| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
|
|
|
|
| |
This adds the hook ups so it can be read with the usual systemd
utilities. Used in later commits by sytemd-oomd.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With cgroup v2 the cgroup freezer is implemented as a cgroup
attribute called cgroup.freeze. cgroup can be frozen by writing "1"
to the file and kernel will send us a notification through
"cgroup.events" after the operation is finished and processes in the
cgroup entered quiescent state, i.e. they are not scheduled to
run. Writing "0" to the attribute file does the inverse and process
execution is resumed.
This commit exposes above low-level functionality through systemd's DBus
API. Each unit type must provide specialized implementation for these
methods, otherwise, we return an error. So far only service, scope, and
slice unit types provide the support. It is possible to check if a
given unit has the support using CanFreeze() DBus property.
Note that DBus API has a synchronous behavior and we dispatch the reply
to freeze/thaw requests only after the kernel has notified us that
requested operation was completed.
|
|
|
|
|
|
| |
Callers of cg_get_keyed_attribute_full() can now specify via the flag whether the
missing keyes in cgroup attribute file are OK or not. Also the wrappers for both
strict and graceful version are provided.
|
|
|
|
|
| |
`cg_get_xattr_malloc` to read a cgroup xattr value and allocate space
to hold said value (simple helper combining existing functions).
|
|
|
|
|
|
| |
A common pattern in the codebase is reading a cgroup memory value
and converting it to a uint64_t. Let's make it a helper and refactor a
few places to use it so it's more concise.
|
|
|
|
| |
Those cryptic one letter variable names, yuck!
|
| |
|
|
|
|
|
|
|
|
|
| |
We would only write to the field, and take the address. All *readers* were
removed in 284149392755f086d0a714071c33aa609e61505e. (The explanation for why
the field wasn't removed back then is that the patch underwent a few iterations,
with the initial version adding translation back and forth. Later versions of
the patch simply emit a warning and ignore the old value. Apparently nobody
noticed that the value became unused.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TasksMax= and DefaultTasksMax= can be specified as percentages. We don't
actually document of what the percentage is relative to, but the implementation
uses the smallest of /proc/sys/kernel/pid_max, /proc/sys/kernel/threads-max,
and /sys/fs/cgroup/pids.max (when present). When the value is a percentage,
we immediately convert it to an absolute value. If the limit later changes
(which can happen e.g. when systemd-sysctl runs), the absolute value becomes
outdated.
So let's store either the percentage or absolute value, whatever was specified,
and only convert to an absolute value when the value is used. For example, when
starting a unit, the absolute value will be calculated when the cgroup for
the unit is created.
Fixes #13419.
|
|\
| |
| | |
Add efi variable to augment /proc/cmdline
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This way less stuff needs to be in basic. Initially, I wanted to move all the
parts of cgroup-utils.[ch] that depend on efivars.[ch] to shared, because
efivars.[ch] is in shared/. Later on, I decide to split efivars.[ch], so the
move done in this patch is not necessary anymore. Nevertheless, it is still
valid on its own. If at some point we want to expose libbasic, it is better to
to not have stuff that belong in libshared there.
|
| |
| |
| |
| |
| |
| |
| | |
This avoid the use of the global variable.
Also rename cgroup_unified_update() to cgroup_unified_cached() and
cgroup_unified_flush() to cgroup_unified() to better reflect their new roles.
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce support for configuring cpus and mems for processes using
cgroup v2 CPUSET controller. This allows users to limit which cpus
and memory NUMA nodes can be used by processes to better utilize
system resources.
The cgroup v2 interfaces to control it are cpuset.cpus and cpuset.mems
where the requested configuration is written. However, it doesn't mean
that the requested configuration will be actually used as parent cgroup
may limit the cpus or mems as well. In order to reflect the real
configuration cgroup v2 provides read-only files cpuset.cpus.effective
and cpuset.mems.effective which are exported to users as well.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
KillMode=mixed and control group are used to indicate that all
process should be killed off. SendSIGKILL is used for services
that require a clean shutdown. These are typically database
service where a SigKilled process would result in a lengthy
recovery and who's shutdown or startup time is quite variable
(so Timeout settings aren't of use).
Here we take these two factors and refuse to start a service if
there are existing processes within a control group. Databases,
while generally having some protection against multiple instances
running, lets not stress the rigor of these. Also ExecStartPre
parts of the service aren't as rigoriously written to protect
against against multiple use.
closes #8630
|
|
|
|
|
| |
let's always use the 1 << x syntax. No change of behaviour or even of
the compiled binary.
|
|
|
|
|
|
|
|
|
|
| |
Nitpicky, but we've used a lot of random spacings and names in the past,
but we're trying to be completely consistent on "cgroup vN" now.
Generated by `fd -0 | xargs -0 -n1 sed -ri --follow-symlinks 's/cgroups? ?v?([0-9])/cgroup v\1/gI'`.
I manually ignored places where it's not appropriate to replace (eg.
"cgroup2" fstype and in src/shared/linux).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes cg_enable_everywhere() to return which controllers are
enabled for the specified cgroup. This information is then used to
correctly track the enablement mask currently in effect for a unit.
Moreover, when we try to turn off a controller, and this works, then
this is indicates that the parent unit might succesfully turn it off
now, too as our unit might have kept it busy.
So far, when realizing cgroups, i.e. when syncing up the kernel
representation of relevant cgroups with our own idea we would strictly
work from the root to the leaves. This is generally a good approach, as
when controllers are enabled this has to happen in root-to-leaves order.
However, when controllers are disabled this has to happen in the
opposite order: in leaves-to-root order (this is because controllers can
only be enabled in a child if it is already enabled in the parent, and
if it shall be disabled in the parent then it has to be disabled in the
child first, otherwise it is considered busy when it is attempted to
remove it in the parent).
To make things complicated when invalidating a unit's cgroup membershup
systemd can actually turn off some controllers previously turned on at
the very same time as it turns on other controllers previously turned
off. In such a case we have to work up leaves-to-root *and*
root-to-leaves right after each other. With this patch this is
implemented: we still generally operate root-to-leaves, but as soon as
we noticed we successfully turned off a controller previously turned on
for a cgroup we'll re-enqueue the cgroup realization for all parents of
a unit, thus implementing leaves-to-root where necessary.
|
|
|
|
|
|
|
|
|
|
|
| |
systemd only uses functions that are as of Linux 4.15+ provided
externally to the CPU controller (currently usage_usec), so if we have a
new enough kernel, we don't need to set CGROUP_MASK_CPU for
CPUAccounting=true as the CPU controller does not need to necessarily be
enabled in this case.
Part of this patch is modelled on an earlier patch by Ryutaroh Matsumoto
(see PR #9665).
|
| |
|
| |
|
|
|
|
|
|
| |
Otherwise doing comparing a CGroupMask (which is unsigned in effect)
with the result of CGROUP_CONTROLLER_TO_MASK() will result in warnings
about signedness differences.
|
|
|
|
| |
cgroupsv1 vs. cgroupsv2
|
|
|
|
|
|
|
|
| |
Cgroup v2 provides the eBPF-based device controller, which isn't currently
supported by systemd. This commit aims to provide such support.
There are no user-visible changes, just the device policy and whitelist
start working if cgroup v2 is used.
|
|
|
|
|
| |
The idea is to introduce a concept of bpf-based pseudo-controllers
to make adding new bpf-based features easier.
|
|
|
|
|
|
|
|
|
|
|
| |
These lines are generally out-of-date, incomplete and unnecessary. With
SPDX and git repository much more accurate and fine grained information
about licensing and authorship is available, hence let's drop the
per-file copyright notice. Of course, removing copyright lines of others
is problematic, hence this commit only removes my own lines and leaves
all others untouched. It might be nicer if sooner or later those could
go away too, making git the only and accurate source of authorship
information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This part of the copyright blurb stems from the GPL use recommendations:
https://www.gnu.org/licenses/gpl-howto.en.html
The concept appears to originate in times where version control was per
file, instead of per tree, and was a way to glue the files together.
Ultimately, we nowadays don't live in that world anymore, and this
information is entirely useless anyway, as people are very welcome to
copy these files into any projects they like, and they shouldn't have to
change bits that are part of our copyright header for that.
hence, let's just get rid of this old cruft, and shorten our codebase a
bit.
|
|
|
|
|
|
|
|
|
|
| |
Files which are installed as-is (any .service and other unit files, .conf
files, .policy files, etc), are left as is. My assumption is that SPDX
identifiers are not yet that well known, so it's better to retain the
extended header to avoid any doubt.
I also kept any copyright lines. We can probably remove them, but it'd nice to
obtain explicit acks from all involved authors before doing that.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Let's make sure we don't clobber the return parameter on failure, to
follow our coding style. Also, break the loop early if we have all
attributes we need.
This also changes the keys parameter to a simple char**, so that we can
use STRV_MAKE() for passing the list of attributes to read.
This also makes it possible to distuingish the case when the whole
attribute file doesn't exist from one key in it missing. In the former
case we return -ENOENT, in the latter we now return -ENXIO.
|
|
|
|
|
|
|
|
|
|
| |
We never use these functions seperately, hence don't bother splitting
them into to.
Also, simplify things a bit, and maintain tables for the attribute files
to chown. Let's also update those tables a bit, and include thenew
"cgroup.threads" file in it, that needs to be delegated too, according
to the documentation.
|
|
|
|
|
| |
Previously, callers had to do this on their own. Let's make the call do
that instead, making the caller code a bit shorter.
|
|
|
|
|
| |
These definitions are clearly cgroup specific, hence let's move them out
of def.h
|
|
|
|
|
| |
This follows what the kernel is doing, c.f.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5fd54ace4721fc5ce2bb5aef6318fcf17f421460.
|
|
|
|
| |
which v1-only
|
| |
|
|
|
|
|
| |
cg_unified() is a bit generic a name, let's make clear that it checks
whether a specified controller is in unified mode.
|
|
|
|
|
|
|
|
|
| |
We use our cgroup APIs in various contexts, including from our libraries
sd-login, sd-bus. As we don#t control those environments we can't rely
that the unified cgroup setup logic succeeds, and hence really shouldn't
assert on it.
This more or less reverts 415fc41ceaeada2e32639f24f134b1c248b9e43f.
|
|
|
|
| |
Less typing and doesn't make the table so incredibly wide.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
hierarchy
Currently the hybrid mode mounts cgroup v2 on /sys/fs/cgroup instead of the v1
name=systemd hierarchy. While this works fine for systemd itself, it breaks
tools which expect cgroup v1 hierarchy on /sys/fs/cgroup/systemd.
This patch updates the hybrid mode so that it mounts v2 hierarchy on
/sys/fs/cgroup/unified and keeps v1 "name=systemd" hierarchy on
/sys/fs/cgroup/systemd for compatibility. systemd itself doesn't depend on the
"name=systemd" hierarchy at all. All operations take place on the v2 hierarchy
as before but the v1 hierarchy is kept in sync so that any tools which expect
it to be there can keep doing so. This allows systemd to take advantage of
cgroup v2 process management without requiring other tools to be aware of the
hybrid mode.
The hybrid mode is implemented by mapping the special systemd controller to
/sys/fs/cgroup/unified and making the basic cgroup utility operations -
cg_attach(), cg_create(), cg_rmdir() and cg_trim() - also operate on the
/sys/fs/cgroup/systemd hierarchy whenever the cgroup2 hierarchy is updated.
While a bit messy, this will allow dropping complications from using cgroup v1
for process management a lot sooner than otherwise possible which should make
it a net gain in terms of maintainability.
v2: Fixed !cgns breakage reported by @evverx and renamed the unified mount
point to /sys/fs/cgroup/unified as suggested by @brauner.
v3: chown the compat hierarchy too on delegation. Suggested by @evverx.
v4: [zj]
- drop the change to default, full "legacy" is still the default.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cg_[all_]unified() test whether a specific controller or all controllers are on
the unified hierarchy. While what's being asked is a simple binary question,
the callers must assume that the functions may fail any time, which
unnecessarily complicates their usages. This complication is unnecessary.
Internally, the test result is cached anyway and there are only a few places
where the test actually needs to be performed.
This patch simplifies cg_[all_]unified().
* cg_[all_]unified() are updated to return bool. If the result can't be
decided, assertion failure is triggered. Error handlings from their callers
are dropped.
* cg_unified_flush() is updated to calculate the new result synchrnously and
return whether it succeeded or not. Places which need to flush the test
result are updated to test for failure. This ensures that all the following
cg_[all_]unified() tests succeed.
* Places which expected possible cg_[all_]unified() failures are updated to
call and test cg_unified_flush() before calling cg_[all_]unified(). This
includes functions used while setting up mounts during boot and
manager_setup_cgroup().
|
|
|
| |
Fixes: #4181
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a new invocation ID concept to the service manager. The invocation ID
identifies each runtime cycle of a unit uniquely. A new randomized 128bit ID is
generated each time a unit moves from and inactive to an activating or active
state.
The primary usecase for this concept is to connect the runtime data PID 1
maintains about a service with the offline data the journal stores about it.
Previously we'd use the unit name plus start/stop times, which however is
highly racy since the journal will generally process log data after the service
already ended.
The "invocation ID" kinda matches the "boot ID" concept of the Linux kernel,
except that it applies to an individual unit instead of the whole system.
The invocation ID is passed to the activated processes as environment variable.
It is additionally stored as extended attribute on the cgroup of the unit. The
latter is used by journald to automatically retrieve it for each log logged
message and attach it to the log entry. The environment variable is very easily
accessible, even for unprivileged services. OTOH the extended attribute is only
accessible to privileged processes (this is because cgroupfs only supports the
"trusted." xattr namespace, not "user."). The environment variable may be
altered by services, the extended attribute may not be, hence is the better
choice for the journal.
Note that reading the invocation ID off the extended attribute from journald is
racy, similar to the way reading the unit name for a logging process is.
This patch adds APIs to read the invocation ID to sd-id128:
sd_id128_get_invocation() may be used in a similar fashion to
sd_id128_get_boot().
PID1's own logging is updated to always include the invocation ID when it logs
information about a unit.
A new bus call GetUnitByInvocationID() is added that allows retrieving a bus
path to a unit by its invocation ID. The bus path is built using the invocation
ID, thus providing a path for referring to a unit that is valid only for the
current runtime cycleof it.
Outlook for the future: should the kernel eventually allow passing of cgroup
information along AF_UNIX/SOCK_DGRAM messages via a unique cgroup id, then we
can alter the invocation ID to be generated as hash from that rather than
entirely randomly. This way we can derive the invocation race-freely from the
messages.
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently, systemd uses either the legacy hierarchies or the unified hierarchy.
When the legacy hierarchies are used, systemd uses a named legacy hierarchy
mounted on /sys/fs/cgroup/systemd without any kernel controllers for process
management. Due to the shortcomings in the legacy hierarchy, this involves a
lot of workarounds and complexities.
Because the unified hierarchy can be mounted and used in parallel to legacy
hierarchies, there's no reason for systemd to use a legacy hierarchy for
management even if the kernel resource controllers need to be mounted on legacy
hierarchies. It can simply mount the unified hierarchy under
/sys/fs/cgroup/systemd and use it without affecting other legacy hierarchies.
This disables a significant amount of fragile workaround logics and would allow
using features which depend on the unified hierarchy membership such bpf cgroup
v2 membership test. In time, this would also allow deleting the said
complexities.
This patch updates systemd so that it prefers the unified hierarchy for the
systemd cgroup controller hierarchy when legacy hierarchies are used for kernel
resource controllers.
* cg_unified(@controller) is introduced which tests whether the specific
controller in on unified hierarchy and used to choose the unified hierarchy
code path for process and service management when available. Kernel
controller specific operations remain gated by cg_all_unified().
* "systemd.legacy_systemd_cgroup_controller" kernel argument can be used to
force the use of legacy hierarchy for systemd cgroup controller.
* nspawn: By default nspawn uses the same hierarchies as the host. If
UNIFIED_CGROUP_HIERARCHY is set to 1, unified hierarchy is used for all. If
0, legacy for all.
* nspawn: arg_unified_cgroup_hierarchy is made an enum and now encodes one of
three options - legacy, only systemd controller on unified, and unified. The
value is passed into mount setup functions and controls cgroup configuration.
* nspawn: Interpretation of SYSTEMD_CGROUP_CONTROLLER to the actual mount
option is moved to mount_legacy_cgroup_hierarchy() so that it can take an
appropriate action depending on the configuration of the host.
v2: - CGroupUnified enum replaces open coded integer values to indicate the
cgroup operation mode.
- Various style updates.
v3: Fixed a bug in detect_unified_cgroup_hierarchy() introduced during v2.
v4: Restored legacy container on unified host support and fixed another bug in
detect_unified_cgroup_hierarchy().
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
A following patch will update cgroup handling so that the systemd controller
(/sys/fs/cgroup/systemd) can use the unified hierarchy even if the kernel
resource controllers are on the legacy hierarchies. This would require
distinguishing whether all controllers are on cgroup v2 or only the systemd
controller is. In preparation, this patch renames cg_unified() to
cg_all_unified().
This patch doesn't cause any functional changes.
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The parsing functions for [User]TasksMax were inconsistent. Empty string and
"infinity" were interpreted as no limit for TasksMax but not accepted for
UserTasksMax. Update them so that they're consistent with other knobs.
* Empty string indicates the default value.
* "infinity" indicates no limit.
While at it, replace opencoded (uint64_t) -1 with CGROUP_LIMIT_MAX in TasksMax
handling.
v2: Update empty string to indicate the default value as suggested by Zbigniew
Jędrzejewski-Szmek.
v3: Fixed empty UserTasksMax handling.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unfortunately, due to the disagreements in the kernel development community,
CPU controller cgroup v2 support has not been merged and enabling it requires
applying two small out-of-tree kernel patches. The situation is explained in
the following documentation.
https://git.kernel.org/cgit/linux/kernel/git/tj/cgroup.git/tree/Documentation/cgroup-v2-cpu.txt?h=cgroup-v2-cpu
While it isn't clear what will happen with CPU controller cgroup v2 support,
there are critical features which are possible only on cgroup v2 such as
buffered write control making cgroup v2 essential for a lot of workloads. This
commit implements systemd CPU controller support on the unified hierarchy so
that users who choose to deploy CPU controller cgroup v2 support can easily
take advantage of it.
On the unified hierarchy, "cpu.weight" knob replaces "cpu.shares" and "cpu.max"
replaces "cpu.cfs_period_us" and "cpu.cfs_quota_us". [Startup]CPUWeight config
options are added with the usual compat translation. CPU quota settings remain
unchanged and apply to both legacy and unified hierarchies.
v2: - Error in man page corrected.
- CPU config application in cgroup_context_apply() refactored.
- CPU accounting now works on unified hierarchy.
|
|\
| |
| | |
Cgroup namespace
|
| |
| |
| |
| |
| | |
- define CLONE_NEWCGROUP
- add fun to detect whether cgroup namespaces are supported
|