;
+ u32 sr;
+ u32 cpsr;
+ u32 imsc;
+ u32 ris;
+ u32 mis;
+ u32 icr;
+ u32 dmacr;
+};
+
+/* CR1 register defines */
+#define SSP_CR1_SSP_ENABLE 0x0002
+
+/* SR register defines */
+#define SSP_SR_TNF 0x0002
+/* SSP status RX FIFO not empty bit */
+#define SSP_SR_RNE 0x0004
+
+/* lpc32xx spi slave */
+struct lpc32xx_spi_slave {
+ struct spi_slave slave;
+ struct ssp_regs *regs;
+};
+
+static inline struct lpc32xx_spi_slave *to_lpc32xx_spi_slave(
+ struct spi_slave *slave)
+{
+ return container_of(slave, struct lpc32xx_spi_slave, slave);
+}
+
+/* spi_init is called during boot when CONFIG_CMD_SPI is defined */
+void spi_init(void)
+{
+ /*
+ * nothing to do: clocking was enabled in lpc32xx_ssp_enable()
+ * and configuration will be done in spi_setup_slave()
+ */
+}
+
+/* the following is called in sequence by do_spi_xfer() */
+
+struct spi_slave *spi_setup_slave(uint bus, uint cs, uint max_hz, uint mode)
+{
+ struct lpc32xx_spi_slave *lslave;
+
+ /* we only set up SSP0 for now, so ignore bus */
+
+ if (mode & SPI_3WIRE) {
+ error("3-wire mode not supported");
+ return NULL;
+ }
+
+ if (mode & SPI_SLAVE) {
+ error("slave mode not supported\n");
+ return NULL;
+ }
+
+ if (mode & SPI_PREAMBLE) {
+ error("preamble byte skipping not supported\n");
+ return NULL;
+ }
+
+ lslave = spi_alloc_slave(struct lpc32xx_spi_slave, bus, cs);
+ if (!lslave) {
+ printf("SPI_error: Fail to allocate lpc32xx_spi_slave\n");
+ return NULL;
+ }
+
+ lslave->regs = (struct ssp_regs *)SSP0_BASE;
+
+ /*
+ * 8 bit frame, SPI fmt, 500kbps -> clock divider is 26.
+ * Set SCR to 0 and CPSDVSR to 26.
+ */
+
+ writel(0x7, &lslave->regs->cr0); /* 8-bit chunks, SPI, 1 clk/bit */
+ writel(26, &lslave->regs->cpsr); /* SSP clock = HCLK/26 = 500kbps */
+ writel(0, &lslave->regs->imsc); /* do not raise any interrupts */
+ writel(0, &lslave->regs->icr); /* clear any pending interrupt */
+ writel(0, &lslave->regs->dmacr); /* do not do DMAs */
+ writel(SSP_CR1_SSP_ENABLE, &lslave->regs->cr1); /* enable SSP0 */
+ return &lslave->slave;
+}
+
+void spi_free_slave(struct spi_slave *slave)
+{
+ struct lpc32xx_spi_slave *lslave = to_lpc32xx_spi_slave(slave);
+
+ debug("(lpc32xx) spi_free_slave: 0x%08x\n", (u32)lslave);
+ free(lslave);
+}
+
+int spi_claim_bus(struct spi_slave *slave)
+{
+ /* only one bus and slave so far, always available */
+ return 0;
+}
+
+int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
+ const void *dout, void *din, unsigned long flags)
+{
+ struct lpc32xx_spi_slave *lslave = to_lpc32xx_spi_slave(slave);
+ int bytelen = bitlen >> 3;
+ int idx_out = 0;
+ int idx_in = 0;
+ int start_time;
+
+ start_time = get_timer(0);
+ while ((idx_out < bytelen) || (idx_in < bytelen)) {
+ int status = readl(&lslave->regs->sr);
+ if ((idx_out < bytelen) && (status & SSP_SR_TNF))
+ writel(((u8 *)dout)[idx_out++], &lslave->regs->data);
+ if ((idx_in < bytelen) && (status & status & SSP_SR_RNE))
+ ((u8 *)din)[idx_in++] = readl(&lslave->regs->data);
+ if (get_timer(start_time) >= CONFIG_LPC32XX_SSP_TIMEOUT)
+ return -1;
+ }
+ return 0;
+}
+
+void spi_release_bus(struct spi_slave *slave)
+{
+ /* do nothing */
+}