summaryrefslogtreecommitdiff
path: root/Doc/Manual/Allegrocl.html
blob: 9f37d4fc562fddb102f24fb918c90d290054a278 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>SWIG and Allegro Common Lisp</title>
<link rel="stylesheet" type="text/css" href="style.css">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>

<body bgcolor="#ffffff">

<H1><a name="Allegrocl">18 SWIG and Allegro Common Lisp</a></H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#Allegrocl_nn2">Basics</a>
<ul>
<li><a href="#Allegrocl_nn3">Running SWIG</a>
<li><a href="#Allegrocl_nn4">Command Line Options</a>
<li><a href="#Allegrocl_nn5">Inserting user code into generated files</a>
</ul>
<li><a href="#Allegrocl_nn6">Wrapping Overview</a>
<ul>
<li><a href="#Allegrocl_nn7">Function Wrapping</a>
<li><a href="#Allegrocl_nn8">Foreign Wrappers</a>
<li><a href="#Allegrocl_nn9">FFI Wrappers</a>
<li><a href="#Allegrocl_nn10">Non-overloaded Defuns</a>
<li><a href="#Allegrocl_nn11">Overloaded Defuns</a>
<li><a href="#Allegrocl_nn12">What about constant and variable access?</a>
<li><a href="#Allegrocl_nn13">Object Wrapping</a>
</ul>
<li><a href="#Allegrocl_nn14">Wrapping Details</a>
<ul>
<li><a href="#Allegrocl_nn15">Namespaces</a>
<li><a href="#Allegrocl_nn16">Constants</a>
<li><a href="#Allegrocl_nn17">Variables</a>
<li><a href="#Allegrocl_nn18">Enumerations</a>
<li><a href="#Allegrocl_nn19">Arrays</a>
<li><a href="#Allegrocl_nn20">Classes and Structs and Unions (oh my!)</a>
<ul>
<li><a href="#Allegrocl_nn21">CLOS wrapping of</a>
<li><a href="#Allegrocl_nn22">CLOS Inheritance</a>
<li><a href="#Allegrocl_nn23">Member fields and functions</a>
<li><a href="#Allegrocl_nn24">Why not directly access C++ classes using foreign types?</a>
</ul>
<li><a href="#Allegrocl_nn25">Templates</a>
<ul>
<li><a href="#Allegrocl_nn26">Generating wrapper code for templates</a>
<li><a href="#Allegrocl_nn27">Implicit Template instantiation</a>
</ul>
<li><a href="#Allegrocl_nn28">Typedef, Templates, and Synonym Types</a>
<ul>
<li><a href="#Allegrocl_nn29">Choosing a primary type</a>
</ul>
<li><a href="#Allegrocl_nn30">Function overloading/Parameter defaulting</a>
<li><a href="#Allegrocl_nn31">Operator wrapping and Operator overloading</a>
<li><a href="#Allegrocl_nn32">Varargs</a>
<li><a href="#Allegrocl_nn33">C++ Exceptions</a>
<li><a href="#Allegrocl_nn34">Pass by value, pass by reference</a>
</ul>
<li><a href="#Allegrocl_nn35">Typemaps</a>
<ul>
<li><a href="#Allegrocl_nn36">Code Generation in the C++ Wrapper</a>
<ul>
<li><a href="#Allegrocl_nn37">IN Typemap</a>
<li><a href="#Allegrocl_nn38">OUT Typemap</a>
<li><a href="#Allegrocl_nn39">CTYPE Typemap</a>
</ul>
<li><a href="#Allegrocl_nn40">Code generation in Lisp wrappers</a>
<ul>
<li><a href="#Allegrocl_nn41">LIN Typemap</a>
<li><a href="#Allegrocl_nn42">LOUT Typemap</a>
<li><a href="#Allegrocl_nn43">FFITYPE Typemap</a>
<li><a href="#Allegrocl_nn44">LISPTYPE Typemap</a>
<li><a href="#Allegrocl_nn45">LISPCLASS Typemap</a>
</ul>
<li><a href="#Allegrocl_nn46">Modifying SWIG behavior using typemaps</a>
</ul>
<li><a href="#Allegrocl_nn47">Identifier Converter functions</a>
<ul>
<li><a href="#Allegrocl_nn48">Creating symbols in the lisp environment</a>
<li><a href="#Allegrocl_nn49">Existing identifier-converter functions</a>
<ul>
<li><a href="#Allegrocl_nn50">identifier-convert-null</a>
<li><a href="#Allegrocl_nn51">identifier-convert-lispify</a>
<li><a href="#Allegrocl_nn52">Default identifier to symbol conversions</a>
</ul>
<li><a href="#Allegrocl_nn53">Defining your own identifier-converter</a>
<li><a href="#Allegrocl_nn54">Instructing SWIG to use a particular identifier-converter</a>
</ul>
</ul>
</div>
<!-- INDEX -->



<p>
This chapter describes SWIG's support of Allegro Common Lisp. Allegro
CL is a full-featured implementation of the Common Lisp language
standard that includes many vendor-specific enhancements and add-on
modules for increased usability.
</p>

<p>
One such module included in Allegro CL is the Foreign Functions
Interface (FFI). This module, tailored primarily toward interfacing
with C/C++ and, historically, Fortran, provides a means by which
compiled foreign code can be loaded into a running lisp
environment and executed. The interface supports the calling of
foreign functions and methods, allows for executing lisp routines
from foreign code (callbacks), and the passing of data between foreign
and lisp code.
</p>

<p>
The goal of this module is to make it possible to quickly generate the
necessary foreign function definitions so one can make use of C/C++
foreign libraries directly from lisp without the tedium of having to
code them by hand. When necessary, it will also generate further C/C++
code that will need to be linked with the intended library for proper
interfacing from lisp. It has been designed with an eye toward
flexibility. Some foreign function calls may release the heap, while
other should not. Some foreign functions should automatically convert
lisp strings into native strings, while others should not. These
adjustments and many more are possible with the current module.
</p>

<p>
It is significant to note that, while this is a vendor-specific
module, we would like to acknowledge the current and ongoing
work by developers in the open source lisp community that are
working on similar interfaces to implementation-independent
foreign function interfaces (UFFI or CFFI, for example). Such
work can only benefit the lisp community, and we would not
be unhappy to see some enterprising folk use this work to add
to it.
</p>

<H2><a name="Allegrocl_nn2">18.1 Basics</a></H2>


<H3><a name="Allegrocl_nn3">18.1.1 Running SWIG</a></H3>


<p>
If you're reading this, you must have some library you need to
generate an interface for. In order for SWIG to do this work, however,
it needs a bit of information about how it should go about creating
your interface, and what you are interfacing to.
</p>

<p>
SWIG expects a description of what in the foreign interface you wish
to connect to. It must consisting of C/C++ declarations and special
SWIG directives. SWIG can be furnished with a header file, but an
interface can also be generated without library headers by supplying a
simple text file--called the interface file, which is typically named
with a <tt>.i</tt> extension--containing any foreign declarations of
identifiers you wish to use. The most common approach is to use a an
interface file with directives to parse the needed headers. A straight
parse of library headers will result in usable code, but SWIG
directives provides much freedom in how a user might tailor the
generated code to their needs or style of coding.
</p>

<p>
Note that SWIG does not require any function definitions; the
declarations of those functions is all that is necessary. Be careful
when tuning the interface as it is quite possible to generate code
that will not load or compile.
</p>

<p>
An example interface file is shown below. It makes use of two SWIG
directives, one of which requests that the declarations in a header
file be used to generate part of the interface, and also includes an
additional declaration to be added.</p>

<div class="code">example.i
<pre>
%module example

%include "header.h"

int fact(int n);
</pre>
</div>

<p>The contents of header.h are very simple:</p>
<div class="code">header.h
<pre>
int fact(char *statement);   // pass it a fact, and it will rate it.
</pre>
</div>

<p>The contents of example.cl will look like this:</p>

<div class="targetlang">example.cl
<pre>
(defpackage :example
  (:use :common-lisp :swig :ff :excl))

  ... helper routines for defining the interface ...

(swig-in-package ())

(swig-defun ("fact")
  ((PARM0_statement cl:string (* :char) ))
  (:returning (:int )
   :strings-convert t)
  (let ((SWIG_arg0 PARM0_statement))
  (swig-ff-call SWIG_arg0)))

(swig-defun ("fact")
  ((PARM0_n cl:integer :int ))
  (:returning (:int )
   :strings-convert t)
  (let ((SWIG_arg0 PARM0_n))
  (swig-ff-call SWIG_arg0)))

(swig-dispatcher ("fact" :type :function :arities (1)))
</pre>
</div>

<p>
The generated file contains calls to internal swig helper
functions. In this case there are two calls to swig-defun.
These calls will expand into code that will make the appropriate
definitions using the Allegro FFI. Note also, that this code is
<b>erroneous</b>. Function overloading is not supported in C, and this
code will not compile even though SWIG did not complain.
</p>

<p>
In order to generate a C interface to Allegro CL using this code run
swig using the <tt>-allegrocl</tt> option, as below:
</p>

<div class="shell">
<pre>
% swig -allegrocl example.i
</pre>
</div>

<p>
When building an interface to C++ code, include the <tt>-c++</tt> option:
</p>

<div class="shell">
<pre>
% swig -allegrocl -c++ example.i
</pre>
</div>

<p>
As a result of running one of the above commands, a file named <tt>example.cl</tt> 
will be generated containing the lisp side of the interface. As well, a file 
<tt>example_wrap.cxx</tt> is also generated, containing C/C++ wrapper code to
facilitate access to C++ methods, enumeration values, and constant values.
Wrapper functions are necessary in C++ due to the lack of a standard for mangling 
the names of symbols across all C++ compilers. These wrapper functions are
exported from the shared library as appropriate, using the C name mangling
convention. The lisp code that is generated will interface to your foreign
library through these wrappers.
</p>

<p>
It is possible to disable the creation of the .cxx file when generating a C
interface by using the -nocwrap command-line argument. For interfaces that
don't contain complex enum or constant expressions, contain nested struct/union
declarations, or doesn't need to use many of the SWIG customization featuers, 
this will result in a more streamlined, direct interface to the
intended module.
</p>

<p>
The generated wrapper file is below. It contains very simple
wrappers by default, that simply pass the arguments to the
actual function.
</p>

<div class="code">example_wrap.i
<pre>
   ... lots of SWIG internals ...

EXPORT int ACL___fact__SWIG_0 (char *larg1) {
    int lresult = (int)0 ;
    char *arg1 = (char *) 0 ;
    int result;
    
    arg1 = larg1;
    try {
        result = (int)fact(arg1);
        
        lresult = result;
        return lresult;
    } catch (...) {
        return (int)0;
    }
}


EXPORT int ACL___fact__SWIG_1 (int larg1) {
    int lresult = (int)0 ;
    int arg1 ;
    int result;
    
    arg1 = larg1;
    try {
        result = (int)fact(arg1);
        
        lresult = result;
        return lresult;
    } catch (...) {
        return (int)0;
    }
}
</pre>
</div>

<p>
And again, the generated lisp code. Note that it differs from
what is generated when parsing C code:
</p>

<div class="targetlang">
<pre>
   ...

(swig-in-package ())

(swig-defmethod ("fact" "ACL___fact__SWIG_0" :type :function :arity 1)
  ((PARM0_statement cl:string (* :char) ))
  (:returning (:int )
   :strings-convert t)
  (let ((SWIG_arg0 PARM0_statement))
  (swig-ff-call SWIG_arg0)))

(swig-defmethod ("fact" "ACL___fact__SWIG_1" :type :function :arity 1)
  ((PARM0_n cl:integer :int ))
  (:returning (:int )
   :strings-convert t)
  (let ((SWIG_arg0 PARM0_n))
  (swig-ff-call SWIG_arg0)))

(swig-dispatcher ("fact" :type :function :arities (1)))
</pre>
</div>

<p>In this case, the interface generates two swig-defmethod forms and
a swig-dispatcher form. This provides a single functional interface for
all overloaded routines. A more detailed description of this features 
is to be found in the section titled <b>Function overloading/Parameter defaulting</b>.

<p>
In order to load a C++ interface, you will need to build a shared library
from example_wrap.cxx. Be sure to link in the actual library you created
the interface for, as well as any other dependent shared libraries. For
example, if you intend to be able to call back into lisp, you will also
need to link in the Allegro shared library. The library you create from
the C++ wrapper will be what you then load into Allegro CL.
</p>

<H3><a name="Allegrocl_nn4">18.1.2 Command Line Options</a></H3>


<p>
There are three Allegro CL specific command-line option:
</p>

<div class="shell">
<pre>
swig -allegrocl [ options ] filename

   -identifier-converter [name] - Binds the variable swig:*swig-identifier-convert* 
                                  in the generated .cl file to <tt>name</tt>.
				  This function is used to generate symbols
				  for the lisp side of the interface. 

   -cwrap - [default] Generate a .cxx file containing C wrapper function when
            wrapping C code. The interface generated is similar to what is
	    done for C++ code.
   -nocwrap - Explicitly turn off generation of .cxx wrappers for C code. Reasonable
              for modules with simple interfaces. Can not handle all legal enum
	      and constant constructs, or take advantage of SWIG customization features.

   -isolate - With this command-line argument, all lisp helper functions are defined
              in a unique package named <tt>swig.&lt;module-name&gt;</tt> rather than
	      <tt>swig</tt>. This prevents conflicts when the module is
	      intended to be used with other swig generated interfaces that may, 
	      for instance, make use of different identifier converters.
</pre>
</div>

<p>
See <a href="#Allegrocl_nn47">Section 17.5 Identifier converter
functions</a> for more details.
</p>

<H3><a name="Allegrocl_nn5">18.1.3 Inserting user code into generated files</a></H3>


<p>
It is often necessary to include user-defined code into the
automatically generated interface files. For example, when building
a C++ interface, example_wrap.cxx will likely not compile unless
you add a <tt>#include "header.h"</tt> directive. This can be done
using the SWIG <tt>%insert(section) %{ ...code... %}</tt> directive:
</p>

<div class="code">
<pre>
%module example

%{
#include "header.h"
%}

%include "header.h"

int fact(int n);
</pre>
</div>

<p>
Additional sections have been added for inserting into the
generated lisp interface file
</p>
<ul>
  <li><tt>lisphead</tt> - inserts before type declarations</li>
  <li><tt>lisp</tt> - inserts after type declarations according to
    where it appears in the .i file</li>
</ul>
<p>
Note that the block <tt>%{ ... %}</tt> is effectively a shortcut for
<tt>%insert("header") %{ ... %}</tt>.
</p>


<H2><a name="Allegrocl_nn6">18.2 Wrapping Overview</a></H2>


<p>
New users to SWIG are encouraged to read
<a href="SWIG.html#SWIG">SWIG Basics</a>, and
<a href="SWIGPlus.html#SWIGPlus">SWIG and C++</a>, for those
interested in generating an interface to C++.
</p>

<H3><a name="Allegrocl_nn7">18.2.1 Function Wrapping</a></H3>


  <p>
  Writing lisp code that directly invokes functions at the foreign
  function interface level can be cumbersome. Data must often be
  translated between lisp and foreign types, data extracted from
  objects, foreign objects allocated and freed upon completion of
  the foreign call. Dealing with pointers can be unwieldy when it
  comes to keeping them distinct from other valid integer values.
  </p>

  <p>
  We make an attempt to ease some of these burdens by making the
  interface to foreign code much more lisp-like, rather than C
  like. How this is done is described in later chapters. The
  layers themselves, appear as follows:
  </p>

  <div class="diagram">
  <pre>
        ______________
       |              |  (foreign side)
       | Foreign Code |  What we're generating an interface to.
       |______________|
               |
	       |
        _______v______
       |              |  (foreign side)
       | Wrapper code |  extern "C" wrappers calling C++ 
       |______________|  functions and methods.
               |
    .  . . - - + - - . .  .
        _______v______
       |              |  (lisp side)
       |  FFI Layer   |  Low level lisp interface. ff:def-foreign-call,
       |______________|  ff:def-foreign-variable
               |
	       +----------------------------
        _______v______              _______v______
       |              |            |              | (lisp side)    
       |    Defuns    |            |  Defmethods  | wrapper for overloaded
       |______________|            |______________| functions or those with
        (lisp side)                        |        defaulted arguments
	Wrapper for non-overloaded         |
	functions and methods       _______v______
	                           |              | (lisp side)
				   |    Defuns    | dispatch function
				   |______________| to overloads based
				                    on arity
  </pre>
  </div>

<H3><a name="Allegrocl_nn8">18.2.2 Foreign Wrappers</a></H3>


  <p>
    These wrappers are as generated by SWIG default. The types of
    function parameters can be transformed in place using the CTYPE
    typemap. This is use for converting pass-by-value parameters to
    pass-by-reference where necessary. All wrapper parameters are then
    bound to local variables for possible transformation of values
    (see LIN typemap). Return values can be transformed via the OUT
    typemap. 
  </p>

<H3><a name="Allegrocl_nn9">18.2.3 FFI Wrappers</a></H3>


  <p>
    These are the generated ff:def-foreign-call forms. No typemaps are
    applicable to this layer, but the <tt>%ffargs</tt> directive is
    available for use in .i files, to specify which keyword arguments
    should be specified for a given function.
  </p>
  
  <div class="code">ffargs.i:
  <pre>
%module ffargs

%ffargs(strings_convert="nil",call_direct="t") foo;
%ffargs(strings_convert="nil",release_heap=":never",optimize_for_space="t") bar;

int foo(float f1, float f2);
int foo(float f1, char c2);

void bar(void *lisp_fn);

char *xxx();
  </pre>
  </div>

  <p>Generates:
  </p>
  <div class="targetlang">ffargs.cl:
  <pre>
(swig-in-package ())

(swig-defmethod ("foo" "ACL___foo__SWIG_0" :type :function :arity 2)
  ((PARM0_f1 cl:single-float :float )
   (PARM1_f2 cl:single-float :float ))
  (:returning (:int )
   :call-direct t
   :strings-convert nil)
  (let ((SWIG_arg0 PARM0_f1))
  (let ((SWIG_arg1 PARM1_f2))
  (swig-ff-call SWIG_arg0 SWIG_arg1))))

(swig-defmethod ("foo" "ACL___foo__SWIG_1" :type :function :arity 2)
  ((PARM0_f1 cl:single-float :float )
   (PARM1_c2 cl:character :char character))
  (:returning (:int )
   :call-direct t
   :strings-convert nil)
  (let ((SWIG_arg0 PARM0_f1))
  (let ((SWIG_arg1 PARM1_c2))
  (swig-ff-call SWIG_arg0 SWIG_arg1))))

(swig-dispatcher ("foo" :type :function :arities (2)))
(swig-defun ("bar" "ACL___bar__SWIG_0" :type :function)
  ((PARM0_lisp_fn  (* :void) ))
  (:returning (:void )
   :release-heap :never
   :optimize-for-space t
   :strings-convert nil)
  (let ((SWIG_arg0 PARM0_lisp_fn))
  (swig-ff-call SWIG_arg0)))


(swig-defun ("xxx" "ACL___xxx__SWIG_0" :type :function)
  (:void)
  (:returning ((* :char) )
   :strings-convert t)
  (swig-ff-call))
  </pre>
  </div>

  <div class="code">
    <pre>%ffargs(strings_convert="t");</pre>
  </div>

  <p>
    Is the only default value specified in <tt>allegrocl.swg</tt> to force
    the muffling of warnings about automatic string conversion when defining
    ff:def-foreign-call's.
  </p>

<H3><a name="Allegrocl_nn10">18.2.4 Non-overloaded Defuns</a></H3>


  <p>
    These are simple defuns. There is no typechecking of arguments.
    Parameters are bound to local variables for possible
    transformation of values, such as pulling values out of instance
    slots or allocating temporary stack allocated structures, via the
    <tt>lin</tt> typemap. These arguments are then passed to the
    foreign-call (where typechecking may occur). The return value from
    this function can be manipulated via the <tt>lout</tt> typemap.
  </p>

<H3><a name="Allegrocl_nn11">18.2.5 Overloaded Defuns</a></H3>


  <p>
    In the case of overloaded functions, mulitple layers are
    generated. First, all the overloads for a given name are separated
    out into groups based on arity, and are wrapped in
    defmethods. Each method calls a distinct wrapper function, but are
    themselves distinguished by the types of their arguments
    (see <tt>lispclass</tt> typemap). These are further wrapped in a
    dispatching function (defun) which will invoke the appropriate
    generic-function based on arity. This provides a single functional
    interface to all overloads. The return value from this function
    can be manipulated via the <tt>lout</tt> typemap.
  </p>

<H3><a name="Allegrocl_nn12">18.2.6 What about constant and variable access?</a></H3>


  <p>
    Along with the described functional layering, when creating a .cxx wrapper, 
    this module will generate getter and--if not immutable--setter,
    functions for variables and constants. If the -nocwrap option is used,
    <tt>defconstant</tt> and <tt>ff:def-foreign-variable</tt> forms will be
    generated for accessing constants and global variables. These, along with
    the <tt>defuns</tt> listed above are the intended API for calling
    into the foreign module.
  </p>

<H3><a name="Allegrocl_nn13">18.2.7 Object Wrapping</a></H3>


  <p>
  All non-primitive types (Classes, structs, unions, and typedefs
  involving same) have a corresponding foreign-type defined on the
  lisp side via ff:def-foreign-type.
  </p>

  <p>
  All non-primitive types are further represented by a CLOS class,
  created via defclass. An attempt is made to create the same class
  hierarchy, with all classes inheriting directly or indirectly from
  ff:foreign-pointer. Further, wherever it is apparent, all pointers
  returned from foreign code are wrapped in a CLOS instance of the
  appropriate class. For ff:def-foreign-calls that have been defined
  to expect a :foreign-address type as argument, these CLOS instances
  can legally be passed and the pointer to the C++ object
  automatically extracted. This is a natural feature of Allegro's
  foreign function interface.
  </p>

<H2><a name="Allegrocl_nn14">18.3 Wrapping Details</a></H2>


  <p>
    In this section is described how particular C/C++ constructs are
    translated into lisp.
  </p>

<H3><a name="Allegrocl_nn15">18.3.1 Namespaces</a></H3>


  <p>
    C++ namespaces are translated into Lisp packages by SWIG. The
    Global namespace is mapped to a package named by the <tt>%module</tt>
    directive or the <tt>-module</tt> command-line argument. Further
    namespaces are generated by the <tt>swig-defpackage</tt> utility
    function and given names based on Allegro CLs nested namespace
    convention. For example:
  </p>

    <div class="code">foo.i:
    <pre>
%module foo

%{
#include "foo.h"
%}

%include "foo.h"

namespace car {
   ...
   namespace tires {
      int do_something(int n);
   }
}
    </pre>
    </div>
  <p>Generates the following code.
  </p>
    <div class="targetlang">foo.cl
    <pre>
(defpackage :foo
  (:use :common-lisp :swig :ff :excl))

...

(swig-defpackage ("car"))
(swig-defpackage ("car" "tires"))

...

(swig-in-package ("car" "tires"))
(swig-defun ("do_something" "ACL_car_tires__do_something__SWIG_0" :type :function)
  ((PARM0_n  :int ))
  (:returning (:int )
   :strings-convert t)
  (let ((SWIG_arg0 PARM0_n))
  (swig-ff-call SWIG_arg0)))
    </pre>
    </div>

    <p>
      The above interface file would cause packages foo, foo.car, and
      foo.car.tires to be created. One would find the function wrapper
      for do_something defined in the foo.car.tires package(*).
    </p>

    <p>(<b>*</b>) Except for the package named by the module, all
      namespace names are passed to the identifier-converter-function
      as strings with a <tt>:type</tt> of <tt>:namespace</tt>. It is the
      job of this function to generate the desired symbol, accounting for
      case preferences, additional naming cues, etc.
    </p>

    <p>
      Note that packages created by <tt>swig-defpackage</tt> do not
      use the COMMON-LISP or EXCL package. This reduces possible
      conflicts when defining foreign types via the SWIG interface
      in <b>all but the toplevel modules package</b>. This may
      lead to confusion if, for example, the current package is
      <tt>foo.car.tires</tt> and you attempt to use a common-lisp
      function such as <tt>(car '(1 2 3)</tt>.
    </p>

<H3><a name="Allegrocl_nn16">18.3.2 Constants</a></H3>


    
    <p>
      Constants, as declared by the preprocessor #define macro or SWIG
      <tt>%constant</tt> directive, are included in SWIG's parse tree
      when it can be determined that they are, or could be reduced to,
      a literal value. Such values are translated into defconstant
      forms in the generated lisp wrapper when the -nocwrap command-line
      options is used. Else, wrapper functions are generated as in the
      case of variable access (see section below).
    </p>
    <p>
      Here are examples of simple preprocessor constants when using -nocwrap.
    </p>
      <div class="code">
      <pre>
#define A 1                    =&gt; (swig-defconstant "A" 1)  
#define B 'c'                  =&gt; (swig-defconstant "B" #\c)
#define C B                    =&gt; (swig-defconstant "C" #\c)
#define D 1.0e2                =&gt; (swig-defconstant "D" 1.0d2)
#define E 2222                 =&gt; (swig-defconstant "E" 2222)
#define F (unsigned int)2222   =&gt; no code generated
#define G 1.02e2f              =&gt; (swig-defconstant "G" 1.02f2)
#define H foo                  =&gt; no code generated
      </pre>
      </div>

      <p>
      Note that where SWIG is unable to determine if a constant is
      a literal, no node is added to the SWIG parse tree, and so
      no values can be generated.
      </p>

    <p>
      For preprocessor constants containing expressions which can be
      reduced to literal values, nodes are created, but with no simplification
      of the constant value. A very very simple infix to prefix converter
      has been implemented that tries to do the right thing for simple cases, but
      does not for more complex expressions. If the literal parser determines
      that something is wrong, a warning will be generated and the literal 
      expression will be included in the generated code, but commented out.
    </p>
      
      <div class="code">
      <pre>
#define I A + E                =&gt; (swig-defconstant "I" (+ 1 2222))
#define J 1|2                  =&gt; (swig-defconstant "J" (logior 1 2))
#define Y 1 + 2 * 3 + 4        =&gt; (swig-defconstant "Y" (* (+ 1 2) (+ 3 4)))
#define Y1 (1 + 2) * (3 + 4)   =&gt; (swig-defconstant "Y1" (* (+ 1 2) (+ 3 4)))
#define Y2 1 * 2 + 3 * 4       =&gt; (swig-defconstant "Y2" (* 1 (+ 2 3) 4))  ;; WRONG
#define Y3 (1 * 2) + (3 * 4)   =&gt; (swig-defconstant "Y3" (* 1 (+ 2 3) 4))  ;; WRONG
#define Z 1 + 2 - 3 + 4 * 5    =&gt; (swig-defconstant "Z" (* (+ 1 (- 2 3) 4) 5)) ;; WRONG
      </pre>
      </div>
      <p>
	Users are cautioned to get to know their constants before use, or
	not use the <tt>-nocwrap</tt> command-line option.
      </p>

<H3><a name="Allegrocl_nn17">18.3.3 Variables</a></H3>


    <p>
      For C wrapping, a def-foreign-variable call is generated for access
      to global variables.
    </p>
    <p>
      When wrapping C++ code, both global and member variables, getter
      wrappers are generated for accessing their value, and if not immutable,
      setter wrappers as well. In the example below, note the lack of a 
      setter wrapper for global_var, defined as const.
    </p>

    <div class="code">vars.h
    <pre>
namespace nnn {
  int const global_var = 2;
  float glob_float = 2.0;
}
    </pre>
    </div>

    <p>
    Generated code:
    </p>
    <div class="targetlang">vars.cl
    <pre>
(swig-in-package ("nnn"))
(swig-defun ("global_var" "ACL_nnn__global_var_get__SWIG_0" :type :getter)
  (:void)
  (:returning (:int )
   :strings-convert t)
  (swig-ff-call))


(swig-defun ("glob_float" "ACL_nnn__glob_float_set__SWIG_0" :type :setter)
  ((PARM0_glob_float  :float ))
  (:returning (:void )
   :strings-convert t)
  (let ((SWIG_arg0 PARM0_glob_float))
  (swig-ff-call SWIG_arg0)))


(swig-defun ("glob_float" "ACL_nnn__glob_float_get__SWIG_0" :type :getter)
  (:void)
  (:returning (:float )
   :strings-convert t)
  (swig-ff-call))
    </pre>
    </div>

    <p>
      Note also, that where applicable, setter wrappers are implemented
      as setf methods on the getter function, providing a lispy interface
      to the foreign code.
    </p>

    <div class="targetlang">
    <pre>
user&gt; (load "globalvar.dll")
; Foreign loading globalvar.dll.
t
user&gt; (load "globalvar.cl")
; Loading c:\mikel\src\swig\test\globalvar.cl
t
user&gt; 
globalvar&gt; (globalvar.nnn::global_var)
2
globalvar&gt; (globalvar.nnn::glob_float)
2.0
globalvar&gt; (setf (globalvar.nnn::glob_float) 3.0)
3.0
globalvar&gt; (globalvar.nnn::glob_float)
3.0
    </pre>
    </div>

<H3><a name="Allegrocl_nn18">18.3.4 Enumerations</a></H3>


    <p>
      In C, an enumeration value is an integer value, while in C++ an
      enumeration value is implicitly convertible to an integer value,
      but can also be distinguished by its enum type. For each enum
      declaration a def-foreign-type is generated, assigning the enum
      a default type of :int. Users may adjust the foreign type of
      enums via SWIG <tt>typemaps</tt>.
    </p>

    <p>
      Enum values are a bit trickier as they can be initialized using
      any valid C/C++ expression. In C with the -nocwrap command-line option,
      we handle the typical cases (simple integer initialization) and
      generate a defconstant form for each enum value. This has the advantage
      of it not being necessary to probe into foreign space to retrieve enum
      values. When generating a .cxx wrapper file, a more general solution is
      employed. A wrapper variable is created in the module_wrap.cxx file, and
      a ff:def-foreign-variable call is generated to retrieve its value into lisp.
    </p>

    <p>For example, the following header file
      <div class="code">enum.h:
      <pre>
enum COL { RED, GREEN, BLUE };	
enum FOO { FOO1 = 10, FOO2, FOO3 };
      </pre>
      </div>
      <p>
      In -nocwrap mode, generates
      </p>
      <div class="targetlang">enum.cl:
      <pre>
(swig-def-foreign-type "COL" :int)
(swig-defconstant "RED" 0)
(swig-defconstant "GREEN" (+ #.(swig-insert-id "RED" () :type :constant) 1))
(swig-defconstant "BLUE" (+ #.(swig-insert-id "GREEN" () :type :constant) 1))

(swig-def-foreign-type "FOO" :int)
(swig-defconstant "FOO1" 10)
(swig-defconstant "FOO2" (+ #.(swig-insert-id "FOO1" () :type :constant) 1))
(swig-defconstant "FOO3" (+ #.(swig-insert-id "FOO2" () :type :constant) 1))
      </pre>
      </div>

    <p>And when generating a .cxx wrapper
      <div class="code">enum_wrap.cxx:
      <pre>
EXPORT const int ACL_ENUM___RED__SWIG_0 = RED;
EXPORT const int ACL_ENUM___GREEN__SWIG_0 = GREEN;
EXPORT const int ACL_ENUM___BLUE__SWIG_0 = BLUE;
EXPORT const int ACL_ENUM___FOO1__SWIG_0 = FOO1;
EXPORT const int ACL_ENUM___FOO2__SWIG_0 = FOO2;
EXPORT const int ACL_ENUM___FOO3__SWIG_0 = FOO3;
      </pre>
      </div>
    <p>
    and
    </p>
      <div class="targetlang">enum.cl:
      <pre>
(swig-def-foreign-type "COL" :int)
(swig-defvar "RED" "ACL_ENUM___RED__SWIG_0" :type :constant)
(swig-defvar "GREEN" "ACL_ENUM___GREEN__SWIG_0" :type :constant)
(swig-defvar "BLUE" "ACL_ENUM___BLUE__SWIG_0" :type :constant)

(swig-def-foreign-type "FOO" :int)
(swig-defvar "FOO1" "ACL_ENUM___FOO1__SWIG_0" :type :constant)
(swig-defvar "FOO2" "ACL_ENUM___FOO2__SWIG_0" :type :constant)
(swig-defvar "FOO3" "ACL_ENUM___FOO3__SWIG_0" :type :constant)

      </pre>
      </div>

<H3><a name="Allegrocl_nn19">18.3.5 Arrays</a></H3>


    <p>
    One limitation in the Allegro CL foreign-types module, is that,
    without macrology, expressions may not be used to specify the
    dimensions of an array declaration. This is not a horrible
    drawback unless it is necessary to allocate foreign structures
    based on the array declaration using ff:allocate-fobject. When it
    can be determined that an array bound is a valid numeric value,
    SWIG will include this in the generated array declaration on the
    lisp side, otherwise the value will be included, but commented out.
    </p>

    <p>
      Below is a comprehensive example, showing a number of legal
      C/C++ array declarations and how they are translated
      into foreign-type specifications in the generated lisp code.
    </p>
    <div class="code">array.h
    <pre>
#define MAX_BUF_SIZE 1024

namespace FOO {
  int global_var1[13];
  float global_var2[MAX_BUF_SIZE];

}

enum COLOR { RED = 10, GREEN = 20, BLUE, PURPLE = 50, CYAN };

namespace BAR {
  char global_var3[MAX_BUF_SIZE + 1];
  float global_var4[MAX_BUF_SIZE][13];
  signed short global_var5[MAX_BUF_SIZE + MAX_BUF_SIZE];

  int enum_var5[GREEN];
  int enum_var6[CYAN];

  COLOR enum_var7[CYAN][MAX_BUF_SIZE];
}
    </pre>
    </div>

    <p>
    Generates:
    </p>

    <div class="targetlang">array.cl
    <pre>
(in-package #.*swig-module-name*)

(swig-defpackage ("FOO"))
(swig-defpackage ("BAR"))

(swig-in-package ())
(swig-def-foreign-type "COLOR" :int)
(swig-defvar "RED" "ACL_ENUM___RED__SWIG_0" :type :constant)
(swig-defvar "GREEN" "ACL_ENUM___GREEN__SWIG_0" :type :constant)
(swig-defvar "BLUE" "ACL_ENUM___BLUE__SWIG_0" :type :constant)
(swig-defvar "PURPLE" "ACL_ENUM___PURPLE__SWIG_0" :type :constant)
(swig-defvar "CYAN" "ACL_ENUM___CYAN__SWIG_0" :type :constant)

(swig-in-package ())

(swig-defconstant "MAX_BUF_SIZE" 1024)
(swig-in-package ("FOO"))

(swig-defun ("global_var1" "ACL_FOO__global_var1_get__SWIG_0" :type :getter)
  (:void)
  (:returning ((* :int) )
   :strings-convert t)
  (make-instance 'ff:foreign-pointer :foreign-address (swig-ff-call)))


(swig-defun ("global_var2" "ACL_FOO__global_var2_set__SWIG_0" :type :setter)
  ((global_var2  (:array :float 1024) ))
  (:returning (:void )
   :strings-convert t)
  (let ((SWIG_arg0 global_var2))
  (swig-ff-call SWIG_arg0)))


(swig-in-package ())
(swig-in-package ("BAR"))
(swig-defun ("global_var3" "ACL_BAR__global_var3_set__SWIG_0" :type :setter)
  ((global_var3  (:array :char #|1024+1|#) ))
  (:returning (:void )
   :strings-convert t)
  (let ((SWIG_arg0 global_var3))
  (swig-ff-call SWIG_arg0)))


(swig-defun ("global_var4" "ACL_BAR__global_var4_set__SWIG_0" :type :setter)
  ((global_var4  (:array (:array :float 13) 1024) ))
  (:returning (:void )
   :strings-convert t)
  (let ((SWIG_arg0 global_var4))
  (swig-ff-call SWIG_arg0)))


(swig-defun ("global_var4" "ACL_BAR__global_var4_get__SWIG_0" :type :getter)
  (:void)
  (:returning ((* (:array :float 13)) )
   :strings-convert t)
  (make-instance 'ff:foreign-pointer :foreign-address (swig-ff-call)))


(swig-defun ("global_var5" "ACL_BAR__global_var5_set__SWIG_0" :type :setter)
  ((global_var5  (:array :short #|1024+1024|#) ))
  (:returning (:void )
   :strings-convert t)
  (let ((SWIG_arg0 global_var5))
  (swig-ff-call SWIG_arg0)))


(swig-defun ("enum_var5" "ACL_BAR__enum_var5_set__SWIG_0" :type :setter)
  ((enum_var5  (:array :int #|GREEN|#) ))
  (:returning (:void )
   :strings-convert t)
  (let ((SWIG_arg0 enum_var5))
  (swig-ff-call SWIG_arg0)))


(swig-defun ("enum_var6" "ACL_BAR__enum_var6_set__SWIG_0" :type :setter)
  ((enum_var6  (:array :int #|CYAN|#) ))
  (:returning (:void )
   :strings-convert t)
  (let ((SWIG_arg0 enum_var6))
  (swig-ff-call SWIG_arg0)))


(swig-defun ("enum_var7" "ACL_BAR__enum_var7_set__SWIG_0" :type :setter)
  ((enum_var7  (:array (:array #.(swig-insert-id "COLOR" ()) 1024) #|CYAN|#) ))
  (:returning (:void )
   :strings-convert t)
  (let ((SWIG_arg0 enum_var7))
  (swig-ff-call SWIG_arg0)))


(swig-defun ("enum_var7" "ACL_BAR__enum_var7_get__SWIG_0" :type :getter)
  (:void)
  (:returning ((* (:array #.(swig-insert-id "COLOR" ()) 1024)) )
   :strings-convert t)
  (make-instance 'ff:foreign-pointer :foreign-address (swig-ff-call)))
    </pre>
    </div>

<H3><a name="Allegrocl_nn20">18.3.6 Classes and Structs and Unions (oh my!)</a></H3>


<H4><a name="Allegrocl_nn21">18.3.6.1 CLOS wrapping of</a></H4>


    <p>
      Classes, unions, and structs are all treated the same way by the
      interface generator. For any of these objects, a
      def-foreign-type and a defclass form are generated.  For every
      function that returns an object (or pointer/reference) of C/C++
      type <tt>X</tt>, the wrapping defun (or defmethod) on the Lisp
      side will automatically wrap the pointer returned in an instance
      of the appropriate class. This makes it much easier to write and
      debug code than if pointers were passed around as a jumble of
      integer values.
    </p>

<H4><a name="Allegrocl_nn22">18.3.6.2 CLOS Inheritance</a></H4>


    <p>
      The CLOS class schema generated by the interface mirrors the
      inheritance of the classes in foreign code, with the
      ff:foreign-pointer class at its root. ff:foreign-pointer is a thin
      wrapper for pointers that is made available by the foreign function
      interface. Its key benefit is that it may be passed as an argument
      to any ff:def-foreign-call that is expecting a pointer as the
      parameter.
    </p>

<H4><a name="Allegrocl_nn23">18.3.6.3 Member fields and functions</a></H4>


    <p>
      All public fields will have accessor getter/setter functions
      generated for them, as appropriate. All public member functions
      will have wrapper functions generated.
    </p>

    <p>
      We currently ignore anything that isn't <tt>public</tt> (i.e.
      <tt>private</tt> or <tt>protected</tt>), because the C++ compiler
      won't allow the wrapper functions to access such fields. Likewise,
      the interface does nothing for <tt>friend</tt> directives, 
    </p>

<H4><a name="Allegrocl_nn24">18.3.6.4 Why not directly access C++ classes using foreign types?</a></H4>


    <p>
      The def-foreign-type generated by the SWIG interface is
      currently incomplete. We can reliably generate the object layout
      of simple structs and unions; they can be allocated via
      ff:allocate-fobject, and their member variables accessed
      directly using the various ff:fslot-value-* functions. However,
      the layout of C++ classes is more complicated. Different
      compilers adjust class layout based on inheritance patterns, and
      the presence of virtual member functions. The size of member
      function pointers vary across compilers as well. As a result, it
      is recommended that users of any generated interface not attempt
      to access C++ instances via the foreign type system, but instead
      use the more robust wrapper functions. 
    </p>

<H3><a name="Allegrocl_nn25">18.3.7 Templates</a></H3>


    
<H4><a name="Allegrocl_nn26">18.3.7.1 Generating wrapper code for templates</a></H4>


	<p>
	SWIG provides support for dealing with templates, but by
	default, it will not generate any member variable or function
	wrappers for templated classes. In order to create these
	wrappers, you need to explicitly tell SWIG to instantiate
	them. This is done via the 
	<a href="SWIGPlus.html#SWIGPlus_nn30"><tt>%template</tt></a>
	directive.
	</p>

<H4><a name="Allegrocl_nn27">18.3.7.2 Implicit Template instantiation</a></H4>


	<p>
	While no wrapper code is generated for accessing member
	variables, or calling member functions, type code is generated
	to include these templated classes in the foreign-type and CLOS
	class schema.
	</p>

<H3><a name="Allegrocl_nn28">18.3.8 Typedef, Templates, and Synonym Types</a></H3>


    <p>
      In C/C++ it is possible, via typedef, to have many names refer to
      the same <tt>type</tt>. In general, this is not a problem, though
      it can lead to confusion.  Assume the below C++ header file:
    </p>

    <div class="code">synonyms.h
    <pre>
class A { 
   int x;
   int y;
};

typedef A Foo;

A *xxx(int i);         /* sets A-&gt;x = A-&gt;y = i */
Foo *yyy(int i);       /* sets Foo-&gt;x = Foo-&gt;y = i */

int zzz(A *inst = 0);  /* return inst-&gt;x + inst-&gt;y */
    </pre>
    </div>

    <p>
      The function <tt>zzz</tt> is an overloaded functions; the
      foreign function call to it will be wrapped in a
      generic-function whose argument will be checked against a type
      of <tt>A</tt>. Assuming a simple implementation, a call
      to <tt>xxx(1)</tt> will return a pointer to an A object, which
      will be wrapped in a CLOS instance of class <tt>A</tt>, and a
      call to <tt>yyy(1)</tt> will result in a CLOS instance of
      type <tt>Foo</tt> being returned.  Without establishing a clear
      type relationship between <tt>Foo</tt> and <tt>A</tt>, an
      attempt to call <tt>zzz(yyy(1))</tt> will result in an error.
    </p>

    <p>
      We resolve this issue, by noting synonym relationships between
      types while generating the interface. A Primary type is selected
      (more on this below) from the candidate list of synonyms. For
      all other synonyms, intead of generating a distinct CLOS class
      definition, we generate a form that expands to:
    </p>
      <div class="targetlang">
	<tt>(setf (find-class &lt;synonym&gt;) &lt;primary&gt;)</tt>
      </div>
    <p>
      The result is that all references to synonym types in foreign
      code, are wrapped in the same CLOS wrapper, and, in particular,
      method specialization in wrapping generic functions works as 
      expected.
    </p>

    <p>
      Given the above header file, synonym.h, a Lisp session would
      appear as follows:
    </p>
    <div class="targetlang">
    <pre>
CL-USER&gt; (load "synonym.dll")
; Foreign loading synonym.dll.
t
CL-USER&gt; (load "synonym.cl")
; Loading c:\mikel\src\swig\test\synonym.cl
t
CL-USER&gt; 
synonym&gt; (setf a (xxx 3))
#&lt;A nil #x3261a0 @ #x207299da&gt;
synonym&gt; (setf foo (yyy 10))
#&lt;A nil #x3291d0 @ #x2072e982&gt;
synonym&gt; (zzz a)
6
synonym&gt; (zzz foo)
20
synonym&gt; 
    </pre>
    </div>

<H4><a name="Allegrocl_nn29">18.3.8.1 Choosing a primary type</a></H4>


    <p>
      The choice of a primary type is selected by the following
      criteria from a set of synonym types.
    </p>
      <ul>
	<li>
	  If a synonym type has a class definition, it is the primary type.
	</li>
	<li>
	  If a synonym type is a class template and has been explicitly
	  instantiated via <tt>%template</tt>, it is the primary type.
	</li>
	<li>
	  For all other sets of synonymous types, the synonym which is
	  parsed first becomes the primary type.
	</li>
      </ul>

<H3><a name="Allegrocl_nn30">18.3.9 Function overloading/Parameter defaulting</a></H3>


    <p>
      For each possible argument combination, a distinct wrapper
      function is created in the .cxx file. On the Lisp side, a
      generic functions is defined for each possible arity the
      overloaded/defaulted call may have. Each distinct wrapper is
      then called from within a defmethod on the appropriate generic
      function. These are further wrapped inside a dispatch function
      that checks the number of arguments it is called with and passes
      them via apply to the appropriate generic-function. This allows
      for a single entry point to overloaded functions on the lisp
      side.
    </p>

    <p>Example:
    </p>
    <div class="code">overload.h:
    <pre>

class A {
 public:
  int x;
  int y;
};

float xxx(int i, int x = 0);   /* return i * x */
float xxx(A *inst, int x);     /* return x + A-&gt;x + A-&gt;y */
    </pre>
    </div>

    <p>Creates the following three wrappers, for each of the possible argument
      combinations
    </p>
    <div class="code">overload_wrap.cxx
    <pre>
EXPORT void ACL___delete_A__SWIG_0 (A *larg1) {
    A *arg1 = (A *) 0 ;
    
    arg1 = larg1;
    try {
        delete arg1;
        
    } catch (...) {
        
    }
}


EXPORT float ACL___xxx__SWIG_0 (int larg1, int larg2) {
    float lresult = (float)0 ;
    int arg1 ;
    int arg2 ;
    float result;
    
    arg1 = larg1;
    arg2 = larg2;
    try {
        result = (float)xxx(arg1,arg2);
        
        lresult = result;
        return lresult;
    } catch (...) {
        return (float)0;
    }
}


EXPORT float ACL___xxx__SWIG_1 (int larg1) {
    float lresult = (float)0 ;
    int arg1 ;
    float result;
    
    arg1 = larg1;
    try {
        result = (float)xxx(arg1);
        
        lresult = result;
        return lresult;
    } catch (...) {
        return (float)0;
    }
}


EXPORT float ACL___xxx__SWIG_2 (A *larg1, int larg2) {
    float lresult = (float)0 ;
    A *arg1 = (A *) 0 ;
    int arg2 ;
    float result;
    
    arg1 = larg1;
    arg2 = larg2;
    try {
        result = (float)xxx(arg1,arg2);
        
        lresult = result;
        return lresult;
    } catch (...) {
        return (float)0;
    }
}
    </pre>
    </div>

    <p>
      And the following foreign-function-call and method definitions on the
      lisp side:
    </p>
    <div class="targetlang">overload.cl
    <pre>
(swig-defmethod ("xxx" "ACL___xxx__SWIG_0" :type :function :arity 2)
  ((PARM0_i cl:integer :int )
   (PARM1_x cl:integer :int ))
  (:returning (:float )
   :strings-convert t)
  (let ((SWIG_arg0 PARM0_i))
  (let ((SWIG_arg1 PARM1_x))
  (swig-ff-call SWIG_arg0 SWIG_arg1))))

(swig-defmethod ("xxx" "ACL___xxx__SWIG_1" :type :function :arity 1)
  ((PARM0_i cl:integer :int ))
  (:returning (:float )
   :strings-convert t)
  (let ((SWIG_arg0 PARM0_i))
  (swig-ff-call SWIG_arg0)))

(swig-defmethod ("xxx" "ACL___xxx__SWIG_2" :type :function :arity 2)
  ((PARM0_inst #.(swig-insert-id "A" () :type :class) (* #.(swig-insert-id "A" ())) )
   (PARM1_x cl:integer :int ))
  (:returning (:float )
   :strings-convert t)
  (let ((SWIG_arg0 PARM0_inst))
  (let ((SWIG_arg1 PARM1_x))
  (swig-ff-call SWIG_arg0 SWIG_arg1))))

(swig-dispatcher ("xxx" :type :function :arities (1 2)))
    </pre>
    </div>

    <p>And their usage in a sample lisp session:
    </p>
    <div class="targetlang">
    <pre>
overload&gt; (setf a (new_A))
#&lt;A nil #x329268 @ #x206cf612&gt;
overload&gt; (setf (A_x a) 10)
10
overload&gt; (setf (A_y a) 20)
20
overload&gt; (xxx 1)
0.0
overload&gt; (xxx 3 10)
30.0
overload&gt; (xxx a 1)
31.0
overload&gt; (xxx a 2)
32.0
overload&gt; 
    </pre>
    </div>

<H3><a name="Allegrocl_nn31">18.3.10 Operator wrapping and Operator overloading</a></H3>


    <p>
      Wrappers to defined C++ Operators are automatically renamed, using
      <tt>%rename</tt>, to the following defaults:
    </p>
    <div class="code">
    <pre>
/* name conversion for overloaded operators. */
#ifdef __cplusplus
%rename(__add__)	     *::operator+;
%rename(__pos__)	     *::operator+();
%rename(__pos__)	     *::operator+() const;

%rename(__sub__)	     *::operator-;
%rename(__neg__)	     *::operator-() const;
%rename(__neg__)	     *::operator-();

%rename(__mul__)	     *::operator*;
%rename(__deref__)	     *::operator*();
%rename(__deref__)	     *::operator*() const;

%rename(__div__)	     *::operator/;
%rename(__mod__)	     *::operator%;
%rename(__logxor__)	     *::operator^;
%rename(__logand__)	     *::operator&amp;;
%rename(__logior__)	     *::operator|;
%rename(__lognot__)	     *::operator~();
%rename(__lognot__)	     *::operator~() const;

%rename(__not__)	     *::operator!();
%rename(__not__)	     *::operator!() const;

%rename(__assign__)	     *::operator=;

%rename(__add_assign__)      *::operator+=;
%rename(__sub_assign__)	     *::operator-=;
%rename(__mul_assign__)	     *::operator*=;
%rename(__div_assign__)	     *::operator/=;
%rename(__mod_assign__)	     *::operator%=;
%rename(__logxor_assign__)   *::operator^=;
%rename(__logand_assign__)   *::operator&amp;=;
%rename(__logior_assign__)   *::operator|=;

%rename(__lshift__)	     *::operator&lt;&lt;;
%rename(__lshift_assign__)   *::operator&lt;&lt;=;
%rename(__rshift__)	     *::operator&gt;&gt;;
%rename(__rshift_assign__)   *::operator&gt;&gt;=;

%rename(__eq__)		     *::operator==;
%rename(__ne__)		     *::operator!=;
%rename(__lt__)		     *::operator&lt;;
%rename(__gt__)		     *::operator&gt;;
%rename(__lte__)	     *::operator&lt;=;
%rename(__gte__)	     *::operator&gt;=;

%rename(__and__)	     *::operator&amp;&amp;;
%rename(__or__)		     *::operator||;

%rename(__preincr__)	     *::operator++();
%rename(__postincr__)	     *::operator++(int);
%rename(__predecr__)	     *::operator--();
%rename(__postdecr__)	     *::operator--(int);

%rename(__comma__)	     *::operator,();
%rename(__comma__)	     *::operator,() const;

%rename(__member_ref__)      *::operator-&gt;;
%rename(__member_func_ref__) *::operator-&gt;*;

%rename(__funcall__)	     *::operator();
%rename(__aref__)	     *::operator[];
    </pre>
    </div>

    <p>
      Name mangling occurs on all such renamed identifiers, so that wrapper name
      generated by <tt>B::operator=</tt> will be <tt>B___eq__</tt>, i.e.
      <tt>&lt;class-or-namespace&gt;_</tt> has been added. Users may modify
      these default names by adding <tt>%rename</tt> directives in their own .i files.
    </p>

    <p>
      Operator overloading can be achieved by adding functions based
      on the mangled names of the function. In the following example,
      a class B is defined with a Operator== method defined. The
      swig <tt>%extend</tt> directive is used to add an overload method
      on Operator==.
    </p>

    <div class="code">opoverload.h
    <pre>
class B {
 public:
  int x;
  int y;
  bool operator==(B const&amp; other) const;
};
    </pre>
    </div>

    <p>
    and
    </p>
    <div class="code">opoverload.i
    <pre>
%module opoverload

%{
#include &lt;fstream&gt;
#include "opoverload.h"
%}

%{
bool B___eq__(B const *inst, int const x)
{
  // insert the function definition into the wrapper code before
  // the wrapper for it.
  // ... do stuff ...
}
%}

%include "opoverload.h"

%extend B {
 public:
  bool __eq__(int const x) const;
};
    </pre>
    </div>

    <p>
      Either operator can be called via a single call
      to the dispatch function:
    </p>
    <div class="targetlang">
    <pre>
opoverload&gt; (B___eq__ x1 x2)
nil
opoverload&gt; (B___eq__ x1 3)
nil
opoverload&gt; 
    </pre>
    </div>

<H3><a name="Allegrocl_nn32">18.3.11 Varargs</a></H3>


    <p>
      Variable length argument lists are not supported, by default. If
      such a function is encountered, a warning will generated to
      stderr. Varargs are supported via the SWIG <tt>%varargs</tt>
      directive. This directive allows you to specify a (finite)
      argument list which will be inserted into the wrapper in place
      of the variable length argument indicator.  As an example,
      consider the function <tt>printf()</tt>. Its declaration would
      appear as follows:
    </p>

    <p>
      See the following section
      on <a href="Varargs.html#Varargs">Variable Length arguments</a>
      provides examples on how <tt>%varargs</tt> can be used, along
      with other ways such functions can be wrapped.
    </p>

<H3><a name="Allegrocl_nn33">18.3.12 C++ Exceptions</a></H3>


    <p>
      Each C++ wrapper includes a handler to catch any exceptions that may
      be thrown while in foreign code. This helps prevent simple C++ errors
      from killing the entire lisp process. There is currently no mechanism
      to have these exceptions forwarded to the lisp condition system, nor
      has any explicit support of the exception related SWIG typemaps been
      implemented.
    </p>

<H3><a name="Allegrocl_nn34">18.3.13 Pass by value, pass by reference</a></H3>


    <p>
      Allegro CL does not support the passing of non-primitive foreign
      structures by value. As a result, SWIG must automatically detect
      and convert function parameters and return values to pointers
      whenever necessary. This is done via the use of <tt>typemaps</tt>,
      and should not require any fine tuning by the user, even for
      newly defined types.
    </p>

<H2><a name="Allegrocl_nn35">18.4 Typemaps</a></H2>


<p>
  SWIG Typemaps provide a powerful tool for automatically generating
  code to handle various menial tasks required of writing an interface
  to foreign code. The purpose of this section is to describe each of
  the typemaps used by the Allegro CL module. Please read the chapter
  on <a href="Typemaps.html#Typemaps">Typemaps</a> for more information.
</p>

<H3><a name="Allegrocl_nn36">18.4.1 Code Generation in the C++ Wrapper</a></H3>


    
    <p>
      Every C++ wrapper generated by SWIG takes the following form:
    </p>

    <div class="diagram">
    <pre>
return-val wrapper-name(parm0, parm1, ..., parmN)
{
   return-val lresult;   /* return value from wrapper */
   &lt;local-declaration&gt;
   ... results;          /* return value from function call */

   &lt;binding locals to parameters&gt;

   try {
      result = function-name(local0, local1, ..., localN);

      &lt;convert and bind result to lresult&gt;

      return lresult;
   catch (...) {
      return (int)0;
   }
    </pre>
    </div>

<H4><a name="Allegrocl_nn37">18.4.1.1 IN Typemap</a></H4>


    <p>
      the <tt>in</tt> typemap is used to generate code to convert parameters
      passed to C++ wrapper functions into the arguments desired for the
      call being wrapped. That is, it fills in the code for the 
      <tt>&lt;binding locals to parameters&gt;</tt> section above. We
      use this map to automatically convert parameters passed by
      reference to the wrapper function into by-value arguments for
      the wrapped call, and also to convert boolean values, which are
      passed as integers from lisp (by default), into the appropriate
      type for the language of code being wrapped.
    </p>

    <p>These are the default specifications for the IN typemap. Here,
      <tt>$input</tt> refers to the parameter code is being generated
      for, and <tt>$1</tt> is the local variable to which it is
      being assigned. The default settings of this typemap are as follows:
    </p>
      
    <div class="code">
    <pre>
%typemap(in) bool                          "$1 = (bool)$input;";
%typemap(in) char, unsigned char, signed char,
             short, signed short, unsigned short,
             int, signed int, unsigned int,
             long, signed long, unsigned long,
             float, double, long double, char *, void *, void,
             enum SWIGTYPE, SWIGTYPE *,
             SWIGTYPE[ANY], SWIGTYPE &amp;     "$1 = $input;";
%typemap(in) SWIGTYPE                      "$1 = *$input;";
    </pre>
    </div>

<H4><a name="Allegrocl_nn38">18.4.1.2 OUT Typemap</a></H4>


    <p>
      The <tt>out</tt> typemap is used to generate code to form the
      return value of the wrapper from the return value of the wrapped
      function. This code is placed in the &lt;convert and bind result to lresult&gt;
      section of the above code diagram. Its default mapping is as follows:
    </p>

    <div class="code">
    <pre>
%typemap(out) bool                          "$result = (int)$1;";
%typemap(out) char, unsigned char, signed char,
              short, signed short, unsigned short,
              int, signed int, unsigned int,
              long, signed long, unsigned long,
              float, double, long double, char *, void *, void,
              enum SWIGTYPE, SWIGTYPE *,
              SWIGTYPE[ANY], SWIGTYPE &amp;    "$result = $1;";
%typemap(out) SWIGTYPE                     "$result = new $1_type($1);";
    </pre>
    </div>

<H4><a name="Allegrocl_nn39">18.4.1.3 CTYPE Typemap</a></H4>


    <p>
      This typemap is not used for code generation, but purely for the
      transformation of types in the parameter list of the wrapper function.
      Its primary use is to handle by-value to by-reference conversion in the
      wrappers parameter list. Its default settings are:
    </p>

    <div class="code">
    <pre>
%typemap(ctype) bool                       "int";
%typemap(ctype) char, unsigned char, signed char,
                short, signed short, unsigned short,
                int, signed int, unsigned int,
                long, signed long, unsigned long,
                float, double, long double, char *, void *, void,
                enum SWIGTYPE, SWIGTYPE *,
                SWIGTYPE[ANY], SWIGTYPE &amp;  "$1_ltype";
%typemap(ctype) SWIGTYPE                   "$&amp;1_type";
    </pre>
    </div>

    <p>
      These three typemaps are specifically employed by the
      Allegro CL interface generator. SWIG also implements a number of
      other typemaps that can be used for generating code in the C/C++
      wrappers. You can read about
      these <a href="Typemaps.html#Typemaps_nn25">common typemaps</a> here.
    </p>

<H3><a name="Allegrocl_nn40">18.4.2 Code generation in Lisp wrappers</a></H3>


    <p>
      A number of custom typemaps have also been added to facilitate
      the generation of code in the lisp side of the interface. These
      are described below. The basic code generation structure is
      applied as a series of nested expressions, one for each
      parameter, then one for manipulating the return value, and last,
      the foreign function call itself.
    </p>

    <p>
      Note that the typemaps below use fully qualified symbols where
      necessary. Users writing their own typemaps should do likewise. 
      See the explanation in the last paragraph of 
      <a href="#Allegrocl_nn15">16.3.1 Namespaces</a> for details.
    </p>

<H4><a name="Allegrocl_nn41">18.4.2.1 LIN Typemap</a></H4>


    <p>
      The LIN typemap allows for the manipulating the lisp objects
      passed as arguments to the wrapping defun before passing them to
      the foreign function call. For example, when passing lisp
      strings to foreign code, it is often necessary to copy the
      string into a foreign structure of type (:char *) of appropriate
      size, and pass this copy to the foreign call. Using the LIN
      typemap, one could arrange for the stack-allocation of a foreign
      char array, copy your string into it, and not have to worry
      about freeing the copy after the function returns. 
    </p>

    <p>The LIN typemap accepts the following <tt>$variable</tt> references.
    </p>
      <ul>
	<li><tt>$in</tt> - expands to the name of the parameter being
	  applied to this typemap
	</li>
	<li><tt>$out</tt> - expands to the name of the local variable
	  assigned to this typemap
	</li>
	<li><tt>$in_fftype</tt> - the foreign function type of the C type.</li>
	<li><tt>$*in_fftype</tt> - the foreign function type of the C type
	  with one pointer removed. If there is no pointer, then $*in_fftype
	  is the same as $in_fftype.
	</li>
	<li><tt>$body</tt> - very important. Instructs SWIG where
	  subsequent code generation steps should be inserted into the
	  current typemap.  Leaving out a <tt>$body</tt> reference
	  will result in lisp wrappers that do very little by way of
	  calling into foreign code. Not recommended.
	</li>
      </ul>
      
    <div class="code">
    <pre>
%typemap(lin)	SWIGTYPE 	"(cl:let (($out $in))\n  $body)";
    </pre>
    </div>

<H4><a name="Allegrocl_nn42">18.4.2.2 LOUT Typemap</a></H4>


    <p>
      The LOUT typemap is the means by which we effect the wrapping of
      foreign pointers in CLOS instances. It is applied after all LIN
      typemaps, and immediately before the actual foreign-call.
    </p>

    <p>The LOUT typemap uses the following $variable
    </p>
      <ul>
	<li><tt>$lclass</tt> - Expands to the CLOS class that
	  represents foreign-objects of the return type matching this
	  typemap.
	</li>
	<li><tt>$body</tt> - Same as for the LIN map. Place this
	  variable where you want the foreign-function call to occur.
	</li>
	<li><tt>$ldestructor</tt> - Expands to the symbol naming the destructor for this
	  class ($lclass) of object. Allows you to insert finalization or automatic garbage
	  collection into the wrapper code (see default mappings below).
	</li>
      </ul>

    <div class="code">
    <pre>
%typemap(lout) bool, char, unsigned char, signed char,
               short, signed short, unsigned short,
               int, signed int, unsigned int,
               long, signed long, unsigned long,
               float, double, long double, char *, void *, void,
               enum SWIGTYPE    "$body";
%typemap(lout) SWIGTYPE[ANY], SWIGTYPE *,
               SWIGTYPE &amp;       "(cl:make-instance '$lclass :foreign-address $body)";
%typemap(lout) SWIGTYPE    "(cl:let* ((address $body)\n
                            (ACL_result (cl:make-instance '$lclass :foreign-address address)))\n
                            (cl:unless (cl::zerop address)\n
                            (excl:schedule-finalization ACL_result #'$ldestructor))\n
                             ACL_result)";
    </pre>
    </div>

<H4><a name="Allegrocl_nn43">18.4.2.3 FFITYPE Typemap</a></H4>


    
    <p>
      The FFITYPE typemap works as a helper for a body of code that
      converts C/C++ type specifications into Allegro CL foreign-type
      specifications. These foreign-type specifications appear in
      ff:def-foreing-type declarations, and in the argument list and
      return values of ff:def-foreign-calls. You would modify this
      typemap if you want to change how the FFI passes through
      arguments of a given type. For example, if you know that a
      particular compiler represents booleans as a single byte, you
      might add an entry for:
    </p>

    <div class="code">
    <pre>
%typemap(ffitype) bool ":unsigned-char";
    </pre>
    </div>

    <p>
      Note that this typemap is pure type transformation, and is not
      used in any code generations step the way the LIN and LOUT
      typemaps are. The default mappings for this typemap are:
    </p>

    <div class="code">
    <pre>
%typemap(ffitype) bool ":int";
%typemap(ffitype) char ":char";
%typemap(ffitype) unsigned char ":unsigned-char";
%typemap(ffitype) signed char ":char";
%typemap(ffitype) short, signed short ":short";
%typemap(ffitype) unsigned short ":unsigned-short";
%typemap(ffitype) int, signed int ":int";
%typemap(ffitype) unsigned int ":unsigned-int";
%typemap(ffitype) long, signed long ":long";
%typemap(ffitype) unsigned long ":unsigned-long";
%typemap(ffitype) float ":float";
%typemap(ffitype) double ":double";
%typemap(ffitype) char * "(* :char)";
%typemap(ffitype) void * "(* :void)";
%typemap(ffitype) void ":void";
%typemap(ffitype) enum SWIGTYPE ":int";
%typemap(ffitype) SWIGTYPE &amp; "(* :void)";
    </pre>
    </div>

<H4><a name="Allegrocl_nn44">18.4.2.4 LISPTYPE Typemap</a></H4>


    <p>
      This is another type only transformation map, and is used to
      provide the lisp-type, which is the optional third argument in
      argument specifier in a ff:def-foreign-call form. Specifying a
      lisp-type allows the foreign call to perform type checking on
      the arguments passed in. The default entries in this typemap are:
    </p>

    <div class="code">
    <pre>
%typemap(lisptype) bool "cl:boolean";
%typemap(lisptype) char "cl:character";
%typemap(lisptype) unsigned char "cl:integer";
%typemap(lisptype) signed char "cl:integer";
    </pre>
    </div>

<H4><a name="Allegrocl_nn45">18.4.2.5 LISPCLASS Typemap</a></H4>


    <p>
      The LISPCLASS typemap is used to generate the method signatures
      for the generic-functions which wrap overloaded functions and
      functions with defaulted arguments. The default entries are:
    </p>

    <div class="code">
    <pre>
%typemap(lispclass) bool "t";
%typemap(lispclass) char "cl:character";
%typemap(lispclass) unsigned char, signed char,
                    short, signed short, unsigned short,
                    int, signed int, unsigned int,
                    long, signed long, unsigned long,
                    enum SWIGTYPE       "cl:integer";
%typemap(lispclass) float "cl:single-float";
%typemap(lispclass) double "cl:double-float";
%typemap(lispclass) char * "cl:string";
    </pre>
    </div>

<H3><a name="Allegrocl_nn46">18.4.3 Modifying SWIG behavior using typemaps</a></H3>


    <p>
      The following example shows how we made use of the above
      typemaps to add support for the wchar_t type. 
    </p>

    <div class="code">
    <pre>
%typecheck(SWIG_TYPECHECK_UNICHAR) wchar_t { $1 = 1; };

%typemap(in)        wchar_t "$1 = $input;";
%typemap(lin)       wchar_t "(cl:let (($out (cl:char-code $in)))\n  $body)";
%typemap(lin)       wchar_t* "(excl:with-native-string
                                         ($out $in
                                          :external-format #+little-endian :fat-le 
                                                           #-little-endian :fat)\n
                                 $body)"

%typemap(out)       wchar_t "$result = $1;";
%typemap(lout)      wchar_t "(cl:code-char $body)";
%typemap(lout)      wchar_t* "(excl:native-to-string $body
                                          :external-format #+little-endian :fat-le
                                                           #-little-endian :fat)";

%typemap(ffitype)   wchar_t ":unsigned-short";
%typemap(lisptype)  wchar_t "";
%typemap(ctype)     wchar_t "wchar_t";
%typemap(lispclass) wchar_t "cl:character";
%typemap(lispclass) wchar_t* "cl:string";
    </pre>
    </div>

<H2><a name="Allegrocl_nn47">18.5 Identifier Converter functions</a></H2>


<H3><a name="Allegrocl_nn48">18.5.1 Creating symbols in the lisp environment</a></H3>


<p>
  Various symbols must be generated in the lisp environment to which
  class definitions, functions, constants, variables, etc. must be
  bound. Rather than force a particular convention for naming these
  symbols, an identifier (to symbol) conversion function is used. A
  user-defined identifier-converter can then implement any symbol
  naming, case-modifying, scheme desired.
</p>

<p>
  In generated SWIG code, whenever some interface object must be
  referenced by its lisp symbol, a macro is inserted that calls the
  identifier-converter function to generate the appropriate symbol
  reference. It is therefore expected that the identifier-converter
  function reliably return the same (eq) symbol given the same set
  of arguments.
</p>

<H3><a name="Allegrocl_nn49">18.5.2 Existing identifier-converter functions</a></H3>


  <p>Two basic identifier routines have been defined.
<H4><a name="Allegrocl_nn50">18.5.2.1 identifier-convert-null</a></H4>


    <p>
      No modification of the identifier string is performed. Based on
      other arguments, the identifier may be concatenated with other
      strings, from which a symbol will be created.
    </p>

<H4><a name="Allegrocl_nn51">18.5.2.2 identifier-convert-lispify</a></H4>


    <p>
      All underscores in the identifier string are converted to
      hyphens. Otherwise, identifier-convert-lispify performs the
      same symbol transformations.
    </p>

<H4><a name="Allegrocl_nn52">18.5.2.3 Default identifier to symbol conversions</a></H4>


    <p>
      Check the definitions of the above two default
      identifier-converters in <tt>Lib/allegrocl/allegrocl.swg</tt> for
      default naming conventions.
    </p>

<H3><a name="Allegrocl_nn53">18.5.3 Defining your own identifier-converter</a></H3>


<p>
  A user-defined identifier-converter function should conform to the following
  specification:
</p>

<div class="targetlang">
<pre>
(defun identifier-convert-fn (id &amp;key type class arity) ...body...)
result ==&gt; symbol or (setf symbol)
</pre>
</div>

<p>The <tt>ID</tt> argument is a string representing an identifier in the
foreign environment.
</p>

<p>
The :type keyword argument provides more information on the type of
identifier. Its value is a symbol. This allows the
identifier-converter to apply different heuristics when mapping
different types of identifiers to symbols. SWIG will generate calls
to your identifier-converter using the following types.
</p>

<ul>
  <li>:class - names a CLOS class.</li>
  <li>:constant - names a defconstant</li>
  <li>:constructor - names a function for creating a foreign object</li>
  <li>:destructor - names a function for freeing a foreign object</li>
  <li>:function - names a CLOS wrapping defmethod or defun.</li>
  <li>:ff-operator - names a foreign call defined via ff:def-foreign-call</li>
  <li>:getter - getter function</li>
  <li>:namespace - names a C++ namespace</li>
  <li>:setter - names a setter function. May return a (setf symbol) reference</li>
  <li>:operator - names a C++ operator, such as Operator=, Operator*.</li>
  <li>:slot - names a slot in a struct/class/union declaration.</li>
  <li>:type - names a foreign-type defined via ff:def-foreign-type.</li>
  <li>:variable - names a variable defined via ff:def-foreign-variable.</li>
</ul>

<p>
The :class keyword argument is a string naming a foreign
class. When non-nil, it indicates that the current identifier has
scope in the specified class.
</p>

<p>
The :arity keyword argument only appears in swig:swig-defmethod forms
generated for overloaded functions. Its value is an integer
indicating the number of arguments passed to the routine indicated by
this identifier.
</p>

<H3><a name="Allegrocl_nn54">18.5.4 Instructing SWIG to use a particular identifier-converter</a></H3>


<p>
  By default, SWIG will use identifier-converter-null. To specify
  another convert function, use the <tt>-identifier-converter</tt>
  command-line argument. The value should be a string naming the
  function you wish the interface to use instead, when generating
  symbols. ex:
</p>

<div class="code">
<pre>
% swig -allegrocl -c++ -module mymodule -identifier-converter my-identifier-converter
</pre>
</div>


</body>
</html>