summaryrefslogtreecommitdiff
path: root/Doc/Manual/Perl5.html
blob: 8bc7cbfd3dcdc6af80077ce9d80a24782817edeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>SWIG and Perl5</title>
<link rel="stylesheet" type="text/css" href="style.css">
</head>

<body bgcolor="#ffffff">
<H1><a name="Perl5"></a>33 SWIG and Perl5</H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#Perl5_nn2">Overview</a>
<li><a href="#Perl5_nn3">Preliminaries</a>
<ul>
<li><a href="#Perl5_nn4">Getting the right header files</a>
<li><a href="#Perl5_nn5">Compiling a dynamic module</a>
<li><a href="#Perl5_nn6">Building a dynamic module with MakeMaker</a>
<li><a href="#Perl5_nn7">Building a static version of Perl</a>
<li><a href="#Perl5_nn8">Using the module</a>
<li><a href="#Perl5_nn9">Compilation problems and compiling with C++</a>
<li><a href="#Perl5_nn10">Compiling for 64-bit platforms</a>
</ul>
<li><a href="#Perl5_nn11">Building Perl Extensions under Windows</a>
<ul>
<li><a href="#Perl5_nn12">Running SWIG from Developer Studio</a>
<li><a href="#Perl5_nn13">Using other compilers</a>
</ul>
<li><a href="#Perl5_nn14">The low-level interface</a>
<ul>
<li><a href="#Perl5_nn15">Functions</a>
<li><a href="#Perl5_nn16">Global variables</a>
<li><a href="#Perl5_nn17">Constants</a>
<li><a href="#Perl5_nn18">Pointers</a>
<li><a href="#Perl5_nn19">Structures</a>
<li><a href="#Perl5_nn20">C++ classes</a>
<li><a href="#Perl5_nn21">C++ classes and type-checking</a>
<li><a href="#Perl5_nn22">C++ overloaded functions</a>
<li><a href="#Perl5_nn23">Operators</a>
<li><a href="#Perl5_nn24">Modules and packages</a>
</ul>
<li><a href="#Perl5_nn25">Input and output parameters</a>
<li><a href="#Perl5_nn26">Exception handling</a>
<li><a href="#Perl5_nn27">Remapping datatypes with typemaps</a>
<ul>
<li><a href="#Perl5_nn28">A simple typemap example</a>
<li><a href="#Perl5_nn29">Perl5 typemaps</a>
<li><a href="#Perl5_nn30">Typemap variables</a>
<li><a href="#Perl5_nn31">Useful functions</a>
</ul>
<li><a href="#Perl5_nn32">Typemap Examples</a>
<ul>
<li><a href="#Perl5_nn33">Converting a Perl5 array to a char **</a>
<li><a href="#Perl5_nn34">Return values</a>
<li><a href="#Perl5_nn35">Returning values from arguments</a>
<li><a href="#Perl5_nn36">Accessing array structure members</a>
<li><a href="#Perl5_nn37">Turning Perl references into C pointers</a>
<li><a href="#Perl5_nn38">Pointer handling</a>
</ul>
<li><a href="#Perl5_nn39">Proxy classes</a>
<ul>
<li><a href="#Perl5_nn40">Preliminaries</a>
<li><a href="#Perl5_nn41">Structure and class wrappers</a>
<li><a href="#Perl5_nn42">Object Ownership</a>
<li><a href="#Perl5_nn43">Nested Objects</a>
<li><a href="#Perl5_nn44">Proxy Functions</a>
<li><a href="#Perl5_nn45">Inheritance</a>
<li><a href="#Perl5_nn46">Modifying the proxy methods</a>
</ul>
<li><a href="#Perl5_nn47">Adding additional Perl code</a>
<li><a href="#Perl5_directors">Cross language polymorphism</a>
<ul>
<li><a href="#Perl5_nn48">Enabling directors</a>
<li><a href="#Perl5_nn49">Director classes</a>
<li><a href="#Perl5_nn50">Ownership and object destruction</a>
<li><a href="#Perl5_nn51">Exception unrolling</a>
<li><a href="#Perl5_nn52">Overhead and code bloat</a>
<li><a href="#Perl5_nn53">Typemaps</a>
</ul>
</ul>
</div>
<!-- INDEX -->



<p>
<b>Caution: This chapter is under repair!</b>
</p>

<p>
This chapter describes SWIG's support of Perl5. Although the Perl5
module is one of the earliest SWIG modules, it has continued to evolve
and has been improved greatly with the help of SWIG users. For the
best results, it is recommended that SWIG be used with Perl 5.8 or
later. We're no longer testing regularly with older versions, but
Perl 5.6 seems to mostly work, while older versions don't.
</p>

<H2><a name="Perl5_nn2"></a>33.1 Overview</H2>


<p>
To build Perl extension modules, SWIG uses a layered approach.  At
the lowest level, simple procedural wrappers are generated for
functions, classes, methods, and other declarations in the input file.
Then, for structures and classes, an optional collection of Perl
proxy classes can be generated in order to provide a more natural object oriented Perl
interface. These proxy classes simply build upon the low-level interface.
</p>

<p>
In describing the Perl interface, this chapter begins by covering the
essentials. First, the problem of configuration, compiling,
and installing Perl modules is discussed.  Next, the low-level
procedural interface is presented.  Finally, proxy classes are
described.  Advanced customization features, typemaps, and other
options are found near the end of the chapter.
</p>

<H2><a name="Perl5_nn3"></a>33.2 Preliminaries</H2>


<p>
To build a Perl5 module, run SWIG using the <tt>-perl</tt> option as
follows:
</p>

<div class="code"><pre>
swig -perl example.i

</pre></div>

<p>
This produces two files. The first file, <tt>example_wrap.c</tt>
contains all of the C code needed to build a Perl5 module. The second
file, <tt>example.pm</tt> contains supporting Perl code needed to
properly load the module.
</p>

<p>
To build the module, you will need to compile the file
<tt>example_wrap.c</tt> and link it with the rest of your program.
</p>

<H3><a name="Perl5_nn4"></a>33.2.1 Getting the right header files</H3>


<p>
In order to compile, SWIG extensions need the following Perl5 header files:</p>

<div class="code"><pre>
#include "Extern.h"
#include "perl.h"
#include "XSUB.h"
</pre></div>

<p>
These are typically located in a directory like this</p>

<div class="code"><pre>
/usr/lib/perl/5.14/CORE
</pre></div>

<p>
The SWIG configuration script automatically tries to locate this directory so
that it can compile examples.  However, if you need to find out where the directory is
located, an easy way to find out is to ask Perl itself:
</p>

<div class="code">
<pre>
$ perl -e 'use Config; print "$Config{archlib}\n";'
/usr/lib/perl/5.14
</pre>
</div>

<H3><a name="Perl5_nn5"></a>33.2.2 Compiling a dynamic module</H3>


<p>
The preferred approach to building an extension module is to compile it into
a shared object file or DLL. Assuming you have code you need to link to in a file called <tt>example.c</tt>,
you will need to compile your program using commands like this (shown for Linux):
</p>

<div class="code"><pre>
$ swig -perl example.i
$ gcc -fPIC example.c
$ gcc -fPIC -c example_wrap.c -I/usr/lib/perl/5.14/CORE -Dbool=char
$ gcc -shared example.o example_wrap.o -o example.so
</pre></div>

<p>
The exact compiler options vary from platform to platform. 
SWIG tries to guess the right options when it is installed.  Therefore, 
you may want to start with one of the examples in the <tt>SWIG/Examples/perl5</tt> 
directory.   If that doesn't work, you will need to read the man-pages for
your compiler and linker to get the right set of options.  You might also
check the <a href="http://www.dabeaz.com/cgi-bin/wiki.pl">SWIG Wiki</a> for
additional information.
</p>

<p>
When linking the module, the name of the shared object file must match the module name used in
the SWIG interface file. If you used `<tt>%module example</tt>', then
the target should be named `<tt>example.so</tt>',
`<tt>example.sl</tt>', or the appropriate dynamic module name on your system.
</p>

<H3><a name="Perl5_nn6"></a>33.2.3 Building a dynamic module with MakeMaker</H3>


<p>
It is also possible to use Perl to build dynamically loadable modules
for you using the MakeMaker utility.  To do this, write a Perl
script such as the following:</p>

<div class="targetlang"><pre>
# File : Makefile.PL
use ExtUtils::MakeMaker;
WriteMakefile(
	`NAME'    =&gt; `example',                  # Name of package
	`LIBS'    =&gt; [`-lm'],                    # Name of custom libraries
	`OBJECT'  =&gt; `example.o example_wrap.o'  # Object files
);

</pre></div>

<p>
Now, to build a module, simply follow these steps:</p>

<div class="code"><pre>
$ perl Makefile.PL
$ make
$ make install
</pre></div>

<p>
If you are planning to distribute a SWIG-generated module, this is
the preferred approach to compilation.  More information about MakeMaker can be
found in "Programming Perl, 2nd ed." by Larry Wall, Tom Christiansen,
and Randal Schwartz.</p>

<H3><a name="Perl5_nn7"></a>33.2.4 Building a static version of Perl</H3>


<p>
If you machine does not support dynamic loading or if you've tried to
use it without success, you can build a new version of the Perl
interpreter with your SWIG extensions added to it. To build a static
extension, you first need to invoke SWIG as follows:</p>

<div class="code"><pre>
$ swig -perl -static example.i
</pre></div>

<p>
By default SWIG includes code for dynamic loading, but the
<tt>-static</tt> option takes it out.</p>

<p>
Next, you will need to supply a <tt>main()</tt> function that
initializes your extension and starts the Perl interpreter. While,
this may sound daunting, SWIG can do this for you automatically as
follows:</p>

<div class="targetlang"><pre>
%module example

%inline %{
extern double My_variable;
extern int fact(int);
%}

// Include code for rebuilding Perl
%include &lt;perlmain.i&gt;
</pre></div>

<p>
The same thing can be accomplished by running SWIG as follows:</p>

<div class="code"><pre>
$ swig -perl -static -lperlmain.i example.i
</pre></div>

<p>
The <tt>perlmain.i</tt> file inserts Perl's <tt>main()</tt> function
into the wrapper code and automatically initializes the SWIG generated
module. If you just want to make a quick a dirty module, this may be
the easiest way. By default, the <tt>perlmain.i</tt> code does not
initialize any other Perl extensions. If you need to use other
packages, you will need to modify it appropriately. You can do this by
just copying <tt>perlmain.i</tt> out of the SWIG library, placing it
in your own directory, and modifying it to suit your purposes.</p>

<p>
To build your new Perl executable, follow the exact same procedure as
for a dynamic module, but change the link line to something like this:
</p>

<div class="code"><pre>
$ gcc example.o example_wrap.o -L/usr/lib/perl/5.14/CORE \
	-lperl -lsocket -lnsl -lm -o myperl
</pre></div>

<p>
This will produce a new version of Perl called <tt>myperl</tt>. It
should be functionality identical to Perl with your C/C++ extension
added to it.  Depending on your machine, you may need to link with
additional libraries such as <tt>-lsocket, -lnsl, -ldl</tt>, etc.
</p>

<H3><a name="Perl5_nn8"></a>33.2.5 Using the module</H3>


<p>
To use the module, simply use the Perl <tt>use</tt> statement.  If
all goes well, you will be able to do this:
</p>

<div class="targetlang"><pre>
$ perl
use example;
print example::fact(4),"\n";
24
</pre></div>

<p>
A common error received by first-time users is the following:
</p>

<div class="targetlang">
<pre>
use example;
Can't locate example.pm in @INC (@INC contains: /etc/perl /usr/local/lib/perl/5.14.2 /usr/local/share/perl/5.14.2 /usr/lib/perl5 /usr/share/perl5 /usr/lib/perl/5.14 /usr/share/perl/5.14 /usr/local/lib/site_perl .) at - line 1.
BEGIN failed--compilation aborted at - line 1.
</pre>
</div>

<p>
This error is almost caused when the name of the shared object file you created doesn't match the module name
you specified with the <tt>%module</tt> directive.  
</p>

<p>
A somewhat related, but slightly different error is this:
</p>

<div class="targetlang">
<pre>
use example;
Can't find 'boot_example' symbol in ./example.so
 at - line 1
BEGIN failed--compilation aborted at - line 1.
</pre>
</div>

<p>
This error is generated because Perl can't locate the module bootstrap function in the
SWIG extension module.  This could be caused by a mismatch between the module name and the shared library name.
However, another possible cause is forgetting to link the SWIG-generated wrapper code with the rest
of your application when you linked the extension module.
</p>

<p>
Another common error is the following:
</p>

<div class="targetlang">
<pre>
use example;
Can't load './example.so' for module example: ./example.so: 
undefined symbol: Foo at /usr/lib/perl/5.14/i386-linux/DynaLoader.pm line 169.

 at - line 1
BEGIN failed--compilation aborted at - line 1.
</pre>
</div>

<p>
This error usually indicates that you forgot to include some object
files or libraries in the linking of the shared library file.  Make
sure you compile both the SWIG wrapper file and your original program
into a shared library file.  Make sure you pass all of the required libraries
to the linker.  
</p>

<p>
Sometimes unresolved symbols occur because a wrapper has been created
for a function that doesn't actually exist in a library.  This usually
occurs when a header file includes a declaration for a function that
was never actually implemented or it was removed from a library
without updating the header file.  To fix this, you can either edit
the SWIG input file to remove the offending declaration or you can use
the <tt>%ignore</tt> directive to ignore the declaration.  Better yet,
update the header file so that it doesn't have an undefined declaration.
</p>

<p>
Finally, suppose that your extension module is linked with another library like this:
</p>

<div class="code">
<pre>
$ gcc -shared example.o example_wrap.o -L/home/beazley/projects/lib -lfoo \
      -o example.so
</pre>
</div>

<p>
If the <tt>foo</tt> library is compiled as a shared library, you might get the following
error when you try to use your module:
</p>

<div class="targetlang">
<pre>
use example;
Can't load './example.so' for module example: libfoo.so: cannot open shared object file: 
No such file or directory at /usr/lib/perl/5.14/i386-linux/DynaLoader.pm line 169.

 at - line 1
BEGIN failed--compilation aborted at - line 1.
&gt;&gt;&gt;                 
</pre>
</div>

<p>
This error is generated because the dynamic linker can't locate the
<tt>libfoo.so</tt> library.  When shared libraries are loaded, the
system normally only checks a few standard locations such as
<tt>/usr/lib</tt> and <tt>/usr/local/lib</tt>.   To get the loader to look in other
locations, there are several things you can do.  First, you can recompile your extension
module with extra path information. For example, on Linux you can do this:
</p>

<div class="code">
<pre>
$ gcc -shared example.o example_wrap.o -L/home/beazley/projects/lib -lfoo \
      <b>-Xlinker -rpath /home/beazley/projects/lib \</b>
      -o example.so
</pre>
</div>

<p>
Alternatively, you can set the <tt>LD_LIBRARY_PATH</tt> environment
variable to include the directory with your shared libraries.  If
setting <tt>LD_LIBRARY_PATH</tt>, be aware that setting this variable
can introduce a noticeable performance impact on all other
applications that you run.  To set it only for Perl, you might want
to do this instead:
</p>

<div class="code">
<pre>
$ env LD_LIBRARY_PATH=/home/beazley/projects/lib perl
</pre>
</div>

<p>
Finally, you can use a command such as <tt>ldconfig</tt> (Linux) or
<tt>crle</tt> (Solaris) to add additional search paths to the default
system configuration (this requires root access and you will need to
read the man pages).
</p>

<H3><a name="Perl5_nn9"></a>33.2.6 Compilation problems and compiling with C++</H3>


<p>
Compilation of C++ extensions has traditionally been a tricky problem.
Since the Perl interpreter is written in C, you need to take steps to
make sure C++ is properly initialized and that modules are compiled
correctly.
</p>

<p>
On most machines, C++ extension modules should be linked using the C++
compiler.  For example:
</p>

<div class="code"><pre>
$ swig -c++ -perl example.i
$ g++ -fPIC -c example.cxx
$ g++ -fPIC -c example_wrap.cxx -I/usr/lib/perl/5.14/i386-linux/CORE
$ <b>g++ -shared example.o example_wrap.o -o example.so</b>
</pre></div>

<p>
In addition to this, you may need to include additional library
files to make it work.  For example, if you are using the Sun C++ compiler on
Solaris, you often need to add an extra library <tt>-lCrun</tt> like this:
</p>

<div class="code"><pre>
$ swig -c++ -perl example.i
$ CC -Kpic -c example.cxx
$ CC -Kpic -c example_wrap.cxx -I/usr/lib/perl/5.14/i386-linux/CORE
$ CC -shared example.o example_wrap.o -o example.so <b>-lCrun</b>
</pre></div>

<p>
Of course, the names of the extra libraries are completely non-portable---you will 
probably need to do some experimentation.
</p>

<p>
Another possible compile problem comes from recent versions of Perl (5.8.0) and the GNU tools.
If you see errors having to do with _crypt_struct, that means _GNU_SOURCE is not defined and
it needs to be.  So you should compile the wrapper like:
</p>

<div class="code"><pre>
$ g++ -fPIC -c example_wrap.cxx -I/usr/lib/perl/5.8.0/CORE -D_GNU_SOURCE
</pre></div>

<p>
-D_GNU_SOURCE is also included in the Perl ccflags, which can be found by running
</p>

<div class="code"><pre>
$ perl -e 'use Config; print "$Config{ccflags}\n";'
</pre></div>

<p>
So you could also compile the wrapper like
</p>

<div class="code"><pre>
$ g++ -fPIC -c example_wrap.cxx -I/usr/lib/perl/5.8.0/CORE \
`perl -MConfig -e 'print $Config{ccflags}'`
</pre></div>

<p>
Sometimes people have suggested that it is necessary to relink the
Perl interpreter using the C++ compiler to make C++ extension modules work.
In the experience of this author, this has never actually appeared to be
necessary on most platforms.   Relinking the interpreter with C++ really only includes the 
special run-time libraries described above---as long as you link your extension 
modules with these libraries, it should not be necessary to rebuild Perl.
</p>

<p>
If you aren't entirely sure about the linking of a C++ extension, you
might look at an existing C++ program.  On many Unix machines, the
<tt>ldd</tt> command will list library dependencies.  This should give
you some clues about what you might have to include when you link your
extension module. For example, notice the first line of output here:
</p>

<div class="code">
<pre>
$ ldd swig
        <b>libstdc++-libc6.1-1.so.2 =&gt; /usr/lib/libstdc++-libc6.1-1.so.2 (0x40019000)</b>
        libm.so.6 =&gt; /lib/libm.so.6 (0x4005b000)
        libc.so.6 =&gt; /lib/libc.so.6 (0x40077000)
        /lib/ld-linux.so.2 =&gt; /lib/ld-linux.so.2 (0x40000000)
$
</pre>
</div>

<p>
If linking wasn't enough of a problem, another major complication of C++ is that it does not
define any sort of standard for binary linking of libraries.  This
means that C++ code compiled by different compilers will not link
together properly as libraries nor is the memory layout of classes and
data structures implemented in any kind of portable manner.  In a
monolithic C++ program, this problem may be unnoticed.  However, in Perl, it
is possible for different extension modules to be compiled with
different C++ compilers.  As long as these modules are self-contained,
this probably won't matter.  However, if these modules start sharing data,
you will need to take steps to avoid segmentation faults and other
erratic program behavior.   Also, be aware that certain C++ features, especially RTTI,
can behave strangely when working with multiple modules.
</p>

<p>
It should be noted that you may get a lot of error messages
about the '<tt>bool</tt>' datatype when compiling a C++ Perl module. If
you experience this problem, you can try the following:</p>

<ul>
<li>Use <tt>-DHAS_BOOL</tt> when compiling the SWIG wrapper code
<li>Or use <tt>-Dbool=char</tt> when compiling.
</ul>

<p>
Finally, recent versions of Perl (5.8.0) have namespace conflict problems.  Perl defines a bunch
of short macros to make the Perl API function names shorter.  For example, in 
/usr/lib/perl/5.8.0/CORE/embed.h there is a line:
</p>

<div class="code"><pre>
#define do_open Perl_do_open
</pre></div>

<p>
The problem is, in the &lt;iostream&gt; header from GNU libstdc++v3 there is a private 
function named do_open.  If &lt;iostream&gt; is included after the perl headers, then
the Perl macro causes the iostream do_open to be renamed, which causes compile errors.
Hopefully in the future Perl will support a PERL_NO_SHORT_NAMES flag, but for now the 
only solution is to undef the macros that conflict.  Lib/perl5/noembed.h in the SWIG 
source has a list of macros that are known to conflict with either standard headers or
other headers.  But if you get macro type conflicts from other macros not included
in Lib/perl5/noembed.h while compiling the wrapper, you will
have to find the macro that conflicts and add an #undef into the .i file.  Please report
any conflicting macros you find to <a href="http://www.swig.org/mail.html">swig-user mailing list</a>.
</p>

<H3><a name="Perl5_nn10"></a>33.2.7 Compiling for 64-bit platforms</H3>


<p>
On platforms that support 64-bit applications (Solaris, Irix, etc.),
special care is required when building extension modules.  On these
machines, 64-bit applications are compiled and linked using a different
set of compiler/linker options.  In addition, it is not generally possible to mix 
32-bit and 64-bit code together in the same application.
</p>

<p>
To utilize 64-bits, the Perl executable will need to be recompiled
as a 64-bit application.  In addition, all libraries, wrapper code,
and every other part of your application will need to be compiled for
64-bits.  If you plan to use other third-party extension modules, they
will also have to be recompiled as 64-bit extensions.
</p>

<p>
If you are wrapping commercial software for which you have no source
code, you will be forced to use the same linking standard as used by
that software.  This may prevent the use of 64-bit extensions.  It may
also introduce problems on platforms that support more than one
linking standard (e.g., -o32 and -n32 on Irix).
</p>

<H2><a name="Perl5_nn11"></a>33.3 Building Perl Extensions under Windows</H2>


<p>
Building a SWIG extension to Perl under Windows is roughly
similar to the process used with Unix.  Normally, you will want to
produce a DLL that can be loaded into the Perl interpreter.  This
section assumes you are using SWIG with Microsoft Visual C++
although the procedure may be similar with other compilers.  
</p>

<H3><a name="Perl5_nn12"></a>33.3.1 Running SWIG from Developer Studio</H3>


<p>
If you are developing your application within Microsoft developer
studio, SWIG can be invoked as a custom build option.  The process
roughly requires these steps:</p>

<ul>
<li>Open up a new workspace and use the AppWizard to select a DLL
project.

<li>Add both the SWIG interface file (the .i file), any supporting C
files, and the name of the wrapper file that will be created by SWIG
(ie. <tt>example_wrap.c</tt>).  Note: If using C++, choose a
different suffix for the wrapper file such as
<tt>example_wrap.cxx</tt>. Don't worry if the wrapper file doesn't
exist yet--Developer studio will keep a reference to it around.

<li>Select the SWIG interface file and go to the settings menu.  Under
settings, select the "Custom Build" option.

<li>Enter "SWIG" in the description field.

<li>Enter "<tt>swig -perl5 -o $(ProjDir)\$(InputName)_wrap.cxx
$(InputPath)</tt>" in the "Build command(s) field"

<li>Enter "<tt>$(ProjDir)\$(InputName)_wrap.c</tt>xx" in the "Output
files(s) field".

<li>Next, select the settings for the entire project and go to
"C++:Preprocessor". Add the include directories for your Perl 5
installation under "Additional include directories".

<li>Define the symbols WIN32 and MSWIN32 under preprocessor options.
If using the ActiveWare port, also define the symbol PERL_OBJECT.
Note that all extensions to the ActiveWare port must be compiled with
the C++ compiler since Perl has been encapsulated in a C++ class.

<li>Finally, select the settings for the entire project and go to
"Link Options".  Add the Perl library file to your link libraries.
For example "perl.lib".  Also, set the name of the output file to
match the name of your Perl module (ie. example.dll).

<li>Build your project.
</ul>

<p>
Now, assuming you made it this far, SWIG will be automatically invoked when
you build your project.  Any changes made to the interface file will
result in SWIG being automatically invoked to produce a new version of
the wrapper file.  To run your new Perl extension, simply run Perl and
use the use command as normal. For example:
</p>

<div class="targetlang"><pre>
DOS &gt; perl
use example;
$a = example::fact(4);
print "$a\n";

</pre></div>

<H3><a name="Perl5_nn13"></a>33.3.2 Using other compilers</H3>


<p>
SWIG is known to work with Cygwin and may work with other compilers on Windows.
For general hints and suggestions refer to the <a href="Windows.html#Windows">Windows</a> chapter.
</p>

<H2><a name="Perl5_nn14"></a>33.4 The low-level interface</H2>


<p>
At its core, the Perl module uses a simple low-level interface
to C function, variables, constants, and classes.  This low-level interface
can be used to control your application.  However, it is also used to
construct more user-friendly proxy classes as described in the next section.
</p>

<H3><a name="Perl5_nn15"></a>33.4.1 Functions</H3>


<p>
C functions are converted into new Perl built-in commands (or
subroutines). For example:
</p>

<div class="targetlang"><pre>
%module example
int fact(int a);
...
</pre></div>

<p>
Now, in Perl:
</p>

<div class="targetlang"><pre>
use example;
$a = &amp;example::fact(2);
</pre></div>

<H3><a name="Perl5_nn16"></a>33.4.2 Global variables</H3>


<p>
Global variables are handled using Perl's magic
variable mechanism.   SWIG generates a pair of functions
that intercept read/write operations and attaches them to a Perl variable with
the same name as the C global variable. Thus, an interface like this </p>

<div class="targetlang"><pre>
%module example;
...
double Spam;
...
</pre></div>

<p>
is accessed as follows:</p>

<div class="targetlang"><pre>
use example;
print $example::Spam,"\n";
$example::Spam = $example::Spam + 4
# ... etc ...

</pre></div>

<p>
If a variable is declared as <tt>const</tt>, it is wrapped as a
read-only variable.  Attempts to modify its value will result in an
error.
</p>

<p>
To make ordinary variables read-only, you can also use the <tt>%immutable</tt> directive. For example:
</p>

<div class="code">
<pre>
%{
extern char *path;
%}
%immutable;
extern char *path;
%mutable;
</pre>
</div>

<p>
The <tt>%immutable</tt> directive stays in effect until it is explicitly disabled or cleared using
<tt>%mutable</tt>.
See the <a href="SWIG.html#SWIG_readonly_variables">Creating read-only variables</a> section for further details.
</p>

<p>
It is also possible to tag a specific variable as read-only like this:
</p>

<div class="code">
<pre>
%{
extern char *path;
%}
%immutable path; 
...
...
extern char *path;       // Declared later in the input
</pre>
</div>

<H3><a name="Perl5_nn17"></a>33.4.3 Constants</H3>


<p>
By default, constants are wrapped as read-only Perl variables.  For example:
</p>

<div class="code">
<pre>
%module example

#define FOO 42
</pre>
</div>

<p>
In Perl:
</p>

<div class="targetlang">
<pre>
use example;
print $example::FOO,"\n";    # OK
$example::FOO = 2;           # Error
</pre>
</div>

<p>
Alternatively, if you use swig's <tt>-const</tt> option, constants are wrapped
such that the leading $ isn't required (by using a constant subroutine), which
usually gives a more natural Perl interface, for example:
</p>

<div class="targetlang">
<pre>
use example;
print example::FOO,"\n";
</pre>
</div>

<H3><a name="Perl5_nn18"></a>33.4.4 Pointers</H3>


<p>
SWIG represents pointers as blessed references.  A blessed reference
is the same as a Perl reference except that it has additional
information attached to it indicating what kind of reference it
is. That is, if you have a C declaration like this:</p>

<div class="code"><pre>
Matrix *new_Matrix(int n, int m);
</pre></div>

<p>
The module returns a value generated as follows:
</p>

<div class="targetlang"><pre>
$ptr = new_Matrix(int n, int m);     # Save pointer return result
bless $ptr, "p_Matrix";              # Bless it as a pointer to Matrix
</pre></div>

<p>
SWIG uses the "blessing" to check the datatype of various pointers.
In the event of a mismatch, an error or warning message is
generated.</p>

<p>
To check to see if a value is the NULL pointer, use the
<tt>defined()</tt> command:</p>

<div class="targetlang"><pre>
if (defined($ptr)) {
	print "Not a NULL pointer.";
} else {
	print "Is a NULL pointer.";
}

</pre></div>

<p>
To create a NULL pointer, you should pass the <tt>undef</tt> value to
a function.
</p>

<p>
The "value" of a Perl reference is not the same as the underlying C
pointer that SWIG wrapper functions return.  Suppose that <tt>$a</tt>
and <tt>$b</tt> are two references that point to the same C object.
In general, <tt>$a</tt> and <tt>$b</tt> will be different--since they
are different references.  Thus, it is a mistake to check the equality
of <tt>$a</tt> and <tt>$b</tt> to check the equality of two C
pointers.  The correct method to check equality of C pointers is to
dereference them as follows:
</p>

<div class="targetlang"><pre>
if ($$a == $$b) {
	print "a and b point to the same thing in C";
} else {
	print "a and b point to different objects.";
}

</pre></div>

<p>
As much as you might be inclined to modify a pointer value directly
from Perl, don't.  Manipulating pointer values is architecture dependent and
could cause your program to crash.  Similarly, don't try to manually cast
a pointer to a new type by reblessing a pointer.  This 
may not work like you expect and it is particularly dangerous when
casting C++ objects. If you need to cast a pointer or
change its value, consider writing some helper functions instead.  For
example:
</p>

<div class="code">
<pre>
%inline %{
/* C-style cast */
Bar *FooToBar(Foo *f) {
   return (Bar *) f;
}

/* C++-style cast */
Foo *BarToFoo(Bar *b) {
   return dynamic_cast&lt;Foo*&gt;(b);
}

Foo *IncrFoo(Foo *f, int i) {
    return f+i;
}
%}
</pre>
</div>

<p>
Also, if working with C++, you should always try
to use the new C++ style casts.  For example, in the above code, the
C-style cast may return a bogus result whereas as the C++-style cast will return
<tt>NULL</tt> if the conversion can't be performed.
</p>

<p>
<b>Compatibility Note:</b> In earlier versions, SWIG tried to preserve the same pointer naming conventions
as XS and <tt>xsubpp</tt>.  Given the advancement of the SWIG typesystem and the growing differences between 
SWIG and XS, this is no longer supported.
</p>

<H3><a name="Perl5_nn19"></a>33.4.5 Structures</H3>


<p>
Access to the contents of a structure are provided through a set of low-level
accessor functions as described in the "SWIG Basics" chapter.  For example,
</p>

<div class="code"><pre>
struct Vector {
	double x,y,z;
};
</pre></div>

<p>
gets mapped into the following collection of accessor functions:
</p>

<div class="code"><pre>
struct Vector *new_Vector();
void           delete_Vector(Vector *v);
double         Vector_x_get(Vector *obj)
void           Vector_x_set(Vector *obj, double x)
double         Vector_y_get(Vector *obj)
void           Vector_y_set(Vector *obj, double y)
double         Vector_z_get(Vector *obj)
void           Vector_z_set(Vector *obj, double z)

</pre></div>

<p>
These functions are then used to access structure data from Perl as follows:
</p>

<div class="targetlang"><pre>
$v = example::new_Vector();
print example::Vector_x_get($v),"\n";    # Get x component
example::Vector_x_set($v,7.8);          # Change x component
</pre></div>

<p>
Similar access is provided for unions and the data members of C++ classes.
</p>

<p>
<tt>const</tt> members of a structure are read-only. Data members
can also be forced to be read-only using the <tt>%immutable</tt> directive. For example:
</p>

<div class="code">
<pre>
struct Foo {
   ...
   %immutable;
   int x;        /* Read-only members */
   char *name;
   %mutable;
   ...
};
</pre>
</div>

<p>
When <tt>char *</tt> members of a structure are wrapped, the contents are assumed to be
dynamically allocated using <tt>malloc</tt> or <tt>new</tt> (depending on whether or not
SWIG is run with the -c++ option).   When the structure member is set, the old contents will be 
released and a new value created.   If this is not the behavior you want, you will have to use
a typemap (described later).
</p>

<p>
Array members are normally wrapped as read-only.   For example,
</p>

<div class="code">
<pre>
struct Foo {
   int  x[50];
};
</pre>
</div>

<p>
produces a single accessor function like this:
</p>

<div class="code">
<pre>
int *Foo_x_get(Foo *self) {
    return self-&gt;x;
};
</pre>
</div>

<p>
If you want to set an array member, you will need to supply a "memberin" typemap
described later in this chapter.  As a special case, SWIG does generate
code to set array members of type <tt>char</tt> (allowing you to store a Python
string in the structure).
</p>

<p>
When structure members are wrapped, they are handled as pointers.   For example,
</p>

<div class="code">
<pre>
struct Foo {
   ...
};

struct Bar {
   Foo f;
};
</pre>
</div>

<p>
generates accessor functions such as this:
</p>

<div class="code">
<pre>
Foo *Bar_f_get(Bar *b) {
    return &amp;b-&gt;f;
}

void Bar_f_set(Bar *b, Foo *val) {
    b-&gt;f = *val;
}
</pre>
</div>


<H3><a name="Perl5_nn20"></a>33.4.6 C++ classes</H3>


<p>
C++ classes are wrapped by building a set of low level accessor functions. 
Consider the following class:
</p>

<div class="code"><pre>
class List {
public:
  List();
  ~List();
  int  search(char *item);
  void insert(char *item);
  void remove(char *item);
  char *get(int n);
  int  length;
static void print(List *l);
};
</pre></div>

<p>
When wrapped by SWIG, the following functions are created:
</p>

<div class="code"><pre>
List    *new_List();
void     delete_List(List *l);
int      List_search(List *l, char *item);
void     List_insert(List *l, char *item);
void     List_remove(List *l, char *item);
char    *List_get(List *l, int n);
int      List_length_get(List *l);
void     List_length_set(List *l, int n);
void     List_print(List *l);

</pre></div>

<p>
In Perl, these functions are used in a straightforward manner:
</p>

<div class="targetlang"><pre>
use example;
$l = example::new_List();
example::List_insert($l,"Ale");
example::List_insert($l,"Stout");
example::List_insert($l,"Lager")
example::List_print($l)
Lager
Stout
Ale
print example::List_length_get($l),"\n";
3
</pre></div>

<p>
At this low level, C++ objects are really just typed pointers.  Member
functions are accessed by calling a C-like wrapper with an instance pointer
as the first argument.   Although this interface is fairly primitive, it
provides direct access to C++ objects.  A higher level interface using Perl proxy classes
can be built using these low-level accessors.  This is described shortly.
</p>

<H3><a name="Perl5_nn21"></a>33.4.7 C++ classes and type-checking</H3>


<p>
The SWIG type-checker is fully aware of C++ inheritance.  Therefore, if you have
classes like this
</p>

<div class="code">
<pre>
class Foo {
...
};

class Bar : public Foo {
...
};
</pre>
</div>

<p>
and a function
</p>

<div class="code">
<pre>
void spam(Foo *f);
</pre>
</div>

<p>
then the function <tt>spam()</tt> accepts <tt>Foo *</tt> or a pointer to any class derived from <tt>Foo</tt>.
If necessary, the type-checker also adjusts the value of the pointer (as is necessary when
multiple inheritance is used).
</p>

<H3><a name="Perl5_nn22"></a>33.4.8 C++ overloaded functions</H3>


<p>
If you have a C++ program with overloaded functions or methods, you will need to disambiguate
those methods using <tt>%rename</tt>.   For example:
</p>

<div class="code">
<pre>
/* Forward renaming declarations */
%rename(foo_i) foo(int); 
%rename(foo_d) foo(double);
...
void foo(int);           // Becomes 'foo_i'
void foo(char *c);       // Stays 'foo' (not renamed)

class Spam {
public:
   void foo(int);      // Becomes 'foo_i'
   void foo(double);   // Becomes 'foo_d'
   ...
};
</pre>
</div>

<p>
Now, in Perl, the methods are accessed as follows:
</p>

<div class="targetlang">
<pre>
use example;
example::foo_i(3);
$s = example::new_Spam();
example::Spam_foo_i($s,3);
example::Spam_foo_d($s,3.14);
</pre>
</div>

<p>
Please refer to the "SWIG Basics" chapter for more information. 
</p>

<H3><a name="Perl5_nn23"></a>33.4.9 Operators</H3>


    <p>
As of version 1.3.27 SWIG automatically renames the most common C++ operators, and maps them into the perl module with the proper 'use overload ...' so you don't need to do any work.
    </p>

    <p>
The following C++ operators are currently supported by the Perl module:
    </p>

    <ul>
<li>operator++	 </li>
<li>operator--	 </li>
<li>operator+	 </li>
<li>operator-	 </li>
<li>operator*	 </li>
<li>operator/	 </li>
<li>operator==	 </li>
<li>operator!=	 </li>
<li>operator%	 </li>
<li>operator&gt;	 </li>
<li>operator&lt;	 </li>
<li>operator and </li>
<li>operator or  </li>
    </ul>

<H3><a name="Perl5_nn24"></a>33.4.10 Modules and packages</H3>


<p>
When you create a SWIG extension, everything gets placed into
a single Perl module. The name of the module is determined by the
<tt>%module</tt> directive. To use the module, do the following:
</p>

<div class="targetlang"><pre>
$ perl5
use example;                      # load the example module
print example::fact(4),"\n"       # Call a function in it
24
</pre></div>

<p>
Usually, a module consists of a collection of code that is contained
within a single file. A package, on the other hand, is the Perl
equivalent of a namespace. A package is a lot like a module, except
that it is independent of files. Any number of files may be part of
the same package--or a package may be broken up into a collection of
modules if you prefer to think about it in this way.
</p>

<p>
SWIG installs its functions into a package with the same name as
the module. </p>

<p>
<b>Incompatible Change:</b> previous versions of SWIG enabled you to
change the name of the package by using the -package option, this
feature has been removed in order to properly support modules that
used nested namespaces, e.g. Foo::Bar::Baz. To give your module a
nested namespace simply provide the fully qualified name in your
%module directive: </p>

<div class="code"><pre>
%module "Foo::Bar::Baz"
</pre></div>

<p>
<b>NOTE:</b> the double quotes are necessary.
</p>

<p>
      Using the <tt>package</tt> option of the <tt>%module</tt> directive allows
      you to specify what Perl namespace that the module will be living in when
      installed.  This is useful in the situation where a module maintainer
      wants to split a large module into smaller pieces to make maintenance
      easier, but doesn't want to have that affect the module name used by
      applications. So for example, if I wanted to split <tt>XML::Xerces</tt>
      into <tt>XML::Xerces::SAX</tt>, etc. , but I wanted all the applications
      to be able to access the classes using the <tt>XML::Xerces</tt> namespace
      I could use:

</p>

<div class="code">
<pre>
%module(package="XML::Xerces") "XML::Xerces::SAX
</pre>
</div>

<p>
      And now all the applications could use the class
      <tt>XML::Xerces::SAXParser</tt>. Without the <tt>package</tt> directive
      splitting the module would force applications to use the class
      <tt>XML::Xerces::SAX::SAXParser</tt>. This could break compatibility for
      existing applications that are already using the class under the name
      <tt>XML::Xerces::SAXParser</tt>.
    </p>

<!--
<p>
This can be changed by giving SWIG the -package
option:
</p>

<div class="code"><pre>
$ swig -perl -package Foo example.i
</pre></div>

<p>
In this case, you still create a module called `<tt>example</tt>' exactly as before, but
all of the functions in that module will be installed into the package
`<tt>Foo</tt>.' For example:
</p>

<div class="targetlang"><pre>
use example;   # Load the module like before
print Foo::fact(4),"\n";        # Call a function in package FooBar
</pre></div>
-->

<H2><a name="Perl5_nn25"></a>33.5 Input and output parameters</H2>


<p>
A common problem in some C programs is handling parameters passed as simple pointers.  For
example:
</p>

<div class="code">
<pre>
void add(int x, int y, int *result) {
   *result = x + y;
}
</pre>
</div>

<p>
or perhaps
</p>

<div class="code">
<pre>
int sub(int *x, int *y) {
   return *x+*y;
}
</pre>
</div>

<p>
The easiest way to handle these situations is to use the <tt>typemaps.i</tt> file.  For example:
</p>

<div class="code">
<pre>
%module example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int  sub(int *INPUT, int *INPUT);
</pre>
</div>

<p>
In Perl, this allows you to pass simple values.  For example:
</p>

<div class="targetlang">
<pre>
$a = example::add(3,4);
print "$a\n";
7
$b = example::sub(7,4);
print "$b\n";
3
</pre>
</div>

<p>
Notice how the <tt>INPUT</tt> parameters allow integer values to be passed instead of pointers
and how the <tt>OUTPUT</tt> parameter creates a return result.
</p>

<p>
If you don't want to use the names <tt>INPUT</tt> or <tt>OUTPUT</tt>, use the <tt>%apply</tt>
directive.  For example:
</p>

<div class="code">
<pre>
%module example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT  { int *x, int *y};

void add(int x, int y, int *result);
int  sub(int *x, int *y);
</pre>
</div>

<p>
If a function mutates one of its parameters like this,
</p>

<div class="code">
<pre>
void negate(int *x) {
   *x = -(*x);
}
</pre>
</div>

<p>
you can use <tt>INOUT</tt> like this:
</p>

<div class="code">
<pre>
%include "typemaps.i"
...
void negate(int *INOUT);
</pre>
</div>

<p>
In Perl, a mutated parameter shows up as a return value.  For example:
</p>

<div class="targetlang">
<pre>
$a = example::negate(3);
print "$a\n";
-3
</pre>
</div>

<p>
The most common use of these special typemap rules is to handle functions that
return more than one value.   For example, sometimes a function returns a result
as well as a special error code:
</p>

<div class="code">
<pre>
/* send message, return number of bytes sent, along with success code */
int send_message(char *text, int len, int *success);
</pre>
</div>

<p>
To wrap such a function, simply use the <tt>OUTPUT</tt> rule above. For example:
</p>

<div class="code">
<pre>
%module example
%include "typemaps.i"
%apply int *OUTPUT { int *success };
...
int send_message(char *text, int *success);
</pre>
</div>

<p>
When used in Perl, the function will return multiple values.  
</p>

<div class="targetlang">
<pre>
($bytes, $success) = example::send_message("Hello World");
</pre>
</div>

<p>
Another common use of multiple return values are in query functions.  For example:
</p>

<div class="code">
<pre>
void get_dimensions(Matrix *m, int *rows, int *columns);
</pre>
</div>

<p>
To wrap this, you might use the following:
</p>

<div class="code">
<pre>
%module example
%include "typemaps.i"
%apply int *OUTPUT { int *rows, int *columns };
...
void get_dimensions(Matrix *m, int *rows, *columns);
</pre>
</div>

<p>
Now, in Perl:
</p>

<div class="targetlang">
<pre>
($r,$c) = example::get_dimensions($m);
</pre>
</div>

<p>
In certain cases, it is possible to treat Perl references as C pointers.  To do this, use the <tt>REFERENCE</tt> typemap.  For
example:
</p>

<div class="code">
<pre>
%module example
%include "typemaps.i"

void add(int x, int y, int *REFERENCE);
</pre>
</div>

<p>
In Perl:
</p>

<div class="targetlang">
<pre>
use example;
$c = 0.0;
example::add(3,4,\$c);
print "$c\n";
7
</pre>
</div>

<p>
<b>Note:</b> The <tt>REFERENCE</tt> feature is only currently supported for numeric types (integers and floating point).
</p>

<H2><a name="Perl5_nn26"></a>33.6 Exception handling</H2>


<p>
The SWIG <tt>%exception</tt> directive can be used to create a
user-definable exception handler for converting exceptions in your
C/C++ program into Perl exceptions.  The chapter on customization features
contains more details, but suppose you have a C++ class like the
following:
</p>

<div class="code"><pre>
class RangeError {};   // Used for an exception

class DoubleArray {
  private:
    int n;
    double *ptr;
  public:
    // Create a new array of fixed size
    DoubleArray(int size) {
      ptr = new double[size];
      n = size;
    }
    // Destroy an array
    ~DoubleArray() {
       delete ptr;
    }
    // Return the length of the array
    int   length() {
      return n;
    }

    // Get an item from the array and perform bounds checking.
    double getitem(int i) {
      if ((i &gt;= 0) &amp;&amp; (i &lt; n))
        return ptr[i];
      else
        throw RangeError();
    }

    // Set an item in the array and perform bounds checking.
    void setitem(int i, double val) {
      if ((i &gt;= 0) &amp;&amp; (i &lt; n))
        ptr[i] = val;
      else {
        throw RangeError();
      }
    }
  };
</pre></div>

<p>
Since several methods in this class can throw an exception
for an out-of-bounds access, you might want to catch
this in the Perl extension by writing the following in an
interface file:
</p>

<div class="code"><pre>
%exception {
  try {
    $action
  }
  catch (RangeError) {
    croak("Array index out-of-bounds");
  }
}

class DoubleArray {
...
};
</pre></div>

<p>
The exception handling code is inserted directly into generated wrapper
functions.  The <tt>$action</tt> variable is replaced with the C/C++
code being executed by the wrapper.  When an exception handler
is defined, errors can be caught and used to gracefully generate a Perl error
instead of forcing the entire program to terminate with an uncaught error.
</p>

<p>
As shown, the exception handling code will be added to every wrapper function.
Since this is somewhat inefficient.  You might consider refining the 
exception handler to only apply to specific methods like this:
</p>

<div class="code">
<pre>
%exception getitem {
  try {
    $action
  }
  catch (RangeError) {
    croak("Array index out-of-bounds");
  }
}

%exception setitem {
  try {
    $action
  }
  catch (RangeError) {
    croak("Array index out-of-bounds");
  }
}
</pre>
</div>

<p>
In this case, the exception handler is only attached to methods and functions
named <tt>getitem</tt> and <tt>setitem</tt>.
</p>

<p>
If you had a lot of different methods, you can avoid extra typing by using a macro.
For example:
</p>

<div class="code">
<pre>
%define RANGE_ERROR
{
  try {
    $action
  }
  catch (RangeError) {
    croak("Array index out-of-bounds");
  }
}
%enddef

%exception getitem RANGE_ERROR;
%exception setitem RANGE_ERROR;
</pre>
</div>

<p>
Since SWIG's exception handling is user-definable, you are not limited to C++ exception handling.
See the chapter on "<a href="Customization.html#Customization">Customization features</a>" for more examples.
</p>

<p>
<b>Compatibility note:</b> In SWIG1.1, exceptions were defined using the older <tt>%except</tt> directive:
</p>

<div class="code">
<pre>
%except(python) {
  try {
    $function
  }
  catch (RangeError) {
    croak("Array index out-of-bounds");
  }
}
</pre>
</div>

<p>
This is still supported, but it is deprecated.  The newer <tt>%exception</tt> directive provides the same
functionality, but it has additional capabilities that make it more powerful.
</p>

<H2><a name="Perl5_nn27"></a>33.7 Remapping datatypes with typemaps</H2>


<p>
This section describes how you can modify SWIG's default wrapping behavior
for various C/C++ datatypes using the <tt>%typemap</tt> directive.   This
is an advanced topic that assumes familiarity with the Perl C API as well
as the material in the "<a href="Typemaps.html#Typemaps">Typemaps</a>" chapter.
</p>

<p>
Before proceeding, it should be stressed that typemaps are <em>not</em> a required 
part of using SWIG---the default wrapping behavior is enough in most cases.
Typemaps are only used if you want to change some aspect of the primitive
C-Perl interface.
</p>

<H3><a name="Perl5_nn28"></a>33.7.1 A simple typemap example</H3>


<p>
A typemap is nothing more than a code generation rule that is attached to 
a specific C datatype.   For example, to convert integers from Perl to C,
you might define a typemap like this:
</p>

<div class="code"><pre>
%module example

%typemap(in) int {
	$1 = (int) SvIV($input);
	printf("Received an integer : %d\n", $1);
}
...
%inline %{
extern int fact(int n);
%}

</pre></div>

<p>
Typemaps are always associated with some specific aspect of code generation.
In this case, the "in" method refers to the conversion of input arguments
to C/C++.  The datatype <tt>int</tt> is the datatype to which the typemap
will be applied.  The supplied C code is used to convert values.  In this
code a number of special variable prefaced by a <tt>$</tt> are used.  The
<tt>$1</tt> variable is placeholder for a local variable of type <tt>int</tt>.
The <tt>$input</tt> variable is the input object (usually a <tt>SV *</tt>).
</p>

<p>
When this example is used in Perl5, it will operate as follows:
</p>

<div class="targetlang"><pre>
use example;
$n = example::fact(6);
print "$n\n";
...

Output:
Received an integer : 6
720
</pre></div>

<p>
The application of a typemap to specific datatypes and argument names involves
more than simple text-matching--typemaps are fully integrated into the
SWIG type-system.   When you define a typemap for <tt>int</tt>, that typemap
applies to <tt>int</tt> and qualified variations such as <tt>const int</tt>.  In addition,
the typemap system follows <tt>typedef</tt> declarations.  For example:
</p>

<div class="targetlang">
<pre>
%typemap(in) int n {
	$1 = (int) SvIV($input);
	printf("n = %d\n",$1);
}
%inline %{
typedef int Integer;
extern int fact(Integer n);    // Above typemap is applied
%}
</pre>
</div>

<p>
It should be noted that the matching of <tt>typedef</tt> only occurs in one direction.  If you
defined a typemap for <tt>Integer</tt>, it is not applied to arguments of
type <tt>int</tt>.
</p>

<p>
Typemaps can also be defined for groups of consecutive arguments.  For example:
</p>

<div class="targetlang">
<pre>
%typemap(in) (char *str, unsigned len) {
    $1 = SvPV($input,$2);
};

int count(char c, char *str, unsigned len);
</pre>
</div>

<p>
When a multi-argument typemap is defined, the arguments are always handled as a single
Perl object.  This allows the function to be used like this (notice how the length
parameter is omitted):
</p>

<div class="targetlang">
<pre>
example::count("e","Hello World");
1
&gt;&gt;&gt;
</pre>
</div>


<H3><a name="Perl5_nn29"></a>33.7.2 Perl5 typemaps</H3>


<p>
The previous section illustrated an "in" typemap for converting Perl objects to C.
A variety of different typemap methods are defined by the Perl module.  For example,
to convert a C integer back into a Perl object, you might define an "out" typemap
like this:
</p>


<div class="targetlang">
<pre>
%typemap(out) int {
    $result = sv_newmortal();
    set_setiv($result, (IV) $1);
    argvi++;
}
</pre>
</div>

<p>
The following typemap methods are available:
</p>

<p>
<tt>%typemap(in)</tt>
</p>

<div class="indent">
Converts Perl5 object to input function arguments.
</div>

<p>
<tt>%typemap(out)</tt>
</p>

<div class="indent">
Converts function return value to a Perl5 value.
</div>

<p>
<tt>%typemap(varin)</tt>
</p>

<div class="indent">
Converts a Perl5 object to a global variable.
</div>

<p>
<tt>%typemap(varout)</tt>
</p>

<div class="indent">
Converts a global variable to a Perl5 object.
</div>

<p>
<tt>%typemap(freearg)</tt>
</p>

<div class="indent">
Cleans up a function argument after a function call
</div>

<p>
<tt>%typemap(argout)</tt>
</p>

<div class="indent">
Output argument handling
</div>

<p>
<tt>%typemap(ret)</tt>
</p>

<div class="indent">
Clean up return value from a function.
</div>

<p>
<tt>%typemap(memberin)</tt>
</p>

<div class="indent">
Setting of C++ member data (all languages).
</div>

<p>
<tt>%typemap(memberout)</tt>
</p>

<div class="indent">
Return of C++ member data (all languages).
</div>

<p>
<tt>%typemap(check)</tt>
</p>

<div class="indent">
Check value of input parameter.
</div>

<H3><a name="Perl5_nn30"></a>33.7.3 Typemap variables</H3>


<p>
Within typemap code, a number of special variables prefaced with a <tt>$</tt> may appear.
A full list of variables can be found in the "<a href="Typemaps.html#Typemaps">Typemaps</a>" chapter.
This is a list of the most common variables:
</p>

<p>
<tt>$1</tt>
</p>

<div class="indent">
A C local variable corresponding to the actual type specified in the
<tt>%typemap</tt> directive.  For input values, this is a C local variable
that's supposed to hold an argument value.  For output values, this is
the raw result that's supposed to be returned to Perl.
</div>

<p>
<tt>$input</tt>
</p>

<div class="indent">
A Perl object holding the value of an argument of variable value.
</div>

<p>
<tt>$result</tt>
</p>

<div class="indent">
A Perl object that holds the result to be returned to Perl.
</div>

<p>
<tt>$1_name</tt>
</p>

<div class="indent">
The parameter name that was matched. 
</div>

<p>
<tt>$1_type</tt>
</p>

<div class="indent">
The actual C datatype matched by the typemap.
</div>

<p>
<tt>$1_ltype</tt>
</p>

<div class="indent">
An assignable version of the datatype matched by the typemap (a type that can appear on the left-hand-side of
a C assignment operation).  This type is stripped of qualifiers and may be an altered version of <tt>$1_type</tt>.
All arguments and local variables in wrapper functions are declared using this type so that their values can be
properly assigned.
</div>

<p>
<tt>$symname</tt>
</p>

<div class="indent">
The Perl name of the wrapper function being created.
</div>

<H3><a name="Perl5_nn31"></a>33.7.4 Useful functions</H3>


<p>
When writing typemaps, it is necessary to work directly with Perl5
objects.  This, unfortunately, can be a daunting task.  Consult the
"perlguts" man-page for all of the really ugly details.  A short
summary of commonly used functions is provided here for reference.  It
should be stressed that SWIG can be used quite effectively without
knowing any of these details--especially now that there are typemap
libraries that can already been written.
</p>

<p>
<b>Perl Integer Functions</b>
</p>

<div class="code">
<pre>
int   SvIV(SV *);
void  sv_setiv(SV *sv, IV value);
SV   *newSViv(IV value);
int   SvIOK(SV *);
</pre>
</div>

<p>
<b>Perl Floating Point Functions</b>
</p>

<div class="code">
<pre>
double SvNV(SV *);
void   sv_setnv(SV *, double value);
SV    *newSVnv(double value);
int    SvNOK(SV *);
</pre>
</div>

<p>
<b>Perl String Functions</b>
</p>

<div class="code">
<pre>
char     *SvPV(SV *, STRLEN len);
void      sv_setpv(SV *, char *val);
void      sv_setpvn(SV *, char *val, STRLEN len);
SV       *newSVpv(char *value, STRLEN len);
int       SvPOK(SV *);
void      sv_catpv(SV *, char *);
void      sv_catpvn(SV *, char *, STRLEN);
</pre>
</div>

<p>
<b>Perl References</b>
</p>

<div class="code">
<pre>
void      sv_setref_pv(SV *, char *, void *ptr);
int       sv_isobject(SV *);
SV       *SvRV(SV *);
int       sv_isa(SV *, char *0;
</pre>
</div>


<H2><a name="Perl5_nn32"></a>33.8 Typemap Examples</H2>


<p>
This section includes a few examples of typemaps.  For more examples, you
might look at the files "<tt>perl5.swg</tt>" and "<tt>typemaps.i</tt>" in
the SWIG library.
</p>

<H3><a name="Perl5_nn33"></a>33.8.1 Converting a Perl5 array to a char **</H3>


<p>
A common problem in many C programs is the processing of command line
arguments, which are usually passed in an array of NULL terminated
strings.  The following SWIG interface file allows a Perl5 array
reference to be used as a char ** datatype.
</p>

<div class="code"><pre>
%module argv

// This tells SWIG to treat char ** as a special case
%typemap(in) char ** {
	AV *tempav;
	I32 len;
	int i;
	SV  **tv;
	if (!SvROK($input))
	    croak("Argument $argnum is not a reference.");
        if (SvTYPE(SvRV($input)) != SVt_PVAV)
	    croak("Argument $argnum is not an array.");
        tempav = (AV*)SvRV($input);
	len = av_len(tempav);
	$1 = (char **) malloc((len+2)*sizeof(char *));
	for (i = 0; i &lt;= len; i++) {
	    tv = av_fetch(tempav, i, 0);	
	    $1[i] = (char *) SvPV(*tv,PL_na);
        }
	$1[i] = NULL;
};

// This cleans up the char ** array after the function call
%typemap(freearg) char ** {
	free($1);
}

// Creates a new Perl array and places a NULL-terminated char ** into it
%typemap(out) char ** {
	AV *myav;
	SV **svs;
	int i = 0,len = 0;
	/* Figure out how many elements we have */
	while ($1[len])
	   len++;
	svs = (SV **) malloc(len*sizeof(SV *));
	for (i = 0; i &lt; len ; i++) {
	    svs[i] = sv_newmortal();
	    sv_setpv((SV*)svs[i],$1[i]);
	};
	myav =	av_make(len,svs);
	free(svs);
        $result = newRV_noinc((SV*)myav);
        sv_2mortal($result);
        argvi++;
}

// Now a few test functions
%inline %{
int print_args(char **argv) {
    int i = 0;
    while (argv[i]) {
         printf("argv[%d] = %s\n", i,argv[i]);
         i++;
    }
    return i;
}

// Returns a char ** list 
char **get_args() {
    static char *values[] = { "Dave", "Mike", "Susan", "John", "Michelle", 0};
    return &amp;values[0];
}
%}

</pre></div>

<p>
When this module is compiled, the wrapped C functions can be used in a
Perl script as follows:
</p>

<div class="targetlang"><pre>
use argv;
@a = ("Dave", "Mike", "John", "Mary");           # Create an array of strings
argv::print_args(\@a);                           # Pass it to our C function
$b = argv::get_args();                           # Get array of strings from C
print @$b,"\n";                                  # Print it out
</pre></div>


<H3><a name="Perl5_nn34"></a>33.8.2 Return values</H3>


<p>
Return values are placed on the argument stack of each wrapper
function.  The current value of the argument stack pointer is
contained in a variable <tt>argvi</tt>.  Whenever a new output value
is added, it is critical that this value be incremented.  For multiple
output values, the final value of <tt>argvi</tt> should be the total
number of output values.
</p>

<p>
The total number of return values should not exceed the number of
input values unless you explicitly extend the argument stack.  This
can be done using the <tt>EXTEND()</tt> macro as in:
</p>

<div class="code"><pre>
%typemap(argout) int *OUTPUT {
	if (argvi &gt;= items) {            
		EXTEND(sp,1);              /* Extend the stack by 1 object */
	}
	$result = sv_newmortal();
	sv_setiv($target,(IV) *($1));
	argvi++;
}
</pre></div>

<H3><a name="Perl5_nn35"></a>33.8.3 Returning values from arguments</H3>


<p>
Sometimes it is desirable for a function to return a value in one of
its arguments.  This example describes the implementation of the <tt>OUTPUT</tt> typemap.
</p>

<div class="code"><pre>
%module return

// This tells SWIG to treat an double * argument with name 'OutDouble' as
// an output value.  

%typemap(argout) double *OUTPUT {
	$result = sv_newmortal();
	sv_setnv($result, *$input);
	argvi++;                     /* Increment return count -- important! */
}

// We don't care what the input value is. Ignore, but set to a temporary variable

%typemap(in,numinputs=0) double *OUTPUT(double junk) {
	$1 = &amp;junk;
}

// Now a function to test it
%{
/* Returns the first two input arguments */
int multout(double a, double b, double *out1, double *out2) {
	*out1 = a;
	*out2 = b;
	return 0;
};
%}

// If we name both parameters OutDouble both will be output

int multout(double a, double b, double *OUTPUT, double *OUTPUT);
...
</pre></div>

<p>
When this function is called, the output arguments are appended to the stack used
to return results.  This shows up an array in Perl.
For example:
</p>

<div class="targetlang"><pre>
@r = multout(7,13);
print "multout(7,13) = @r\n";
($x,$y) = multout(7,13);
</pre></div>

<H3><a name="Perl5_nn36"></a>33.8.4 Accessing array structure members</H3>


<p>
Consider the following data structure:
</p>

<div class="code"><pre>
#define SIZE  8
typedef struct {
    int   values[SIZE];
    ...
} Foo;

</pre></div>

<p>
By default, SWIG doesn't know how to the handle the values structure
member it's an array, not a pointer.  In this case, SWIG makes the array member
read-only.   Reading will simply return a pointer to the first item in the array.
To make the member writable, a "memberin" typemap can be used.
</p>

<div class="code"><pre>
%typemap(memberin) int [SIZE] {
    int i;
    for (i = 0; i &lt; SIZE; i++) {
        $1[i] = $input[i];
    }
}

</pre></div>

<p>
Whenever a <tt>int [SIZE]</tt> member is encountered in a structure
or class, this typemap provides a safe mechanism for setting its
value.  
</p>

<p>
As in the previous example, the typemap can be generalized for any dimension.
For example:
</p>

<div class="code"><pre>
%typemap(memberin) int [ANY] {
   int i;
   for (i = 0; i &lt; $1_dim0; i++) {
      $1[i] = $input[i];
   }
}
</pre></div>

<p>
When setting structure members, the input object is always assumed to
be a C array of values that have already been converted from the
target language.  Because of this, the <tt>memberin</tt> typemap is
almost always combined with the use of an "in" typemap.  For example,
the "in" typemap in the previous section would be used to convert an
<tt>int[]</tt> array to C whereas the "memberin" typemap would be used
to copy the converted array into a C data structure.
</p>

<H3><a name="Perl5_nn37"></a>33.8.5 Turning Perl references into C pointers</H3>


<p>
A frequent confusion on the SWIG mailing list is errors caused by the
mixing of Perl references and C pointers.  For example, suppose you
have a C function that modifies its arguments like this:
</p>

<div class="code"><pre>
void add(double a, double b, double *c) {
	*c = a + b;
}
</pre></div>

<p>
A common misinterpretation of this function is the following Perl script:
</p>

<div class="targetlang"><pre>
# Perl script
$a = 3.5;
$b = 7.5;
$c = 0.0;          # Output value
add($a,$b,\$c);    # Place result in c (Except that it doesn't work)
</pre></div>

<p>
To make this work with a reference, you can use a typemap such as this:
</p>

<div class="code"><pre>
%typemap(in) double * (double dvalue) {
  SV* tempsv;
  if (!SvROK($input)) {
    croak("expected a reference\n");
  }
  tempsv = SvRV($input);
  if ((!SvNOK(tempsv)) &amp;&amp; (!SvIOK(tempsv))) {
    croak("expected a double reference\n");
  }
  dvalue = SvNV(tempsv);
  $1 = &amp;dvalue;
}

%typemap(argout) double * {
  SV *tempsv;
  tempsv = SvRV($input);
  sv_setnv(tempsv, *$1);
}
</pre></div>

<p>
Now, if you place this before the add function, you can do this:
</p>

<div class="targetlang"><pre>
$a = 3.5;
$b = 7.5;
$c = 0.0;
add($a,$b,\$c);            # Now it works!
print "$c\n";

</pre></div>

<H3><a name="Perl5_nn38"></a>33.8.6 Pointer handling</H3>


<p>
Occasionally, it might be necessary to convert pointer values that have
been stored using the SWIG typed-pointer representation.  To convert a pointer from Perl to C, the following
function is used:
</p>

<p>
<tt>
int SWIG_ConvertPtr(SV *obj, void **ptr, swig_type_info *ty, int flags)
</tt>
</p>

<div class="indent">
Converts a Perl object <tt>obj</tt> to a C pointer.  The result of the conversion is placed
into the pointer located at <tt>ptr</tt>.  <tt>ty</tt> is a SWIG type descriptor structure.
<tt>flags</tt> is used to handle error checking and other aspects of conversion. <tt>flags</tt> is
currently undefined and reserved for future expansion.  Returns 0 on success and -1 on error.
</div>

<p>
<tt>
void *SWIG_MakePtr(SV *obj, void *ptr, swig_type_info *ty, int flags)</tt>
</p>

<div class="indent">
Creates a new Perl pointer object.  <tt>obj</tt> is a Perl SV that has been initialized to hold the result,
<tt>ptr</tt> is the pointer to convert, <tt>ty</tt> is the SWIG type descriptor structure that
describes the type, and <tt>flags</tt> is a flag that controls properties of the conversion.  <tt>flags</tt> is currently undefined
and reserved.
</div>

<p>
Both of these functions require the use of a special SWIG
type-descriptor structure.  This structure contains information about
the mangled name of the datatype, type-equivalence information, as
well as information about converting pointer values under C++
inheritance.   For a type of <tt>Foo *</tt>, the type descriptor structure
is usually accessed as follows:
</p>

<div class="code">
<pre>
Foo *f;
if (SWIG_ConvertPtr($input, (void **) &amp;f, SWIGTYPE_p_Foo, 0) == -1) return NULL;

SV *sv = sv_newmortal();
SWIG_MakePtr(sv, f, SWIGTYPE_p_Foo, 0);
</pre>
</div>

<p>
In a typemap, the type descriptor should always be accessed using the special typemap
variable <tt>$1_descriptor</tt>.  For example:
</p>

<div class="code">
<pre>
%typemap(in) Foo * {
   if ((SWIG_ConvertPtr($input,(void **) &amp;$1, $1_descriptor,0)) == -1) return NULL;
}
</pre>
</div>

<p>
If necessary, the descriptor for any type can be obtained using the <tt>$descriptor()</tt> macro in a typemap.
For example:
</p>

<div class="code">
<pre>
%typemap(in) Foo * {
   if ((SWIG_ConvertPtr($input,(void **) &amp;$1, $descriptor(Foo *), 0)) == -1) return NULL;
}
</pre>
</div>

<H2><a name="Perl5_nn39"></a>33.9 Proxy classes</H2>


<p>
<b>Out of date. Needs update.</b>
</p>

<p>
Using the low-level procedural interface, SWIG can also construct a
high-level object oriented interface to C structures and C++ classes.
This is done by constructing a Perl proxy class (also known as a shadow class)
that provides an OO wrapper
to the underlying code.  This section describes the implementation
details of the proxy interface.
</p>

<H3><a name="Perl5_nn40"></a>33.9.1 Preliminaries</H3>


<p>
Proxy classes, are generated by default. If you want to turn them off, use the <tt>-noproxy</tt> command line option.
For example:
</p>

<div class="code">
<pre>
$ swig -c++ -perl -noproxy example.i
</pre>
</div>

<p>
When proxy classes are used, SWIG moves all of the low-level procedural wrappers to
another package name.  By default, this package is named 'modulec' where 'module' is the name of the module
you provided with the <tt>%module</tt> directive.  Then, in place of the original module, 
SWIG creates a collection of high-level Perl wrappers.  In your scripts, you will use these
high level wrappers.  The wrappers, in turn, interact with the low-level procedural module.
</p>

<H3><a name="Perl5_nn41"></a>33.9.2 Structure and class wrappers</H3>


<p>
Suppose you have the following SWIG interface file:
</p>

<div class="code"><pre>
%module example
struct Vector {
	Vector(double x, double y, double z);
	~Vector();
	double x,y,z;
};

</pre></div>

<p>
When wrapped, SWIG creates the following set of low-level accessor
functions as described in previous sections.
</p>

<div class="code"><pre>
Vector *new_Vector(double x, double y, double z);
void    delete_Vector(Vector *v);
double  Vector_x_get(Vector *v);
double  Vector_x_set(Vector *v, double value);
double  Vector_y_get(Vector *v);
double  Vector_y_set(Vector *v, double value);
double  Vector_z_get(Vector *v);
double  Vector_z_set(Vector *v, double value);

</pre></div>

<p>
However, when proxy classes are enabled, these accessor functions are
wrapped inside a Perl class like this:
</p>

<div class="targetlang"><pre>
package example::Vector;
@ISA = qw( example );
%OWNER = ();
%BLESSEDMEMBERS = ();

sub new () {
    my $self = shift;
    my @args = @_;
    $self = vectorc::new_Vector(@args);
    return undef if (!defined($self));
    bless $self, "example::Vector";
    $OWNER{$self} = 1;
    my %retval;
    tie %retval, "example::Vector", $self;
    return bless \%retval,"Vector";
}

sub DESTROY {
    return unless $_[0]-&gt;isa('HASH');
    my $self = tied(%{$_[0]});
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
	 examplec::delete_Vector($self));
	 delete $OWNER{$self};
}

sub FETCH {
    my ($self,$field) = @_;
    my $member_func = "vectorc::Vector_${field}_get";
    my $val = &amp;$member_func($self);
    if (exists $BLESSEDMEMBERS{$field}) {
        return undef if (!defined($val));
        my %retval;
        tie %retval,$BLESSEDMEMBERS{$field},$val;
        return bless \%retval, $BLESSEDMEMBERS{$field};
    }
    return $val;
}

sub STORE {
    my ($self,$field,$newval) = @_;
    my $member_func = "vectorc::Vector_${field}_set";
    if (exists $BLESSEDMEMBERS{$field}) {
        &amp;$member_func($self,tied(%{$newval}));
    } else {
        &amp;$member_func($self,$newval);
    }
}
</pre></div>

<p>
Each structure or class is mapped into a Perl package of the same
name. The C++ constructors and destructors are mapped into
constructors and destructors for the package and are always named
"new" and "DESTROY".  The constructor always returns a tied hash
table.  This hash table is used to access the member variables of a
structure in addition to being able to invoke member functions.  The
<tt>%OWNER</tt> and <tt>%BLESSEDMEMBERS</tt> hash tables are used
internally and described shortly.
</p>

<p>
To use our new proxy class we can simply do the following:
</p>

<div class="targetlang"><pre>
# Perl code using Vector class
$v = new Vector(2,3,4);
$w = Vector-&gt;new(-1,-2,-3);

# Assignment of a single member
$v-&gt;{x} = 7.5;

# Assignment of all members
%$v = ( x=&gt;3,
	 y=&gt;9,
	 z=&gt;-2);

# Reading members
$x = $v-&gt;{x};

# Destruction
$v-&gt;DESTROY();

</pre></div>

<H3><a name="Perl5_nn42"></a>33.9.3 Object Ownership</H3>


<p>
In order for proxy classes to work properly, it is necessary for Perl
to manage some mechanism of object ownership.  Here's the crux of the
problem---suppose you had a function like this:
</p>

<div class="code"><pre>
Vector *Vector_get(Vector *v, int index) {
	return &amp;v[i];
}
</pre></div>

<p>
This function takes a Vector pointer and returns a pointer to another
Vector.  Such a function might be used to manage arrays or lists of
vectors (in C).  Now contrast this function with the constructor for a
Vector object:
</p>

<div class="code"><pre>
Vector *new_Vector(double x, double y, double z) {
	Vector *v;
	v = new Vector(x,y,z);        // Call C++ constructor
	return v;
}
</pre></div>

<p>
Both functions return a Vector, but the constructor is returning a
brand-new Vector while the other function is returning a Vector that
was already created (hopefully).  In Perl, both vectors will be
indistinguishable---clearly a problem considering that we would
probably like the newly created Vector to be destroyed when we are
done with it.
</p>

<p>
To manage these problems, each class contains two methods that access
an internal hash table called <tt>%OWNER</tt>.  This hash keeps a list
of all of the objects that Perl knows that it has created.  This
happens in two cases: (1) when the constructor has been called, and
(2) when a function implicitly creates a new object (as is done when
SWIG needs to return a complex datatype by value).  When the
destructor is invoked, the Perl proxy class module checks the
<tt>%OWNER</tt> hash to see if Perl created the object.  If so, the
C/C++ destructor is invoked.  If not, we simply destroy the Perl
object and leave the underlying C object alone (under the assumption
that someone else must have created it).
</p>

<p>
This scheme works remarkably well in practice but it isn't foolproof.
In fact, it will fail if you create a new C object in Perl, pass it on
to a C function that remembers the object, and then destroy the
corresponding Perl object (this situation turns out to come up
frequently when constructing objects like linked lists and trees).
When C takes possession of an object, you can change Perl's ownership
by simply deleting the object from the <tt>%OWNER</tt> hash.  This is
done using the <tt>DISOWN</tt> method.
</p>

<div class="targetlang"><pre>
# Perl code to change ownership of an object
$v = new Vector(x,y,z);
$v-&gt;DISOWN();     
</pre></div>

<p>
To acquire ownership of an object, the <tt>ACQUIRE</tt> method can be used.
</p>

<div class="targetlang"><pre>
# Given Perl ownership of a file
$u = Vector_get($v);
$u-&gt;ACQUIRE();

</pre></div>

<p>
As always, a little care is in order.  SWIG does not provide reference
counting, garbage collection, or advanced features one might find in
sophisticated languages.
</p>

<H3><a name="Perl5_nn43"></a>33.9.4 Nested Objects</H3>


<p>
Suppose that we have a new object that looks like this:
</p>

<div class="code"><pre>
struct Particle {
	Vector r;
	Vector v;
	Vector f;
	int	type;
}

</pre></div>

<p>
In this case, the members of the structure are complex objects that
have already been encapsulated in a Perl proxy class.  To handle
these correctly, we use the <tt>%BLESSEDMEMBERS</tt> hash which would
look like this (along with some supporting code):
</p>

<div class="targetlang"><pre>
package Particle;
...
%BLESSEDMEMBERS = (
	r =&gt; `Vector',
	v =&gt; `Vector',
	f =&gt; `Vector',
);

</pre></div>

<p>
When fetching members from the structure, <tt>%BLESSEDMEMBERS</tt> is
checked.  If the requested field is present, we create a tied-hash
table and return it.  If not, we just return the corresponding member
unmodified.
</p>

<p>
This implementation allows us to operate on nested structures as follows:
</p>

<div class="targetlang"><pre>
# Perl access of nested structure
$p = new Particle();
$p-&gt;{f}-&gt;{x} = 0.0;
%${$p-&gt;{v}} = ( x=&gt;0, y=&gt;0, z=&gt;0);         
</pre></div>

<H3><a name="Perl5_nn44"></a>33.9.5 Proxy Functions</H3>


<p>
When functions take arguments involving a complex object, it is
sometimes necessary to write a proxy function.  For example:
</p>

<div class="code"><pre>
double dot_product(Vector *v1, Vector *v2);
</pre></div>

<p>
Since Vector is an object already wrapped into a proxy class, we need
to modify this function to accept arguments that are given in the form
of tied hash tables.  This is done by creating a Perl function like
this:
</p>

<div class="targetlang"><pre>
sub dot_product {
    my @args = @_;
    $args[0] = tied(%{$args[0]});         # Get the real pointer values
    $args[1] = tied(%{$args[1]});
    my $result = vectorc::dot_product(@args);
    return $result;
}
</pre></div>

<p>
This function replaces the original function, but operates in an
identical manner.
</p>

<H3><a name="Perl5_nn45"></a>33.9.6 Inheritance</H3>


<p>
Simple C++ inheritance is handled using the Perl <tt>@ISA</tt> array
in each class package. For example, if you have the following
interface file:
</p>

<div class="code"><pre>
// shapes.i
// SWIG interface file for shapes class
%module shapes
%{
#include "shapes.h"
%}

class Shape {
public:
	virtual double area() = 0;
	virtual double perimeter() = 0;
	void    set_location(double x, double y);
};
class Circle : public Shape {
public:
	Circle(double radius);
	~Circle();
	double area();
	double perimeter();
};
class Square : public Shape {
public:
	Square(double size);
	~Square();
	double area();
	double perimeter();
}

</pre></div>

<p>
The resulting, Perl wrapper class will create the following code:
</p>

<div class="targetlang"><pre>
Package Shape;
@ISA = (shapes);
...
Package Circle;
@ISA = (shapes Shape);
...
Package Square;
@ISA = (shapes Shape);

</pre></div>

<p>
The <tt>@ISA</tt> array determines where to look for methods of a
particular class.  In this case, both the <tt>Circle</tt> and
<tt>Square</tt> classes inherit functions from <tt>Shape</tt> so we'll
want to look in the <tt>Shape</tt> base class for them.  All classes
also inherit from the top-level module <tt>shapes</tt>.  This is
because certain common operations needed to implement proxy classes
are implemented only once and reused in the wrapper code for various
classes and structures.
</p>

<p>
Since SWIG proxy classes are implemented in Perl, it is easy to
subclass from any SWIG generated class.  To do this, simply put the
name of a SWIG class in the <tt>@ISA</tt> array for your new
class. However, be forewarned that this is not a trivial problem.  In
particular, inheritance of data members is extremely tricky (and I'm
not even sure if it really works).
</p>

<H3><a name="Perl5_nn46"></a>33.9.7 Modifying the proxy methods</H3>


<p>
It is possible to override the SWIG generated proxy/shadow methods, using <tt>%feature("shadow")</tt>.
It works like all the other <a href="Customization.html#Customization_features">%feature directives</a>.
Here is a simple example showing how to add some Perl debug code to the constructor:
</p>

<div class="targetlang"><pre>
/* Let's make the constructor of the class Square more verbose */
%feature("shadow") Square(double w)
%{
  sub new {
    my $pkg = shift;
    my $self = examplec::new_Square(@_);
    print STDERR "Constructed an @{[ref($self)]}\n";
    bless $self, $pkg if defined($self);
  }
%}

class Square {
public:
  Square(double w);
  ...
};
</pre></div>

<H2><a name="Perl5_nn47"></a>33.10 Adding additional Perl code</H2>


<p>
If writing support code in C isn't enough, it is also possible to write code in
Perl.  This code gets inserted in to the <tt>.pm</tt> file created by SWIG.   One
use of Perl code might be to supply a high-level interface to certain functions.
For example:
</p>

<div class="code">
<pre>
void set_transform(Image *im, double x[4][4]);

...
/* Rewrite the high level interface to set_transform */
%perlcode %{
sub set_transform
{
  my ($im, $x) = @_;
  my $a = new_mat44();
  for (my $i = 0; $i &lt; 4, $i++)
  {
    for (my $j = 0; $j &lt; 4, $j++)
    {
      mat44_set($a, $i, $j, $x-&gt;[i][j])
      }
  }
  example.set_transform($im, $a);
  free_mat44($a);
}
%}
</pre>
</div>

<p>
In this example, <tt>set_transform()</tt> provides a high-level Perl interface built on top of
low-level helper functions.  For example, this code now seems to work:
</p>

<div class="targetlang">
<pre>
my $a =
  [[1,0,0,0],
   [0,1,0,0],
   [0,0,1,0],
   [0,0,0,1]];
set_transform($im, $a);
</pre>
</div>

<H2><a name="Perl5_directors"></a>33.11 Cross language polymorphism</H2>


<p>
Proxy classes provide a more natural, object-oriented way to access
extension classes. As described above, each proxy instance has an
associated C++ instance, and method calls to the proxy are passed to the
C++ instance transparently via C wrapper functions.
</p>

<p>
This arrangement is asymmetric in the sense that no corresponding
mechanism exists to pass method calls down the inheritance chain from
C++ to Perl. In particular, if a C++ class has been extended in Perl
(by extending the proxy class), these extensions will not be visible
from C++ code. Virtual method calls from C++ are thus not able access
the lowest implementation in the inheritance chain.
</p>

<p>
Changes have been made to SWIG to address this problem and
make the relationship between C++ classes and proxy classes more
symmetric. To achieve this goal, new classes called directors are
introduced at the bottom of the C++ inheritance chain. The job of the
directors is to route method calls correctly, either to C++
implementations higher in the inheritance chain or to Perl
implementations lower in the inheritance chain. The upshot is that C++
classes can be extended in Perl and from C++ these extensions look
exactly like native C++ classes. Neither C++ code nor Perl code needs
to know where a particular method is implemented: the combination of
proxy classes, director classes, and C wrapper functions takes care of
all the cross-language method routing transparently.
</p>

<H3><a name="Perl5_nn48"></a>33.11.1 Enabling directors</H3>


<p>
The director feature is disabled by default.  To use directors you
must make two changes to the interface file.  First, add the "directors"
option to the %module directive, like this:
</p>

<div class="code">
<pre>
%module(directors="1") modulename
</pre>
</div>

<p>
Without this option no director code will be generated.  Second, you
must use the %feature("director") directive to tell SWIG which classes 
and methods should get directors.  The %feature directive can be applied 
globally, to specific classes, and to specific methods, like this:
</p>

<div class="code">
<pre>
// generate directors for all classes that have virtual methods
%feature("director");         

// generate directors for all virtual methods in class Foo
%feature("director") Foo;      
</pre>
</div>

<p>
You can use the %feature("nodirector") directive to turn off
directors for specific classes or methods.  So for example,
</p>

<div class="code">
<pre>
%feature("director") Foo;
%feature("nodirector") Foo::bar;
</pre>
</div>

<p>
will generate directors for all virtual methods of class Foo except
bar().  
</p>

<p>
Directors can also be generated implicitly through inheritance. 
In the following, class Bar will get a director class that handles
the methods one() and two() (but not three()):
</p>

<div class="code">
<pre>
%feature("director") Foo;
class Foo {
public:
    Foo(int foo);
    virtual void one();
    virtual void two();
};

class Bar: public Foo {
public:
    virtual void three();
};
</pre>
</div>

<p>
then at the Perl side you can define
</p>

<div class="targetlang">
<pre>
use mymodule;

package MyFoo;
use base 'mymodule::Foo';

sub one {
  print "one from Perl\n";
}
</pre>
</div>


<H3><a name="Perl5_nn49"></a>33.11.2 Director classes</H3>


 


<p>
For each class that has directors enabled, SWIG generates a new class
that derives from both the class in question and a special
<tt>Swig::Director</tt> class. These new classes, referred to as director
classes, can be loosely thought of as the C++ equivalent of the Perl
proxy classes. The director classes store a pointer to their underlying
Perl object and handle various issues related to object ownership.
</p>

<p>
For simplicity let's ignore the <tt>Swig::Director</tt> class and refer to the
original C++ class as the director's base class. By default, a director
class extends all virtual methods in the inheritance chain of its base
class (see the preceding section for how to modify this behavior).
Thus all virtual method calls, whether they originate in C++ or in
Perl via proxy classes, eventually end up in at the implementation in
the director class. The job of the director methods is to route these
method calls to the appropriate place in the inheritance chain. By
"appropriate place" we mean the method that would have been called if
the C++ base class and its extensions in Perl were seamlessly
integrated. That seamless integration is exactly what the director
classes provide, transparently skipping over all the messy extension API
glue that binds the two languages together.
</p>

<p>
In reality, the "appropriate place" is one of only two possibilities:
C++ or Perl. Once this decision is made, the rest is fairly easy. If
the correct implementation is in C++, then the lowest implementation of
the method in the C++ inheritance chain is called explicitly. If the
correct implementation is in Perl, the Perl API is used to call the
method of the underlying Perl object (after which the usual virtual
method resolution in Perl automatically finds the right
implementation).
</p>

<p>
Now how does the director decide which language should handle the method call?
The basic rule is to handle the method in Perl, unless there's a good
reason not to. The reason for this is simple: Perl has the most
"extended" implementation of the method. This assertion is guaranteed,
since at a minimum the Perl proxy class implements the method. If the
method in question has been extended by a class derived from the proxy
class, that extended implementation will execute exactly as it should.
If not, the proxy class will route the method call into a C wrapper
function, expecting that the method will be resolved in C++. The wrapper
will call the virtual method of the C++ instance, and since the director
extends this the call will end up right back in the director method. Now
comes the "good reason not to" part. If the director method were to blindly
call the Perl method again, it would get stuck in an infinite loop. We avoid this
situation by adding special code to the C wrapper function that tells
the director method to not do this. The C wrapper function compares the
pointer to the Perl object that called the wrapper function to the
pointer stored by the director. If these are the same, then the C
wrapper function tells the director to resolve the method by calling up
the C++ inheritance chain, preventing an infinite loop.
</p>

<p>
One more point needs to be made about the relationship between director
classes and proxy classes. When a proxy class instance is created in
Perl, SWIG creates an instance of the original C++ class.
This is exactly what happens without directors and
is true even if directors are enabled for the particular class in
question. When a class <i>derived</i> from a proxy class is created,
however, SWIG then creates an instance of the corresponding C++ director
class. The reason for this difference is that user-defined subclasses
may override or extend methods of the original class, so the director
class is needed to route calls to these methods correctly. For
unmodified proxy classes, all methods are ultimately implemented in C++
so there is no need for the extra overhead involved with routing the
calls through Perl.
</p>

<H3><a name="Perl5_nn50"></a>33.11.3 Ownership and object destruction</H3>


<p>
Memory management issues are slightly more complicated with directors
than for proxy classes alone. Perl instances hold a pointer to the
associated C++ director object, and the director in turn holds a pointer
back to a Perl object. By default, proxy classes own their C++
director object and take care of deleting it when they are garbage
collected.
</p>

<p>
This relationship can be reversed by calling the special
<tt>DISOWN()</tt> method of the proxy class. After calling this
method the director
class increments the reference count of the Perl object. When the
director class is deleted it decrements the reference count. Assuming no
outstanding references to the Perl object remain, the Perl object
will be destroyed at the same time. This is a good thing, since
directors and proxies refer to each other and so must be created and
destroyed together. Destroying one without destroying the other will
likely cause your program to segfault.
</p>

<p>
Also note that due to the proxy implementation, the <tt>DESTROY()</tt>
method on directors can be called for several reasons, many of which
have little to do with the teardown of an object instance.  To help
disambiguate this, a second argument is added to the <tt>DESTROY()</tt>
call when a C++ director object is being released.  So, to avoid running
your clean-up code when an object is not really going away, or after it
has already been reclaimed, it is suggested that custom destructors in
Perl subclasses looks something like:
</p>

<div class="targetlang">
<pre>
sub DESTROY {
  my($self, $final) = @_;
  if($final) {
    # real teardown code
  }
  shift-&gt;SUPER::DESTROY(@_);
}
</pre>
</div>


<H3><a name="Perl5_nn51"></a>33.11.4 Exception unrolling</H3>


<p>
With directors routing method calls to Perl, and proxies routing them
to C++, the handling of exceptions is an important concern. By default, the
directors ignore exceptions that occur during method calls that are
resolved in Perl. To handle such exceptions correctly, it is necessary
to temporarily translate them into C++ exceptions. This can be done with
the %feature("director:except") directive. The following code should
suffice in most cases:
</p>

<div class="code">
<pre>
%feature("director:except") {
    if ($error != NULL) {
        throw Swig::DirectorMethodException();
    }
}
</pre>
</div>

<p>
This code will check the Perl error state after each method call from
a director into Perl, and throw a C++ exception if an error occurred.
This exception can be caught in C++ to implement an error handler.
</p>

<p>
It may be the case that a method call originates in Perl, travels up
to C++ through a proxy class, and then back into Perl via a director
method. If an exception occurs in Perl at this point, it would be nice
for that exception to find its way back to the original caller. This can
be done by combining a normal %exception directive with the
<tt>director:except</tt> handler shown above. Here is an example of a
suitable exception handler:
</p>

<div class="code">
<pre>
%exception {
    try { $action }
    catch (Swig::DirectorException &amp;e) { SWIG_fail; }
}
</pre>
</div>

<p>
The class Swig::DirectorException used in this example is actually a
base class of Swig::DirectorMethodException, so it will trap this
exception. Because the Perl error state is still set when
Swig::DirectorMethodException is thrown, Perl will register the
exception as soon as the C wrapper function returns.
</p>

<H3><a name="Perl5_nn52"></a>33.11.5 Overhead and code bloat</H3>


<p>
Enabling directors for a class will generate a new director method for
every virtual method in the class' inheritance chain. This alone can
generate a lot of code bloat for large hierarchies. Method arguments
that require complex conversions to and from target language types can
result in large director methods. For this reason it is recommended that
you selectively enable directors only for specific classes that are
likely to be extended in Perl and used in C++.
</p>

<p>
Compared to classes that do not use directors, the call routing in the
director methods does add some overhead. In particular, at least one
dynamic cast and one extra function call occurs per method call from
Perl. Relative to the speed of Perl execution this is probably
completely negligible. For worst case routing, a method call that
ultimately resolves in C++ may take one extra detour through Perl in
order to ensure that the method does not have an extended Perl
implementation. This could result in a noticeable overhead in some cases.
</p>

<p>
Although directors make it natural to mix native C++ objects with Perl
objects (as director objects) via a common base class pointer, one
should be aware of the obvious fact that method calls to Perl objects
will be much slower than calls to C++ objects. This situation can be
optimized by selectively enabling director methods (using the %feature
directive) for only those methods that are likely to be extended in
Perl.
</p>

<H3><a name="Perl5_nn53"></a>33.11.6 Typemaps</H3>


<p>
Typemaps for input and output of most of the basic types from director
classes have been written. These are roughly the reverse of the usual
input and output typemaps used by the wrapper code. The typemap
operation names are 'directorin', 'directorout', and 'directorargout'.
The director code does not currently use any of the other kinds of typemaps.
It is not clear at this point which kinds are appropriate and
need to be supported.
</p>




</body>
</html>