summaryrefslogtreecommitdiff
path: root/Doc/Manual/C.html
blob: c381cb3e1886b6a9ac6db5dd7f382b0fde7482de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>SWIG and C as the target language</title>
<link rel="stylesheet" type="text/css" href="style.css">
</head>
<body bgcolor="#FFFFFF">
<H1><a name="C"></a>36 SWIG and C as the target language</H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#C_overview">Overview</a>
<li><a href="#C_preliminaries">Preliminaries</a>
<ul>
<li><a href="#C_running_swig">Running SWIG</a>
<li><a href="#C_commandline">Command line options</a>
<li><a href="#C_dynamic">Compiling dynamic module</a>
<li><a href="#C_using_module">Using generated module</a>
</ul>
<li><a href="#C_basic_c_wrapping">Basic C wrapping</a>
<ul>
<li><a href="#C_functions">Functions</a>
<li><a href="#C_variables">Variables</a>
</ul>
<li><a href="#C_basic_cpp_wrapping">Basic C++ wrapping</a>
<ul>
<li><a href="#C_classes">Classes</a>
</ul>
<li><a href="#C_exceptions">Exception handling</a>
</ul>
</div>
<!-- INDEX -->



<p>
This chapter describes SWIG's support for creating ANSI C wrappers. This module has a special purpose and thus is different from most other modules.
</p>

<p>
<b>NOTE:</b> this module is still under development.
</p>


<H2><a name="C_overview"></a>36.1 Overview</H2>


<p>
SWIG is normally used to provide access to C or C++ libraries from target languages such as scripting languages or languages running on a virtual machine. 
SWIG performs analysis of the input C/C++ library header files from which it generates further code. For most target languages this code consists of two layers; namely an intermediary C code layer and a set of language specific proxy classes and functions on top of the C code layer. 
We could also think of C as just another target language supported by SWIG.
The aim then is to generate a pure ANSI C interface to the input C or C++ library and hence the C target language module.
</p>

<p>
With wrapper interfaces generated by SWIG, it is easy to use the functionality of C++ libraries inside application code written in C. This module may also be useful to generate custom APIs for a library, to suit particular needs, e.g. to supply function calls with error checking or to implement a "design by contract".
</p>

<p>
Flattening C++ language constructs into a set of C-style functions obviously comes with many limitations and inconveniences. All data and functions become global. Manipulating objects requires explicit calls to special functions. We are losing the high level abstraction and have to work around it.
</p>

<H3>Known C++ Shortcomings in Generated C API:</H3>
<ul>
    <li>Namespaced global functions are not namespaced</li>
    <li>Enums with a context like class or namespace are broken</li>
    <li>Global variables are not supported</li>
    <li>Qualifiers are stripped</li>
</ul>
<H2><a name="C_preliminaries"></a>36.2 Preliminaries</H2>


<H3><a name="C_running_swig"></a>36.2.1 Running SWIG</H3>


<p>
Consider the following simple example. Suppose we have an interface file like:
</p>

<div class="code">
<pre>
/* File: example.i */
%module test
%{
#include "stuff.h"
%}
int fact(int n);
</pre>
</div>

<p>
To build a C module (C as the target language), run SWIG using the <tt>-c</tt> option :</p>

<div class="shell"><pre>
$ swig -c example.i
</pre></div>

<p>
The above assumes C as the input language. If the input language is C++ add the <tt>-c++</tt> option:
</p>

<div class="shell"><pre>
$ swig -c++ -c example.i
</pre></div>

<p>
Note that <tt>-c</tt> is the option specifying the <b>target</b> language and <tt>-c++</tt> controls what the <b>input</b> language is.
<p>

<p>
This will generate an <tt>example_wrap.c</tt> file or, in the latter case, <tt>example_wrap.cxx</tt> file, along with <tt>example_proxy.h</tt> and <tt>example_proxy.c</tt> files. The name of the file is derived from the name of the input file. To change this, you can use the <tt>-o</tt> option common to all language modules. 
</p>

<p>
The <tt>wrap</tt> file contains the wrapper functions, which perform the main functionality of SWIG: it translates the input arguments from C to C++, makes calls to the original functions and marshalls C++ output back to C data. The <tt>proxy</tt> header file contains the interface we can use in C application code. The additional <tt>.c</tt> file contains calls to the wrapper functions, allowing us to preserve names of the original functions.
</p>

<H3><a name="C_commandline"></a>36.2.2 Command line options</H3>


<p>
The following table list the additional commandline options available for the C module. They can also be seen by using: 
</p>

<div class="shell"><pre>
$ swig -c -help
</pre></div>

<table summary="C specific options">
<tr>
<th>C specific options</th>
</tr>

<tr>
<td>-noproxy</td>
<td>do not generate proxy files (i.e. <i>filename</i><tt>_proxy.h</tt> and <i>filename</i><tt>_proxy.c</tt>)</td>
</tr>

<tr>
<td>-noexcept</td>
<td>generate wrappers with no support of exception handling; see <a href="#C_exceptions">Exceptions</a> chapter for more details </td>
</tr>

</table>

<H3><a name="C_dynamic"></a>36.2.3 Compiling a dynamic module</H3>


<p>
The next step is to build a dynamically loadable module, which we can link to our application. This can be done easily, for example using the <tt>gcc</tt> compiler (Linux, MinGW, etc.):
</p>

<div class="shell"><pre>
$ swig -c example.i
$ gcc -c example_wrap.c
$ gcc -c example_proxy.c
$ gcc -shared example_wrap.o example_proxy.o -o libexample.so
</pre></div>

<p>
Or, for C++ input:
</p>

<div class="shell"><pre>
$ swig -c++ -c example.i
$ g++ -c example_wrap.cxx
$ gcc -c example_proxy.c
$ g++ -shared example_proxy.o example_wrap.o -o libexample.so
</pre></div>

<p>
Now the shared library module is ready to use. Note that the name of the generated module is important: is should be prefixed with <tt>lib</tt> on Unix, and have the specific extension, like <tt>.dll</tt> for Windows or <tt>.so</tt> for Unix systems.
</p>

<H3><a name="C_using_module"></a>36.2.4 Using the generated module</H3>


<p>
The simplest way to use the generated shared module is to link it to the application code during the compilation stage. We have to compile the proxy file as well. The process is usually similar to this:
</p>

<div class="shell"><pre>
$ gcc runme.c -L. -lexample -o runme
</pre></div>

<p>
This will compile the application code (<tt>runme.c</tt>), along with the proxy code and link it against the generated shared module. Following the <tt>-L</tt> option is the path to the directory containing the shared module. The output executable is ready to use. The last thing to do is to supply to the operating system the information of location of our module. This is system dependant, for instance Unix systems look for shared modules in certain directories, like <tt>/usr/lib</tt>, and additionally we can set the environment variable <tt>LD_LIBRARY_PATH</tt> (Unix) or <tt>PATH</tt> (Windows) for other directories.
</p>

<H2><a name="C_basic_c_wrapping"></a>36.3 Basic C wrapping</H2>


<p>
Wrapping C functions and variables is obviously performed in a straightforward way. There is no need to perform type conversions, and all language constructs can be preserved in their original form. However, SWIG allows you to enchance the code with some additional elements, for instance using <tt>check</tt> typemap or <tt>%extend</tt> directive.
</p>

<H3><a name="C_functions"></a>36.3.1 Functions</H3>


<p>
For each C function declared in the interface file a wrapper function is created. Basically, the wrapper function performs a call to the original function, and returns its result.
</p>

<p>
For example, for function declaration:
</p>

<div class="targetlang"><pre>
int gcd(int x, int y);
</pre></div>

<p>
The output is simply:
</p>

<div class="targetlang"><pre>
int _wrap_gcd(int arg1, int arg2) {
  int result;
  result = gcd(arg1,arg2);
  return result;
}
</pre></div>

<p>
Then again, this wrapper function is usually called from C using helper function declared in proxy file, preserving the original name:
</p>

<div class="targetlang"><pre>
int gcd(int arg1, int arg2) {
  return _wrap_gcd(arg1,arg2);
}
</pre></div>

<p>
Now one might think, what's the use of creating such functions in C? The answer is, you can apply special rules to the generated code. Take for example constraint checking. You can write a "check" typemap in your interface file:
</p>

<div class="code"><pre>
%typemap(check) int POSITIVE {
  if ($1 <= 0)
    fprintf(stderr, "Expected positive value in $name.\n");
}

int gcd(int POSITIVE, int POSITIVE);
</pre></div>

<p>
And now the generated result looks like:
</p>

<div class="targetlang"><pre>
int _wrap_gcd(int arg1, int arg2) {
  {
    if (arg1 <= 0)
      fprintf(stderr, "Expected positive value in gcd.\n");
  }
  {
    if (arg1 <= 0)
      fprintf(stderr, "Expected positive value in gcd.\n");
  }
  int result;
  result = gcd(arg1,arg2);
  return result;
}
</pre></div>

<p>
This time calling <tt>gcd</tt> with negative value argument will trigger an error message. This can save you time writing all the constraint checking code by hand.
</p>

<H3><a name="C_variables"></a>36.3.2 Variables</H3>


<p>
Wrapping variables comes also without any special issues. All global variables are directly accessible from application code. There is a difference in the semantics of <tt>struct</tt> definition in C and C++. When handling C <tt>struct</tt>, SWIG simply rewrites its declaration. In C++ <tt>struct</tt> is handled as class declaration. 
</p>

<p>
You can still apply some of the SWIG features when handling structs, e.g. <tt>%extend</tt> directive. Suppose, you have a C struct declaration:
</p>

<div class="targetlang"><pre>
typedef struct {
  int x;
  char *str;
} my_struct;
</pre></div>

<p>
You can redefine it to have an additional fields, like:
</p>

<div class="code"><pre>
%extend my_struct {
  double d;
};
</pre></div>

<p>
In application code:
</p>

<div class="targetlang"><pre>
struct my_struct ms;
ms.x = 123;
ms.d = 123.123;
</pre></div>

<H2><a name="C_basic_cpp_wrapping"></a>36.4 Basic C++ wrapping</H2>


<p>
The main reason of having the C module in SWIG is to be able to access C++ from C. In this chapter we will take a look at the rules of wrapping elements of the C++ language.
</p>

<p>
By default, SWIG attempts to build a natural C interface to your C/C++ code.
<table BORDER summary="Generated C representation of C++">
  <tr>
    <th>C++ Type</th>
    <th>SWIG C Translation</th>
  </tr>
  <tr>
    <td>Class <tt>Example</tt></td>
    <td>Empty structure <tt>Example</tt></td>
  </tr>
  <tr>
    <td>Public, mutable member variable <tt><tt>Foo Example::foo</tt></td>
    <td><tt>
      Example_foo_get(Example *e);</br>
      Example_foo_set(Example *e, Foo *f);
    </tt></td>
  </tr>
  <tr>
    <td>Public, immutable member variable <tt><tt>Foo Example::bar</tt></td>
    <td><tt>
      Example_foo_get(Example *e);</br>
    </tt></td>
  </tr>
</table>
This section briefly covers the essential aspects of this wrapping.
</p>

<H3><a name="C_classes"></a>36.4.1 Classes</H3>


<p>
Consider the following example. We have a C++ class, and want to use it from C code.
</p>

<div class="targetlang"><pre>
class Circle {
public:
  double radius;

  Circle(double r) : radius(r) { };
  double area(void);
};
</pre></div>

<p>
What we need to do is to create an object of the class, manipulate it, and finally, destroy it. SWIG generates C functions for this purpose each time a class declaration is encountered in the interface file.
</p>

<p>
The first two generated functions are used to create and destroy instances of class <tt>Circle</tt>. Such instances are represented on the C side as pointers to special structs, called <tt>SwigObj</tt>. They are all "renamed" (via typedef) to the original class names, so that you can use the object instances on the C side using pointers like:
</p>

<div class="targetlang"><pre>
Circle *circle;
</pre></div>

<p>
The generated functions make calls to class' constructors and destructors, respectively. They also do all the necessary things required by the SWIG object management system in C.
</p>

<div class="targetlang"><pre>
Circle * new_Circle(double r);
void delete_Circle(Circle * self);
</pre></div>

<p>
The class <tt>Circle</tt> has a public variable called <tt>radius</tt>. SWIG generates a pair of setters and getters for each such variable:
</p>

<div class="targetlang"><pre>
void Circle_radius_set(Circle * self, double radius);
double Circle_radius_get(Circle * self);
</pre></div>

<p>
For each public method, an appropriate function is generated:
</p>

<div class="targetlang"><pre>
double Circle_area(Circle * self);
</pre></div>

<p>
You can see that in order to use the generated object we need to provide a pointer to the object instance (struct <tt>Circle</tt> in this case) as the first function argument. In fact, this struct is basically wrapping pointer to the "real" C++ object.
</p>

<p>
Our application code could look like this:
</p>

<div class="targetlang"><pre>
  Circle *c = new_Circle(1.5);
  printf("radius: %f\narea: %f\n", Circle_radius_get(c), Circle_area(c));
  delete_Circle(c);
</pre></div>

<p>
After running this we'll get:
</p>

<div class="shell"><pre>
radius: 1.500000
area: 7.068583
</pre></div>

<H2><a name="C_developer"></a>Backend Developer Documentation</H2>

<H2><a name="C_typemaps"></a>Typemaps</H2>

<table BORDER summary="C Backend Typemaps">
  <tr>
    <th>Typemap</th>
    <th>Used for</th>
  </tr>
  <tr>
      <td><tt>ctype</tt></td>
      <td>Provides types used for the C API and</br>
          Typecasts wrapper functions return values in proxy functions</br>
          <code>
              MyClass *MyClass_new(void) {</br>
              &nbsp;return (MyClass *)_wrap_MyClass_new();</br>
              }
          </code>
      </td>
  </tr>
  <tr>
    <td><tt>cmodtype</tt></td>
    <td>Provides types used by wrapper functions and</br>
       Casts of function parameters of wrapper function calls</br>
       </br>
       <code>
         extern void _wrap_MyClass_delete(SwigObj *o);</br>
         </br>
         void MyClass_delete(MyClass *c) {</br>
            &nbsp;_wrap_MyClass_delete((Swig_Obj *)c);</br>
         }
       </code>
    </td>
  </tr>
  <tr>
    <td><tt>in</tt></td>
    <td>Mapping of wrapper functions parameters to local C++ variables</br>
       </br>
       <code>
          SwigObj* _wrap_MyClass_do(SwigObj *carg1) {</br>
            &nbsp;SomeCPPClass *arg1 = 0;</br>
            &nbsp;if (carg1)</br>
              &nbsp;&nbsp;arg1 = (SomeCPPClass*)carg1->obj</br>
            &nbsp;else</br>
              &nbsp;&nbsp;arg1 = 0;</br>
          }
       </code></td>
  </tr>
  <tr>
    <td><tt>out</tt></td>
    <td>Assigns wrapped function's return value to a dedicated return variable, packaging it into SwigObj if necessary</td>
  </tr>
  <tr>
    <td><tt>cppouttype</tt></td>
    <td>Type of the result variable used for the return value if the wrapped function is a C++ function
    </td>
  </tr>
</table>

<H3>C Typemaps, a Code Generation Walkthrough</H3>

To get a better idea of which typemap is used for which generated code, have a look at the following 'walk through'.</br>
Let's assume we have the following C++ interface file, we'd like to generate code for:

<H4>The Interface</H4>
<div class="code"><pre>
%module example

%inline
%{
  class SomeClass{};
  template &lt;typename T&gt; class SomeTemplateClass{};
  SomeClass someFunction(SomeTemplateClass&lt;int&gt; &someParameter, int simpleInt);
%}

%template (SomeIntTemplateClass) SomeTemplateClass&lt;int&gt;;
</pre></div>


What we would like to generate as a C interface of this function would be something like this:

<div class="targetlang"><pre>
//proxy header file
typedef struct SwigObj_SomeClass SomeClass;

SomeClass * new_SomeClass();

void delete_SomeClass(SomeClass * carg1);
        
SomeClass* someFunction(SomeIntTemplateClass* carg1, int carg2);
        
        
typedef struct SwigObj_SomeIntTemplateClass SomeIntTemplateClass;
        
SomeIntTemplateClass * new_SomeIntTemplateClass();
        
void delete_SomeIntTemplateClass(SomeIntTemplateClass * carg1);
</pre></div>

When we generate the bindings, we generate code for two translation units:
<ul>
<li>The proxy</li>
<li>The wrapper</li>
</ul>
We need 2 translation units to be able to have C types with the same names as the original C++ types.

<H4>The Wrapper</H4>
Since the proxy embeds a call to the wrapper function, we'll examine the generation of the wrapper function first.

<div class="targetlang"><pre>
SWIGEXPORTC SwigObj * _wrap_someFunction(SwigObj * carg1, int carg2) {
  SomeClass * cppresult;
  SomeTemplateClass< int > *arg1 = 0 ;
  int arg2 ;
  SwigObj * result;
  
  {
    if (carg1)
    arg1 = (SomeTemplateClass< int > *) carg1->obj;
    else
    arg1 = (SomeTemplateClass< int > *) 0;
  }
  arg2 = (int) carg2;
  {
    const SomeClass &_result_ref =  someFunction(*arg1,arg2);cppresult = (SomeClass*) &_result_ref;
  }
  {
    result = (SwigObj*) SWIG_create_object(SWIG_STR(SomeClass));
    result->obj = (void*) &cppresult;
  }
  return result;
}
</pre></div>

It might be helpful to think of the way function calls are generated as a composition of building blocks.</br>
A typical wrapper will be composited with these [optional] blocks:

<ol>
<li>Prototype</li>
<li>C return value variable</li>
<li>Local variables equal to the called C++ function's parameters</li>
<li>[C++ return value variable]</li>
<li>Assignment (extraction) of wrapper parameters to local parameter copies</li>
<li>[Contract (e.g. constraints) checking]</li>
<li> C++ function call</li>
<li>[Exception handling]</li>
<li>[Assignment to C++ return value]</li>
<li>Assignment to C return value</li>
</ol>

Let's go through it step by step and start with the wrapper prototype

<div class="targetlang"><pre>
cmodtype                     cmodtype         cmodtype
---------                    ---------        ---
SwigObj * _wrap_someFunction(SwigObj * carg1, int carg2);
</pre></div>

As first unit of the wrapper code, a variable to hold the return value of the function is emitted to the wrapper's body

<div class="targetlang"><pre>
cmodtype
---------
SwigObj * result;
</pre></div>

Now for each of the C++ function's arguments, a local variable with the very same type is emitted to the wrapper's body.

<div class="targetlang"><pre>
SomeTemplateClass< int > *arg1 = 0 ;
int arg2 ;
</pre></div>

If it's a C++ function that is wrapped (in this case it is), another variable is emitted for the 'original' return value of the C++ function.</br>
At this point, we simply 'inject' behavior if it's a C++ function that is wrapped (in this cas it obviously is).

<div class="targetlang"><pre>
cppouttype
-----------
SomeClass * cppresult;
</pre></div>

Next, the values of the input parameters are assigned to the local variables using the 'in' typemap.

<div class="targetlang"><pre>
{
  if (carg1)
  arg1 = (SomeTemplateClass< int > *) carg1->obj;
  else
  arg1 = (SomeTemplateClass< int > *) 0;
}
arg2 = (int) carg2;
</pre></div>

A reasonable question would be: "Why aren't the parameters assigned in the declaration of their local counterparts?"</br>
As seen above, for complex types pointers have to be verified before extracting and </br>
casting the actual data pointer from the provided SwigObj pointer.</br>
This could easily become messy if it was done in the same line with the local variable declaration.</br>
<p>
At this point we are ready to call the C++ function with our parameters.</br>
</p>
<div class="targetlang"><pre>
{
  const SomeClass &_result_ref =  someFunction(*arg1,arg2);cppresult = (SomeClass*) &_result_ref;
}
</pre></div>
Subsequently, the return value is assigned to the dedicated return value variable using the 'out' typemap
<div class="targetlang"><pre>
{
  result = (SwigObj*) SWIG_create_object(SWIG_STR(SomeClass));
  result->obj = (void*) &cppresult;
}
</pre></div>

Finally, the return value variable is returned.
<div class="targetlang"><pre>
return result;
</pre></div>

<H4>The Proxy</H4>
Compared to the wrapper code generation, the proxy code is very simple.</br>
Basically it just casts types for the wrapper call. Let's have a look at the corresponding proxy header file code of the interface above.

<div class="targetlang"><pre>
//proxy header file
typedef struct SwigObj_SomeClass SomeClass;

SomeClass * new_SomeClass();

void delete_SomeClass(SomeClass * carg1);

SomeClass* someFunction(SomeIntTemplateClass* carg1, int carg2);


typedef struct SwigObj_SomeIntTemplateClass SomeIntTemplateClass;

SomeIntTemplateClass * new_SomeIntTemplateClass();

void delete_SomeIntTemplateClass(SomeIntTemplateClass * carg1);
</pre></div>

For shortness sake, we'll only examine one function that uses all proxy typemaps, as the other functions are analogous.

<div class="targetlang"><pre>
SomeClass* someFunction(SomeIntTemplateClass* carg1, int carg2) {
  return (SomeClass*)_wrap_someFunction((SwigObj *)carg1, (int)carg2);
}
</pre></div>

Again, let's first examine the protype:
<div class="targetlang"><pre>
ctype                   ctype                        ctype
----------              ---------------------        ---
SomeClass* someFunction(SomeIntTemplateClass* carg1, int carg2);
</pre></div>

In the body of this function, we'll reuse the 'proxycouttype' and 'ctype' to cast the return value and arguments of the wrapper function.

<div class="targetlang"><pre>
        ctype                          cmodtype          cmodtype
        ----------                     ---------         ___
return (SomeClass*)_wrap_someFunction((SwigObj *)carg1, (int)carg2);
</pre></div>

<H2><a name="C_exceptions"></a>36.5 Exception handling</H2>


</body>
</html>