summaryrefslogtreecommitdiff
path: root/Doc/Manual/Library.html
blob: 02b8e53bd741b89bc748bda6d746c90624d0c45f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>SWIG Library</title>
<link rel="stylesheet" type="text/css" href="style.css">
</head>

<body bgcolor="#ffffff">
<H1><a name="Library"></a>8 SWIG library</H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#Library_nn2">The %include directive and library search path</a>
<li><a href="#Library_nn3">C Arrays and Pointers</a>
<ul>
<li><a href="#Library_nn4">cpointer.i</a>
<li><a href="#Library_carrays">carrays.i</a>
<li><a href="#Library_nn6">cmalloc.i</a>
<li><a href="#Library_nn7">cdata.i</a>
</ul>
<li><a href="#Library_nn8">C String Handling</a>
<ul>
<li><a href="#Library_nn9">Default string handling</a>
<li><a href="#Library_nn10">Passing binary data</a>
<li><a href="#Library_nn11">Using %newobject to release memory</a>
<li><a href="#Library_nn12">cstring.i</a>
</ul>
<li><a href="#Library_stl_cpp_library">STL/C++ Library</a>
<ul>
<li><a href="#Library_std_string">std::string</a>
<li><a href="#Library_std_vector">std::vector</a>
<li><a href="#Library_stl_exceptions">STL exceptions</a>
<li><a href="#Library_std_shared_ptr">shared_ptr smart pointer</a>
</ul>
<li><a href="#Library_nn16">Utility Libraries</a>
<ul>
<li><a href="#Library_nn17">exception.i</a>
</ul>
</ul>
</div>
<!-- INDEX -->



<p>
To help build extension modules, SWIG is packaged with a library of
support files that you can include in your own interfaces.  These
files often define new SWIG directives or provide utility
functions that can be used to access parts of the standard C and C++ libraries.
This chapter provides a reference to the current set of supported library files.
</p>

<p>
<b>Compatibility note:</b> Older versions of SWIG included a number of
library files for manipulating pointers, arrays, and other structures.  Most
these files are now deprecated and have been removed from the distribution.
Alternative libraries provide similar functionality.  Please read this chapter
carefully if you used the old libraries.
</p>

<H2><a name="Library_nn2"></a>8.1 The %include directive and library search path</H2>


<p>
Library files are included using the <tt>%include</tt> directive.
When searching for files, directories are searched in the following order:
</p>

<ul>
<li>The current directory
<li>Directories specified with the <tt>-I</tt> command line option
<li>.<tt>/swig_lib</tt>
<li>SWIG library install location as reported by <tt>swig -swiglib</tt>, for example <tt>/usr/local/share/swig/1.3.30</tt>
<li>On Windows, a directory <tt>Lib</tt> relative to the location of <tt>swig.exe</tt> is also searched.
</ul>

<p>
Within each directory, SWIG first looks for a subdirectory corresponding to a target language (e.g., <tt>python</tt>,
<tt>tcl</tt>, etc.).   If found, SWIG will search the language specific directory first.  This allows
for language-specific implementations of library files.
</p>

<p>
You can ignore the installed SWIG library by setting the <tt>SWIG_LIB</tt> environment variable.
Set the environment variable to hold an alternative library directory.
</p>

<p>
The directories that are searched are displayed when using <tt>-verbose</tt> commandline option.
</p>

<H2><a name="Library_nn3"></a>8.2 C Arrays and Pointers</H2>


<p>
This section describes library modules for manipulating low-level C arrays and pointers.
The primary use of these modules is in supporting C declarations that manipulate bare
pointers such as <tt>int *</tt>, <tt>double *</tt>, or <tt>void *</tt>.  The modules can be
used to allocate memory, manufacture pointers, dereference memory, and wrap
pointers as class-like objects.   Since these functions provide direct access to
memory, their use is potentially unsafe and you should exercise caution.
</p>

<H3><a name="Library_nn4"></a>8.2.1 cpointer.i</H3>


<p>
The <tt>cpointer.i</tt> module defines macros that can be used to used
to generate wrappers around simple C pointers.  The primary use of
this module is in generating pointers to primitive datatypes such as
<tt>int</tt> and <tt>double</tt>.
</p>

<p>
<b><tt>%pointer_functions(type,name)</tt></b>
</p>

<div class="indent">
<p>Generates a collection of four functions for manipulating a pointer <tt>type *</tt>:</p>

<p>
<tt>type *new_name()</tt>
</p>

<div class="indent"><p>
Creates a new object of type <tt>type</tt> and returns a pointer to it.  In C, the
object is created using <tt>calloc()</tt>. In C++, <tt>new</tt> is used.
</p></div>

<p>
<tt>type *copy_name(type value)</tt>
</p>

<div class="indent"><p>
Creates a new object of type <tt>type</tt> and returns a pointer to it.
An initial value is set by copying it from <tt>value</tt>. In C, the
object is created using <tt>calloc()</tt>. In C++, <tt>new</tt> is used.
</p></div>

<p>
<tt>type *delete_name(type *obj)</tt>
</p>

<div class="indent"><p>
Deletes an object type <tt>type</tt>.
</p></div>

<p>
<tt>void name_assign(type *obj, type value)</tt>
</p>

<div class="indent"><p>
Assigns <tt>*obj = value</tt>.
</p></div>

<p>
<tt>type name_value(type *obj)</tt>
</p>

<div class="indent"><p>
Returns the value of <tt>*obj</tt>.
</p></div>

<p>
When using this macro, <tt>type</tt> may be any type and <tt>name</tt> must be a legal identifier in the target
language.  <tt>name</tt> should not correspond to any other name used in the interface file.
</p>


<p>
Here is a simple example of using <tt>%pointer_functions()</tt>:
</p>

<div class="code">
<pre>
%module example
%include "cpointer.i"

/* Create some functions for working with "int *" */
%pointer_functions(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);
</pre>
</div>

<p>
Now, in Python:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; import example
&gt;&gt;&gt; c = example.new_intp()     # Create an "int" for storing result
&gt;&gt;&gt; example.add(3,4,c)         # Call function
&gt;&gt;&gt; example.intp_value(c)      # Dereference
7
&gt;&gt;&gt; example.delete_intp(c)     # Delete
</pre>
</div>

</div>

<p>
<b><tt>%pointer_class(type,name)</tt></b>
</p>

<div class="indent">

<p>
Wraps a pointer of <tt>type *</tt> inside a class-based interface.  This
interface is as follows:
</p>

<div class="code">
<pre>
struct name {
   name();                            // Create pointer object
  ~name();                            // Delete pointer object
   void assign(type value);           // Assign value
   type value();                      // Get value
   type *cast();                      // Cast the pointer to original type
   static name *frompointer(type *);  // Create class wrapper from existing
                                      // pointer
};
</pre>
</div>

<p>
When using this macro, <tt>type</tt> is restricted to a simple type
name like <tt>int</tt>, <tt>float</tt>, or <tt>Foo</tt>.  Pointers and
other complicated types are not allowed.  <tt>name</tt> must be a
valid identifier not already in use.  When a pointer is wrapped as a class,
the "class"  may be transparently passed to any function that expects the pointer.
</p>

<p>
If the target language does not support proxy classes, the use of this macro will produce the example
same functions as <tt>%pointer_functions()</tt> macro.
</p>


<p>
It should be noted that the class interface does introduce a new object or wrap a pointer inside a special
structure.  Instead, the raw pointer is used directly.
</p>



<p>
Here is the same example using a class instead:
</p>

<div class="code">
<pre>
%module example
%include "cpointer.i"

/* Wrap a class interface around an "int *" */
%pointer_class(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);
</pre>
</div>

<p>
Now, in Python (using proxy classes)
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; import example
&gt;&gt;&gt; c = example.intp()         # Create an "int" for storing result
&gt;&gt;&gt; example.add(3,4,c)         # Call function
&gt;&gt;&gt; c.value()                  # Dereference
7
</pre>
</div>

<p>
Of the two macros, <tt>%pointer_class</tt> is probably the most convenient when working with simple
pointers.  This is because the pointers are access like objects and they can be easily garbage collected
(destruction of the pointer object destroys the underlying object).
</p>

</div>

<p>
<b><tt>%pointer_cast(type1, type2, name)</tt></b>
</p>

<div class="indent">

<p>
Creates a casting function that converts <tt>type1</tt> to <tt>type2</tt>.  The name of the function is <tt>name</tt>.
For example:
</p>

<div class="code">
<pre>
%pointer_cast(int *, unsigned int *, int_to_uint);
</pre>
</div>

<p>
In this example,  the function <tt>int_to_uint()</tt> would be used to cast types in the target language.
</p>

</div>

<p>
<b>Note:</b> None of these macros can be used to safely work with strings (<tt>char *</tt> or <tt>char **</tt>).
</p>

<P>
<b>Note:</b> When working with simple pointers, typemaps can often be used to provide more seamless operation.
</p>

<H3><a name="Library_carrays"></a>8.2.2 carrays.i</H3>


<p>
This module defines macros that assist in wrapping ordinary C pointers as arrays.
The module does not provide any safety or an extra layer of wrapping--it merely
provides functionality for creating, destroying, and modifying the contents of
raw C array data.
</p>

<p>
<b><tt>%array_functions(type,name)</tt></b>
</p>

<div class="indent">
<p>Creates four functions.</p>

<p>
<tt>type *new_name(int nelements)</tt>
</p>

<div class="indent"><p>
Creates a new array of objects of type <tt>type</tt>.   In C, the array is allocated using
<tt>calloc()</tt>.  In C++, <tt>new []</tt> is used.
</p></div>

<p>
<tt>type *delete_name(type *ary)</tt>
</p>

<div class="indent"><p>
Deletes an array. In C, <tt>free()</tt> is used.  In C++, <tt>delete []</tt> is used.
</p></div>

<p>
<tt>type name_getitem(type *ary, int index)</tt>
</p>

<div class="indent"><p>
Returns the value <tt>ary[index]</tt>.
</p></div>

<p>
<tt>void name_setitem(type *ary, int index, type value)</tt>
</p>

<div class="indent"><p>
Assigns <tt>ary[index] = value</tt>.
</p></div>

<p>
When using this macro, <tt>type</tt> may be any type and <tt>name</tt>
must be a legal identifier in the target language.  <tt>name</tt>
should not correspond to any other name used in the interface file.
</p>

<p>
Here is an example of <tt>%array_functions()</tt>.  Suppose you had a
function like this:
</p>

<div class="code">
<pre>
void print_array(double x[10]) {
   int i;
   for (i = 0; i &lt; 10; i++) {
      printf("[%d] = %g\n", i, x[i]);
   }
}
</pre>
</div>

<p>
To wrap it, you might write this:
</p>

<div class="code">
<pre>
%module example

%include "carrays.i"
%array_functions(double, doubleArray);

void print_array(double x[10]);
</pre>
</div>

<p>
Now, in a scripting language, you might write this:
</p>

<div class="code">
<pre>
a = new_doubleArray(10)           # Create an array
for i in range(0,10):
    doubleArray_setitem(a,i,2*i)  # Set a value
print_array(a)                    # Pass to C
delete_doubleArray(a)             # Destroy array
</pre>
</div>

</div>

<p>
<b><tt>%array_class(type,name)</tt></b>
</p>
<div class="indent">

<p>
Wraps a pointer of <tt>type *</tt> inside a class-based interface.  This
interface is as follows:
</p>

<div class="code">
<pre>
struct name {
   name(int nelements);                  // Create an array
  ~name();                               // Delete array
   type getitem(int index);              // Return item
   void setitem(int index, type value);  // Set item
   type *cast();                         // Cast to original type
   static name *frompointer(type *);     // Create class wrapper from
                                         // existing pointer
};
</pre>
</div>

<p>
When using this macro, <tt>type</tt> is restricted to a simple type
name like <tt>int</tt> or <tt>float</tt>. Pointers and
other complicated types are not allowed.  <tt>name</tt> must be a
valid identifier not already in use.  When a pointer is wrapped as a class,
it can be transparently passed to any function that expects the pointer.
</p>


<p>
When combined with proxy classes, the <tt>%array_class()</tt> macro can be especially useful.
For example:
</p>

<div class="code">
<pre>
%module example
%include "carrays.i"
%array_class(double, doubleArray);

void print_array(double x[10]);
</pre>
</div>

<p>
Allows you to do this:
</p>

<div class="code">
<pre>
import example
c = example.doubleArray(10)  # Create double[10]
for i in range(0,10):
    c[i] = 2*i               # Assign values
example.print_array(c)       # Pass to C
</pre>
</div>

</div>

<p>
<b>Note:</b> These macros do not encapsulate C arrays inside a special data structure
or proxy. There is no bounds checking or safety of any kind.   If you want this,
you should consider using a special array object rather than a bare pointer.
</p>

<p>
<b>Note:</b> <tt>%array_functions()</tt> and <tt>%array_class()</tt> should not be
used with types of <tt>char</tt> or <tt>char *</tt>.
</p>

<H3><a name="Library_nn6"></a>8.2.3 cmalloc.i</H3>


<p>
This module defines macros for wrapping the low-level C memory allocation functions
<tt>malloc()</tt>, <tt>calloc()</tt>, <tt>realloc()</tt>, and <tt>free()</tt>.
</p>

<p>
<b><tt>%malloc(type [,name=type])</tt></b>
</p>

<div class="indent">

<p>
Creates a wrapper around <tt>malloc()</tt> with the following prototype:
</p>

<div class="code"><pre>
<em>type</em> *malloc_<em>name</em>(int nbytes = sizeof(<em>type</em>));
</pre>
</div>

<p>
If <tt>type</tt> is <tt>void</tt>, then the size parameter <tt>nbytes</tt> is required.
The <tt>name</tt> parameter only needs to be specified when wrapping a type that
is not a valid identifier (e.g., "<tt>int *</tt>", "<tt>double **</tt>", etc.).
</p>

</div>

<p>
<b><tt>%calloc(type [,name=type])</tt></b>
</p>

<div class="indent">

<p>
Creates a wrapper around <tt>calloc()</tt> with the following prototype:
</p>

<div class="code"><pre>
<em>type</em> *calloc_<em>name</em>(int nobj =1, int sz = sizeof(<em>type</em>));
</pre>
</div>

<p>
If <tt>type</tt> is <tt>void</tt>, then the size parameter <tt>sz</tt> is required.
</p>

</div>

<p>
<b><tt>%realloc(type [,name=type])</tt></b>
</p>

<div class="indent">

<p>
Creates a wrapper around <tt>realloc()</tt> with the following prototype:
</p>

<div class="code"><pre>
<em>type</em> *realloc_<em>name</em>(<em>type</em> *ptr, int nitems);
</pre>
</div>

<p>
Note: unlike the C <tt>realloc()</tt>, the wrapper generated by this macro implicitly includes the
size of the corresponding type.   For example, <tt>realloc_int(p, 100)</tt> reallocates <tt>p</tt> so that
it holds 100 integers.
</p>

</div>

<p>
<b><tt>%free(type [,name=type])</tt></b>
</p>

<div class="indent">

<p>
Creates a wrapper around <tt>free()</tt> with the following prototype:
</p>

<div class="code"><pre>
void free_<em>name</em>(<em>type</em> *ptr);
</pre>
</div>
</div>

<p>
<b><tt>%sizeof(type [,name=type])</tt></b>
</p>

<div class="indent">

<p>
Creates the constant:
</p>

<div class="code"><pre>
%constant int sizeof_<em>name</em> = sizeof(<em>type</em>);
</pre>
</div>
</div>

<p>
<b><tt>%allocators(type [,name=type])</tt></b>
</p>

<div class="indent"><p>
Generates wrappers for all five of the above operations.
</p></div>

<p>
Here is a simple example that illustrates the use of these macros:
</p>

<div class="code">
<pre>
// SWIG interface
%module example
%include "cmalloc.i"

%malloc(int);
%free(int);

%malloc(int *, intp);
%free(int *, intp);

%allocators(double);
</pre>
</div>

<p>
Now, in a script:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; from example import *
&gt;&gt;&gt; a = malloc_int()
&gt;&gt;&gt; a
'_000efa70_p_int'
&gt;&gt;&gt; free_int(a)
&gt;&gt;&gt; b = malloc_intp()
&gt;&gt;&gt; b
'_000efb20_p_p_int'
&gt;&gt;&gt; free_intp(b)
&gt;&gt;&gt; c = calloc_double(50)
&gt;&gt;&gt; c
'_000fab98_p_double'
&gt;&gt;&gt; c = realloc_double(100000)
&gt;&gt;&gt; free_double(c)
&gt;&gt;&gt; print sizeof_double
8
&gt;&gt;&gt;
</pre>
</div>

<H3><a name="Library_nn7"></a>8.2.4 cdata.i</H3>


<p>
The <tt>cdata.i</tt> module defines functions for converting raw C data to and from strings
in the target language.  The primary applications of this module would be packing/unpacking of
binary data structures---for instance, if you needed to extract data from a buffer.
The target language must support strings with embedded binary data
in order for this to work.
</p>

<p>
<b><tt>const char *cdata(void *ptr, size_t nbytes)</tt></b>
</p>

<div class="indent"><p>
Converts <tt>nbytes</tt> of data at <tt>ptr</tt> into a string.   <tt>ptr</tt> can be any
pointer.
</p></div>

<p>
<b><tt>void memmove(void *ptr, const char *s)</tt></b>
</p>

<div class="indent"><p>
Copies all of the string data in <tt>s</tt> into the memory pointed to by
<tt>ptr</tt>.  The string may contain embedded NULL bytes.  The length of
the string is implicitly determined in the underlying wrapper code.
</p></div>

<p>
One use of these functions is packing and unpacking data from memory.
Here is a short example:
</p>

<div class="code">
<pre>
// SWIG interface
%module example
%include "carrays.i"
%include "cdata.i"

%array_class(int, intArray);
</pre>
</div>

<p>
Python example:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; a = intArray(10)
&gt;&gt;&gt; for i in range(0,10):
...    a[i] = i
&gt;&gt;&gt; b = cdata(a,40)
&gt;&gt;&gt; b
'\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04
\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\t'
&gt;&gt;&gt; c = intArray(10)
&gt;&gt;&gt; memmove(c,b)
&gt;&gt;&gt; print c[4]
4
&gt;&gt;&gt;
</pre>
</div>

<p>
Since the size of data is not always known, the following macro is also defined:
</p>

<p>
<b><tt>%cdata(type [,name=type])</tt></b>
</p>

<div class="indent">

<p>
Generates the following function for extracting C data for a given type.
</p>

<div class="code">
<pre>
char *cdata_<em>name</em>(type* ptr, int nitems)
</pre>
</div>

<p>
<tt>nitems</tt> is the number of items of the given type to extract.
</p>

</div>

<p>
<b>Note:</b> These functions provide direct access to memory and can be used to overwrite data.
Clearly they are unsafe.
</p>

<H2><a name="Library_nn8"></a>8.3 C String Handling</H2>


<p>
A common problem when working with C programs is dealing with
functions that manipulate raw character data using <tt>char *</tt>.
In part, problems arise because there are different interpretations of
<tt>char *</tt>---it could be a NULL-terminated string or it could
point to binary data.  Moreover, functions that manipulate raw strings
may mutate data, perform implicit memory allocations, or utilize
fixed-sized buffers.
</p>

<p>
The problems (and perils) of using <tt>char *</tt> are
well-known. However, SWIG is not in the business of enforcing
morality.  The modules in this section provide basic functionality
for manipulating raw C strings.
</p>

<H3><a name="Library_nn9"></a>8.3.1 Default string handling</H3>


<p>
Suppose you have a C function with this prototype:
</p>

<div class="code">
<pre>
char *foo(char *s);
</pre>
</div>

<p>
The default wrapping behavior for this function is to set <tt>s</tt>
to a raw <tt>char *</tt> that refers to the internal string data in the
target language.  In other words, if you were using a language like Tcl,
and you wrote this,
</p>

<div class="code">
<pre>
% foo Hello
</pre>
</div>

<p>
then <tt>s</tt> would point to the representation of "Hello" inside
the Tcl interpreter.  When returning a <tt>char *</tt>, SWIG assumes
that it is a NULL-terminated string and makes a copy of it.  This
gives the target language its own copy of the result.
</p>

<p>
There are obvious problems with the default behavior.  First, since
a <tt>char *</tt> argument points to data inside the target language, it is
<b>NOT</b> safe for a function to modify this data (doing so may corrupt the
interpreter and lead to a crash).  Furthermore, the default behavior does
not work well with binary data. Instead, strings are assumed to be NULL-terminated.
</p>

<H3><a name="Library_nn10"></a>8.3.2 Passing binary data</H3>


<p>
If you have a function that expects binary data,
</p>

<div class="code">
<pre>
size_t parity(char *str, size_t len, size_t initial);
</pre>
</div>

<p>
you can wrap the parameters <tt>(char *str, size_t len)</tt> as a single
argument using a typemap.   Just do this:
</p>

<div class="code">
<pre>
%apply (char *STRING, size_t LENGTH) { (char *str, size_t len) };
...
size_t parity(char *str, size_t len, size_t initial);
</pre>
</div>

<p>
Now, in the target language, you can use binary string data like this:
</p>

<div class="code">
<pre>
&gt;&gt;&gt; s = "H\x00\x15eg\x09\x20"
&gt;&gt;&gt; parity(s,0)
</pre>
</div>

<p>
In the wrapper function, the passed string will be expanded to a pointer and length parameter.
The <tt>(char *STRING, int LENGTH)</tt> multi-argument typemap is also available in addition to <tt>(char *STRING, size_t LENGTH)</tt>.
</p>

<H3><a name="Library_nn11"></a>8.3.3 Using %newobject to release memory</H3>


<p>
If you have a function that allocates memory like this,
</p>

<div class="code">
<pre>
char *foo() {
   char *result = (char *) malloc(...);
   ...
   return result;
}
</pre>
</div>

<p>
then the SWIG generated wrappers will have a memory leak--the returned data will be copied
into a string object and the old contents ignored.
</p>

<p>
To fix the memory leak, use the <tt>%newobject</tt> directive.
</p>

<div class="code">
<pre>
%newobject foo;
...
char *foo();
</pre>
</div>

<p>
This will release the result if the appropriate target language support is available.
SWIG provides the appropriate "newfree" typemap for <tt>char *</tt> so that the memory is released,
however, you may need to provide your own "newfree" typemap for other types.
See <a href="Customization.html#Customization_ownership">Object ownership and %newobject</a> for more details.
</p>

<H3><a name="Library_nn12"></a>8.3.4 cstring.i</H3>


<p>
The <tt>cstring.i</tt> library file provides a collection of macros
for dealing with functions that either mutate string arguments or
which try to output string data through their arguments.  An
example of such a function might be this rather questionable
implementation:
</p>

<div class="code">
<pre>
void get_path(char *s) {
    // Potential buffer overflow---uh, oh.
    sprintf(s,"%s/%s", base_directory, sub_directory);
}
...
// Somewhere else in the C program
{
    char path[1024];
    ...
    get_path(path);
    ...
}
</pre>
</div>

<p>
(Off topic rant: If your program really has functions like this, you
would be well-advised to replace them with safer alternatives
involving bounds checking).
</p>

<p>
The macros defined in this module all expand to various combinations of
typemaps.  Therefore, the same pattern matching rules and ideas apply.
</p>

<p>
<b>%cstring_bounded_output(parm, maxsize)</b>
</p>

<div class="indent">

<p>
Turns parameter <tt><em>parm</em></tt> into an output value.  The
output string is assumed to be NULL-terminated and smaller than
<tt><em>maxsize</em></tt> characters.  Here is an example:
</p>

<div class="code">
<pre>
%cstring_bounded_output(char *path, 1024);
...
void get_path(char *path);
</pre>
</div>

<p>
In the target language:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; get_path()
/home/beazley/packages/Foo/Bar
&gt;&gt;&gt;
</pre>
</div>

<p>
Internally, the wrapper function allocates a small buffer (on the stack) of the
requested size and passes it as the pointer value.  Data stored in the buffer is then
returned as a function return value.
If the function already returns a value, then the return value and the output string
are returned together (multiple return values).  <b>If more than <tt><em>maxsize</em></tt>
bytes are written, your program will crash with a buffer overflow!</b>
</p>

</div>

<p>
<b>%cstring_chunk_output(parm, chunksize)</b>
</p>

<div class="indent">

<p>
Turns parameter <tt><em>parm</em></tt> into an output value.  The
output string is always <tt><em>chunksize</em></tt> and may contain
binary data.  Here is an example:
</p>

<div class="code">
<pre>
%cstring_chunk_output(char *packet, PACKETSIZE);
...
void get_packet(char *packet);
</pre>
</div>

<p>
In the target language:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; get_packet()
'\xa9Y:\xf6\xd7\xe1\x87\xdbH;y\x97\x7f\xd3\x99\x14V\xec\x06\xea\xa2\x88'
&gt;&gt;&gt;
</pre>
</div>

<p>
This macro is essentially identical to <tt>%cstring_bounded_output</tt>.  The
only difference is that the result is always <tt><em>chunksize</em></tt> characters.
Furthermore, the result can contain binary data.
<b>If more than <tt><em>maxsize</em></tt>
bytes are written, your program will crash with a buffer overflow!</b>
</p>

</div>

<p>
<b>%cstring_bounded_mutable(parm, maxsize)</b>
</p>

<div class="indent">

<p>
Turns parameter <tt><em>parm</em></tt> into a mutable string argument.
The input string is assumed to be NULL-terminated and smaller than
<tt><em>maxsize</em></tt> characters. The output string is also assumed
to be NULL-terminated and less than <tt><em>maxsize</em></tt> characters.
</p>

<div class="code">
<pre>
%cstring_bounded_mutable(char *ustr, 1024);
...
void make_upper(char *ustr);
</pre>
</div>

<p>
In the target language:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; make_upper("hello world")
'HELLO WORLD'
&gt;&gt;&gt;
</pre>
</div>

<p>
Internally, this macro is almost exactly the same as
<tt>%cstring_bounded_output</tt>.  The only difference is that the
parameter accepts an input value that is used to initialize the
internal buffer. It is important to emphasize that this function
does not mutate the string value passed---instead it makes a copy of the
input value, mutates it, and returns it as a result.
<b>If more than <tt><em>maxsize</em></tt> bytes are
written, your program will crash with a buffer overflow!</b>
</p>

</div>

<p>
<b>%cstring_mutable(parm [, expansion])</b>
</p>

<div class="indent">

<p>
Turns parameter <tt><em>parm</em></tt> into a mutable string argument.
The input string is assumed to be NULL-terminated.  An optional
parameter <tt><em>expansion</em></tt> specifies the number of
extra characters by which the string might grow when it is modified.
The output string is assumed to be NULL-terminated and less than
the size of the input string plus any expansion characters.
</p>

<div class="code">
<pre>
%cstring_mutable(char *ustr);
...
void make_upper(char *ustr);

%cstring_mutable(char *hstr, HEADER_SIZE);
...
void attach_header(char *hstr);
</pre>
</div>

<p>
In the target language:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; make_upper("hello world")
'HELLO WORLD'
&gt;&gt;&gt; attach_header("Hello world")
'header: Hello world'
&gt;&gt;&gt;
</pre>
</div>

<p>
This macro differs from <tt>%cstring_bounded_mutable()</tt> in that a
buffer is dynamically allocated (on the heap using
<tt>malloc/new</tt>).  This buffer is always large enough to store a
copy of the input value plus any expansion bytes that might have been
requested.
It is important to emphasize that this function
does not directly mutate the string value passed---instead it makes a copy of the
input value, mutates it, and returns it as a result.
<b>If the function expands the result by more than <tt><em>expansion</em></tt> extra
bytes, then the program will crash with a buffer overflow!</b>
</p>

</div>


<p>
<b>%cstring_output_maxsize(parm, maxparm)</b>
</p>

<div class="indent">

<p>
This macro is used to handle bounded character output functions where
both a <tt>char *</tt> and a maximum length parameter are provided.
As input, a user simply supplies the maximum length.
The return value is assumed to be a NULL-terminated string.
</p>

<div class="code">
<pre>
%cstring_output_maxsize(char *path, int maxpath);
...
void get_path(char *path, int maxpath);
</pre>
</div>

<p>
In the target language:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; get_path(1024)
'/home/beazley/Packages/Foo/Bar'
&gt;&gt;&gt;
</pre>
</div>

<p>
This macro provides a safer alternative for functions that need to
write string data into a buffer.  User supplied buffer size is
used to dynamically allocate memory on heap.  Results are placed
into that buffer and returned as a string object.
</p>

</div>



<p>
<b>%cstring_output_withsize(parm, maxparm)</b>
</p>

<div class="indent">

<p>
This macro is used to handle bounded character output functions where
both a <tt>char *</tt> and a pointer <tt>int *</tt> are passed.  Initially,
the <tt>int *</tt> parameter points to a value containing the maximum size.
On return, this value is assumed to contain the actual number of bytes.
As input, a user simply supplies the maximum length.  The output value is a
string that may contain binary data.
</p>

<div class="code">
<pre>
%cstring_output_withsize(char *data, int *maxdata);
...
void get_data(char *data, int *maxdata);
</pre>
</div>

<p>
In the target language:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; get_data(1024)
'x627388912'
&gt;&gt;&gt; get_data(1024)
'xyzzy'
&gt;&gt;&gt;
</pre>
</div>

<p>
This macro is a somewhat more powerful version of <tt>%cstring_output_chunk()</tt>.  Memory
is dynamically allocated and can be arbitrary large.  Furthermore, a function can control
how much data is actually returned by changing the value of the <tt>maxparm</tt> argument.
</p>

</div>


<p>
<b>%cstring_output_allocate(parm, release)</b>
</p>

<div class="indent">

<p>
This macro is used to return strings that are allocated within the program and
returned in a parameter of type <tt>char **</tt>.  For example:
</p>

<div class="code">
<pre>
void foo(char **s) {
    *s = (char *) malloc(64);
    sprintf(*s, "Hello world\n");
}
</pre>
</div>

<p>
The returned string is assumed to be NULL-terminated.  <tt><em>release</em></tt>
specifies how the allocated memory is to be released (if applicable).  Here is an
example:
</p>

<div class="code">
<pre>
%cstring_output_allocate(char **s, free(*$1));
...
void foo(char **s);
</pre>
</div>

<p>
In the target language:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; foo()
'Hello world\n'
&gt;&gt;&gt;
</pre>
</div>
</div>


<p>
<b>%cstring_output_allocate_size(parm, szparm, release)</b>
</p>

<div class="indent">

<p>
This macro is used to return strings that are allocated within the program and
returned in two parameters of type <tt>char **</tt> and <tt>int *</tt>.  For example:
</p>

<div class="code">
<pre>
void foo(char **s, int *sz) {
    *s = (char *) malloc(64);
    *sz = 64;
    // Write some binary data
    ...
}
</pre>
</div>

<p>
The returned string may contain binary data. <tt><em>release</em></tt>
specifies how the allocated memory is to be released (if applicable).  Here is an
example:
</p>

<div class="code">
<pre>
%cstring_output_allocate_size(char **s, int *slen, free(*$1));
...
void foo(char **s, int *slen);
</pre>
</div>

<p>
In the target language:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; foo()
'\xa9Y:\xf6\xd7\xe1\x87\xdbH;y\x97\x7f\xd3\x99\x14V\xec\x06\xea\xa2\x88'
&gt;&gt;&gt;
</pre>
</div>

<p>
This is the safest and most reliable way to return binary string data in
SWIG.  If you have functions that conform to another prototype, you might
consider wrapping them with a helper function.   For example, if you had this:
</p>

<div class="code">
<pre>
char  *get_data(int *len);
</pre>
</div>

<p>
You could wrap it with a function like this:
</p>

<div class="code">
<pre>
void my_get_data(char **result, int *len) {
   *result = get_data(len);
}
</pre>
</div>
</div>

<p>
<b>Comments:</b>
</p>

<ul>
<li>Support for the <tt>cstring.i</tt> module depends on the target language. Not all
SWIG modules currently support this library.
</li>

<li>Reliable handling of raw C strings is a delicate topic.  There are many ways
to accomplish this in SWIG.  This library provides support for a few common techniques.
</li>

<li>If used in C++, this library uses <tt>new</tt> and <tt>delete []</tt> for memory
allocation.  If using ANSI C, the library uses <tt>malloc()</tt> and <tt>free()</tt>.
</li>

<li>Rather than manipulating <tt>char *</tt> directly, you might consider using a special string
structure or class instead.
</li>
</ul>

<H2><a name="Library_stl_cpp_library"></a>8.4 STL/C++ Library</H2>


<p>
The library modules in this section provide access to parts of the standard C++ library including the STL.
SWIG support for the STL is an ongoing effort. Support is quite comprehensive for some language modules
but some of the lesser used modules do not have quite as much library code written.
</p>

<p>
The following table shows which C++ classes are supported and the equivalent SWIG interface library file for the C++ library.
</p>

<table BORDER summary="SWIG C++ library files">
<tr VALIGN=TOP>
<td><b>C++ class</b></td>
<td><b>C++ Library file</b></td>
<td><b>SWIG Interface library file</b></td>
</tr>

<tr> <td>std::deque</td>           <td>deque</td>             <td>std_deque.i</td> </tr>
<tr> <td>std::list</td>           <td>list</td>             <td>std_list.i</td> </tr>
<tr> <td>std::map</td>           <td>map</td>             <td>std_map.i</td> </tr>
<tr> <td>std::pair</td>           <td>utility</td>             <td>std_pair.i</td> </tr>
<tr> <td>std::set</td>           <td>set</td>             <td>std_set.i</td> </tr>
<tr> <td>std::string</td>           <td>string</td>             <td>std_string.i</td> </tr>
<tr> <td>std::vector</td>           <td>vector</td>             <td>std_vector.i</td> </tr>
<tr> <td>std::shared_ptr</td>           <td>shared_ptr</td>             <td>std_shared_ptr.i</td> </tr>

</table>

<p>
The list is by no means complete; some language modules support a subset of the above and some support additional STL classes.
Please look for the library files in the appropriate language library directory.
</p>


<H3><a name="Library_std_string"></a>8.4.1 std::string</H3>


<p>
The <tt>std_string.i</tt> library provides typemaps for converting C++ <tt>std::string</tt>
objects to and from strings in the target scripting language.  For example:
</p>

<div class="code">
<pre>
%module example
%include "std_string.i"

std::string foo();
void        bar(const std::string &amp;x);
</pre>
</div>

<p>
In the target language:
</p>

<div class="targetlang">
<pre>
x = foo();                # Returns a string object
bar("Hello World");       # Pass string as std::string
</pre>
</div>

<p>
A common problem that people encounter is that of classes/structures
containing a <tt>std::string</tt>. This can be overcome by defining a typemap.
For example:
</p>

<div class="code">
<pre>
%module example
%include "std_string.i"

%apply const std::string&amp; {std::string* foo};

struct my_struct
{
  std::string foo;
};
</pre>
</div>

<p>
In the target language:
</p>

<div class="targetlang">
<pre>
x = my_struct();
x.foo="Hello World";      # assign with string
print x.foo;              # print as string
</pre>
</div>

<p>
This module only supports types <tt>std::string</tt> and
<tt>const std::string &amp;</tt>.    Pointers and non-const references
are left unmodified and returned as SWIG pointers.
</p>

<p>
This library file is fully aware of C++ namespaces.  If you export <tt>std::string</tt> or rename
it with a typedef, make sure you include those declarations in your interface.  For example:
</p>

<div class="code">
<pre>
%module example
%include "std_string.i"

using namespace std;
typedef std::string String;
...
void foo(string s, const String &amp;t);     // std_string typemaps still applied
</pre>
</div>

<H3><a name="Library_std_vector"></a>8.4.2 std::vector</H3>


<p>
The <tt>std_vector.i</tt> library provides support for the C++ <tt>std::vector</tt> class in the STL.
Using this library involves the use of the <tt>%template</tt> directive.  All you need to do is to
instantiate different versions of <tt>vector</tt> for the types that you want to use.  For example:
</p>

<div class="code">
<pre>
%module example
%include "std_vector.i"

namespace std {
   %template(vectori) vector&lt;int&gt;;
   %template(vectord) vector&lt;double&gt;;
};
</pre>
</div>

<p>
When a template <tt>vector&lt;X&gt;</tt> is instantiated a number of things happen:
</p>

<ul>
<li>A class that exposes the C++ API is created in the target language .
This can be used to create objects, invoke methods, etc.  This class is
currently a subset of the real STL vector class.
</li>

<li>Input typemaps are defined for <tt>vector&lt;X&gt;</tt>, <tt>const vector&lt;X&gt; &amp;</tt>, and
<tt>const vector&lt;X&gt; *</tt>.  For each of these, a pointer <tt>vector&lt;X&gt; *</tt> may be passed or
a native list object in the target language.
</li>

<li>An output typemap is defined for <tt>vector&lt;X&gt;</tt>.  In this case, the values in the
vector are expanded into a list object in the target language.
</li>

<li>For all other variations of the type, the wrappers expect to receive a <tt>vector&lt;X&gt; *</tt>
object in the usual manner.
</li>

<li>An exception handler for <tt>std::out_of_range</tt> is defined.
</li>

<li>Optionally, special methods for indexing, item retrieval, slicing, and element assignment
may be defined.  This depends on the target language.
</li>
</ul>

<p>
To illustrate the use of this library, consider the following functions:
</p>

<div class="code">
<pre>
/* File : example.h */

#include &lt;vector&gt;
#include &lt;algorithm&gt;
#include &lt;functional&gt;
#include &lt;numeric&gt;

double average(std::vector&lt;int&gt; v) {
    return std::accumulate(v.begin(),v.end(),0.0)/v.size();
}

std::vector&lt;double&gt; half(const std::vector&lt;double&gt;&amp; v) {
    std::vector&lt;double&gt; w(v);
    for (unsigned int i=0; i&lt;w.size(); i++)
        w[i] /= 2.0;
    return w;
}

void halve_in_place(std::vector&lt;double&gt;&amp; v) {
    std::transform(v.begin(),v.end(),v.begin(),
                   std::bind2nd(std::divides&lt;double&gt;(),2.0));
}
</pre>
</div>

<p>
To wrap with SWIG, you might write the following:
</p>

<div class="code">
<pre>
%module example
%{
#include "example.h"
%}

%include "std_vector.i"
// Instantiate templates used by example
namespace std {
   %template(IntVector) vector&lt;int&gt;;
   %template(DoubleVector) vector&lt;double&gt;;
}

// Include the header file with above prototypes
%include "example.h"
</pre>
</div>

<p>
Now, to illustrate the behavior in the scripting interpreter, consider this Python example:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; from example import *
&gt;&gt;&gt; iv = IntVector(4)         # Create an vector&lt;int&gt;
&gt;&gt;&gt; for i in range(0,4):
...      iv[i] = i
&gt;&gt;&gt; average(iv)               # Call method
1.5
&gt;&gt;&gt; average([0,1,2,3])        # Call with list
1.5
&gt;&gt;&gt; half([1,2,3])             # Half a list
(0.5,1.0,1.5)
&gt;&gt;&gt; halve_in_place([1,2,3])   # Oops
Traceback (most recent call last):
  File "&lt;stdin&gt;", line 1, in ?
TypeError: Type error. Expected _p_std__vectorTdouble_t
&gt;&gt;&gt; dv = DoubleVector(4)
&gt;&gt;&gt; for i in range(0,4):
...       dv[i] = i
&gt;&gt;&gt; halve_in_place(dv)       # Ok
&gt;&gt;&gt; for i in dv:
...       print i
...
0.0
0.5
1.0
1.5
&gt;&gt;&gt; dv[20] = 4.5
Traceback (most recent call last):
  File "&lt;stdin&gt;", line 1, in ?
  File "example.py", line 81, in __setitem__
    def __setitem__(*args): return apply(examplec.DoubleVector___setitem__,args)
IndexError: vector index out of range
&gt;&gt;&gt;
</pre>
</div>

<p>
This library module is fully aware of C++ namespaces.  If you use vectors with other names,
make sure you include the appropriate <tt>using</tt> or typedef directives.  For example:
</p>

<div class="code">
<pre>
%include "std_vector.i"

namespace std {
    %template(IntVector) vector&lt;int&gt;;
}

using namespace std;
typedef std::vector Vector;

void foo(vector&lt;int&gt; *x, const Vector &amp;x);
</pre>
</div>

<p>
<b>Note:</b> This module makes use of several advanced SWIG features including templatized typemaps
and template partial specialization.  If you are trying to wrap other C++ code with templates, you
might look at the code contained in <tt>std_vector.i</tt>.  Alternatively, you can show them the code
if you want to make their head explode.
</p>

<p>
<b>Note:</b> This module is defined for all SWIG target languages.  However argument conversion
details and the public API exposed to the interpreter vary.
</p>

<H3><a name="Library_stl_exceptions"></a>8.4.3 STL exceptions</H3>


<p>
Many of the STL wrapper functions add parameter checking and will throw a language dependent error/exception
should the values not be valid. The classic example is array bounds checking.
The library wrappers are written to throw a C++ exception in the case of error.
The C++ exception in turn gets converted into an appropriate error/exception for the target language.
By and large this handling should not need customising, however, customisation can easily be achieved by supplying appropriate "throws" typemaps.
For example:
</p>

<div class="code">
<pre>
%module example
%include "std_vector.i"
%typemap(throws) std::out_of_range {
  // custom exception handler
}
%template(VectInt) std::vector&lt;int&gt;;
</pre>
</div>

<p>
The custom exception handler might, for example, log the exception then convert it into a specific error/exception for the target language.
</p>

<p>
When using the STL it is advisable to add in an exception handler to catch all STL exceptions.
The <tt>%exception</tt> directive can be used by placing the following code before any other methods or libraries to be wrapped:
</p>

<div class="code">
<pre>
%include "exception.i"

%exception {
  try {
    $action
  } catch (const std::exception&amp; e) {
    SWIG_exception(SWIG_RuntimeError, e.what());
  }
}
</pre>
</div>

<p>
Any thrown STL exceptions will then be gracefully handled instead of causing a crash.
</p>

<H3><a name="Library_std_shared_ptr"></a>8.4.4 shared_ptr smart pointer</H3>


<p>
Some target languages have support for handling the widely used <tt>boost::shared_ptr</tt> smart pointer.
This smart pointer is also available as <tt>std::tr1::shared_ptr</tt> before it becomes fully standardized as <tt>std::shared_ptr</tt>. 
The <tt>boost_shared_ptr.i</tt> library provides support for <tt>boost::shared_ptr</tt> and <tt>std_shared_ptr.i</tt> provides support for <tt>std::shared_ptr</tt>, but if the following macro is defined as shown, it can be used for <tt>std::tr1::shared_ptr</tt>:
</p>

<div class="code">
<pre>
#define SWIG_SHARED_PTR_SUBNAMESPACE tr1
%include &lt;std_shared_ptr.i&gt;
</pre>
</div>

<p>
You can only use one of these variants of shared_ptr in your interface file at a time.
and all three variants must be used in conjunction with the <tt>%shared_ptr(T)</tt> macro,
where <tt>T</tt> is the underlying pointer type equating to usage <tt>shared_ptr&lt;T&gt;</tt>.
The type <tt>T</tt> must be non-primitive.
A simple example demonstrates usage:
</p>

<div class="code">
<pre>
%module example
%include &lt;boost_shared_ptr.i&gt;
%shared_ptr(IntValue)

%inline %{
#include &lt;boost/shared_ptr.hpp&gt;

struct IntValue {
  int value;
  IntValue(int v) : value(v) {}
};

static int extractValue(const IntValue &amp;t) {
  return t.value;
}

static int extractValueSmart(boost::shared_ptr&lt;IntValue&gt; t) {
  return t-&gt;value;
}
%}
</pre>
</div>

<p>
Note that the <tt>%shared_ptr(IntValue)</tt> declaration occurs after the inclusion of the <tt>boost_shared_ptr.i</tt>
library which provides the macro and, very importantly, before any usage or declaration of the type, <tt>IntValue</tt>.
The <tt>%shared_ptr</tt> macro provides, a few things for handling this smart pointer, but mostly a number of
typemaps. These typemaps override the default typemaps so that the underlying proxy class is stored and passed around
as a pointer to a <tt>shared_ptr</tt> instead of a plain pointer to the underlying type.
This approach means that any instantiation of the type can be passed to methods taking the type by value, reference, pointer
or as a smart pointer.
The interested reader might want to look at the generated code, however, usage is simple and no different
handling is required from the target language.
For example, a simple use case of the above code from Java would be:
</p>

<div class="targetlang">
<pre>
IntValue iv = new IntValue(1234);
int val1 = example.extractValue(iv);
int val2 = example.extractValueSmart(iv);
System.out.println(val1 + " " + val2);
</pre>
</div>

<p>
This shared_ptr library works quite differently to SWIG's normal, but somewhat limited, 
<a href="SWIGPlus.html#SWIGPlus_smart_pointers">smart pointer handling</a>.
The shared_ptr library does not generate extra wrappers, just for smart pointer handling, in addition to the proxy class.
The normal proxy class including inheritance relationships is generated as usual.
The only real change introduced by the <tt>%shared_ptr</tt> macro is that the proxy class stores a pointer to the shared_ptr instance instead of a raw pointer to the instance.
A proxy class derived from a base which is being wrapped with shared_ptr can and <b>must</b> be wrapped as a shared_ptr too.
In other words all classes in an inheritance hierarchy must all be used with the <tt>%shared_ptr</tt> macro.
For example the following code can be used with the base class shown earlier:
</p>

<div class="code">
<pre>
%shared_ptr(DerivedIntValue)
%inline %{
struct DerivedIntValue : IntValue {
  DerivedIntValue(int value) : IntValue(value) {}
  ...
};
%}
</pre>
</div>

<p>
A shared_ptr of the derived class can now be passed to a method where the base is expected in the target language, just as it can in C++:
</p>

<div class="targetlang">
<pre>
DerivedIntValue div = new DerivedIntValue(5678);
int val3 = example.extractValue(div);
int val4 = example.extractValueSmart(div);
</pre>
</div>

<p>
If the <tt>%shared_ptr</tt> macro is omitted for any class in the inheritance hierarchy, SWIG will warn about this and the generated code may or may not result in a C++ compilation error.
For example, the following input: 
</p>

<div class="code">
<pre>
%include "boost_shared_ptr.i"
%shared_ptr(Parent);

%inline %{
  #include &lt;boost/shared_ptr.hpp&gt;
  struct GrandParent {
    virtual ~GrandParent() {}
  };

  struct Parent : GrandParent {
    virtual ~Parent() {}
  };

  struct Child : Parent {
    virtual ~Child() {}
  };
%}
</pre>
</div>

<p>
warns about the missing smart pointer information:
</p>

<div class="shell">
<pre>
example.i:12: Warning 520: Base class 'GrandParent' of 'Parent' is not similarly marked as a smart pointer.
example.i:16: Warning 520: Derived class 'Child' of 'Parent' is not similarly marked as a smart pointer.
</pre>
</div>

<p>
Adding the missing <tt>%shared_ptr</tt> macros will fix this:
</p>

<div class="code">
<pre>
%include "boost_shared_ptr.i"
%shared_ptr(GrandParent);
%shared_ptr(Parent);
%shared_ptr(Child);

... as before ...
</pre>
</div>

<H2><a name="Library_nn16"></a>8.5 Utility Libraries</H2>


<H3><a name="Library_nn17"></a>8.5.1 exception.i</H3>


<p>
The <tt>exception.i</tt> library provides a language-independent function for raising a run-time
exception in the target language. This library is largely used by the SWIG library writers.
If possible, use the error handling scheme available to your target language as there is greater
flexibility in what errors/exceptions can be thrown.
</p>

<p>
<b><tt>SWIG_exception(int code, const char *message)</tt></b>
</p>

<div class="indent">

<p>
Raises an exception in the target language.  <tt>code</tt> is one of the following symbolic
constants:
</p>

<div class="code">
<pre>
SWIG_MemoryError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError
</pre>
</div>

<p>
<tt>message</tt> is a string indicating more information about the problem.
</p>

</div>

<p>
The primary use of this module is in writing language-independent exception handlers.
For example:
</p>

<div class="code">
<pre>
%include "exception.i"
%exception std::vector::getitem {
    try {
        $action
    } catch (std::out_of_range&amp; e) {
        SWIG_exception(SWIG_IndexError,const_cast&lt;char*&gt;(e.what()));
    }
}
</pre>
</div>


</body>
</html>