summaryrefslogtreecommitdiff
path: root/SWIG/Lib/std/std_vector.i
blob: c912a4ed879eca1be13806fe9b4aea1dcf22b173 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
//
// std::vector
//

%include <std_container.i>

// Vector

%define %std_vector_methods(vector)
  %std_sequence_methods(vector)
  
  void reserve(size_type n);
  size_type capacity() const;
%enddef


%define %std_vector_methods_val(vector)
  %std_sequence_methods_val(vector)
  
  void reserve(size_type n);
  size_type capacity() const;
%enddef


// ------------------------------------------------------------------------
// std::vector
// 
// The aim of all that follows would be to integrate std::vector with 
// as much as possible, namely, to allow the user to pass and 
// be returned tuples or lists.
// const declarations are used to guess the intent of the function being
// exported; therefore, the following rationale is applied:
// 
//   -- f(std::vector<T>), f(const std::vector<T>&):
//      the parameter being read-only, either a sequence or a
//      previously wrapped std::vector<T> can be passed.
//   -- f(std::vector<T>&), f(std::vector<T>*):
//      the parameter may be modified; therefore, only a wrapped std::vector
//      can be passed.
//   -- std::vector<T> f(), const std::vector<T>& f():
//      the vector is returned by copy; therefore, a sequence of T:s 
//      is returned which is most easily used in other functions
//   -- std::vector<T>& f(), std::vector<T>* f():
//      the vector is returned by reference; therefore, a wrapped std::vector
//      is returned
//   -- const std::vector<T>* f(), f(const std::vector<T>*):
//      for consistency, they expect and return a plain vector pointer.
// ------------------------------------------------------------------------

%{
#include <vector>
%}    

// exported classes

#if !defined(SWIG_STD_MODERN_STL) || defined(SWIG_STD_NOMODERN_STL) 
%ignore std::vector<bool>::flip();
#endif

namespace std {

  template<class T > class vector {
  public:
    typedef size_t size_type;
    typedef ptrdiff_t difference_type;
    typedef T value_type;
    typedef value_type* pointer;
    typedef const value_type* const_pointer;
    typedef T& reference;
    typedef const T& const_reference;

    %traits_swigtype(T);

    %fragment(SWIG_Traits_frag(std::vector<T >), "header",
	      fragment=SWIG_Traits_frag(T),
	      fragment="StdVectorTraits") {
      namespace swig {
	template <>  struct traits<std::vector<T > > {
	  typedef pointer_category category;
	  static const char* type_name() {
	    return "std::vector<" #T " >";
	  }
	};
      }
    }

    %typemap_traits_ptr(SWIG_TYPECHECK_VECTOR, std::vector<T >);
  
    %std_vector_methods(vector);

#ifdef %swig_vector_methods
    // Add swig/language extra methods
    %swig_vector_methods(std::vector<T >);
#endif
  };

  // ***
  // This specialization should dissapear or get simplified when
  // a 'const SWIGTYPE*&' can be defined
  // ***
  template<class T > class vector<T*> {
  public:
    typedef size_t size_type;    
    typedef ptrdiff_t difference_type;
    typedef T* value_type;
    typedef value_type* pointer;
    typedef const value_type* const_pointer;
    typedef value_type reference;
    typedef value_type const_reference;

    %traits_swigtype(T);

    %fragment(SWIG_Traits_frag(std::vector<T* >), "header",
	      fragment=SWIG_Traits_frag(T),
	      fragment="StdVectorTraits") {
      namespace swig {
	template <>  struct traits<std::vector<T* > > {
	  typedef value_category category;
	  static const char* type_name() {
	    return "std::vector<" #T " * >";
	  }
	};
      }
    }

    %typemap_traits_ptr(SWIG_TYPECHECK_VECTOR, std::vector<T* >);

    %std_vector_methods_val(vector);

#ifdef %swig_vector_methods_val
    // Add swig/language extra methods
    %swig_vector_methods_val(std::vector<T* >);
#endif
  };

  // ***
  // ***
  // bool specialization
  %extend vector<bool> {
    void flip() 
    {
      self->flip();
    }
  }

  template<class T > class vector<bool> {
  public:
    typedef size_t size_type;    
    typedef ptrdiff_t difference_type;
    typedef bool value_type;
    typedef value_type* pointer;
    typedef const value_type* const_pointer;
    typedef value_type reference;
    typedef value_type const_reference;

    %traits_swigtype(bool);

    %fragment(SWIG_Traits_frag(std::vector<bool>), "header",
	      fragment=SWIG_Traits_frag(bool),
	      fragment="StdVectorTraits") {
      namespace swig {
	template <>  struct traits<std::vector<bool> > {
	  typedef value_category category;
	  static const char* type_name() {
	    return "std::vector<bool>";
	  }
	};
      }
    }

    %typemap_traits_ptr(SWIG_TYPECHECK_VECTOR, std::vector<bool>);

    %std_vector_methods_val(vector<bool>);

#ifdef %swig_vector_methods_val
    // Add swig/language extra methods
    %swig_vector_methods_val(std::vector<bool>);
#endif
  };

}