1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
|
NETWORK WORKING GROUP L. Zhu
Internet-Draft P. Leach
Updates: 4120 (if approved) K. Jaganathan
Intended status: Standards Track Microsoft Corporation
Expires: September 3, 2007 March 2, 2007
Anonymity Support for Kerberos
draft-ietf-krb-wg-anon-03
Status of this Memo
By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
This Internet-Draft will expire on September 3, 2007.
Copyright Notice
Copyright (C) The IETF Trust (2007).
Abstract
This document defines extensions to the Kerberos protocol for the
Kerberos client to authenticate the Kerberos Key Distribution Center
and the Kerberos server, without revealing the client's identity.
These extensions can be used to secure communication between the
anonymous client and the server.
Zhu, et al. Expires September 3, 2007 [Page 1]
Internet-Draft Kerberos Anonymity Support March 2007
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Conventions Used in This Document . . . . . . . . . . . . . . 3
3. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. Protocol Description . . . . . . . . . . . . . . . . . . . . . 4
5. GSS-API Implementation Notes . . . . . . . . . . . . . . . . . 7
6. Security Considerations . . . . . . . . . . . . . . . . . . . 8
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 9
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 9
9. Normative References . . . . . . . . . . . . . . . . . . . . . 9
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 10
Intellectual Property and Copyright Statements . . . . . . . . . . 11
Zhu, et al. Expires September 3, 2007 [Page 2]
Internet-Draft Kerberos Anonymity Support March 2007
1. Introduction
In certain situations, the Kerberos [RFC4120] client may wish to
authenticate a server and/or protect communications without revealing
its own identity. For example, consider an application which
provides read access to a research database, and which permits
queries by arbitrary requestors. A client of such a service might
wish to authenticate the service, to establish trust in the
information received from it, but might not wish to disclose its
identity to the service for privacy reasons.
Extensions to [RFC4120] are specified in this document by which a
client can authenticate the Key Distribution Center (KDC) and request
an anonymous ticket. The client can use the anonymous ticket to
authenticate the server and protect subsequent client-server
communications. These extensions provide Kerberos with functional
equivalence to Transport Layer Security (TLS) [RFC4346].
By using the extensions defined in this specification, the client may
reveal its identity in its initial request to its own KDC, but it can
remain anonymous thereafter to KDCs on the cross-realm authentication
path, and to the server with which it communicates.
2. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
3. Definitions
The anonymous Kerberos realm name is defined as a well-known realm
name based on [KRBNAM]. The value is the literal "WELLKNOWN:
ANONYMOUS". An anonymous Kerberos realm name MUST NOT be present in
the transited field [RFC4120] of a ticket.
The anonymous Kerberos principal name is defined as a well-known
Kerberos principal name based on [KRBNAM]. The value of the name-
type field [RFC4120] is KRB_NT_RESRVED [KRBNAM], and the value of the
name-string field [RFC4120] is a sequence of two KerberosString
components: "WELLKNOWN", "ANONYMOUS".
Note that in this specification, the anonymous principal name and
realm are only applicable to the client in Kerberos messages, the
server MUST NOT be anonymous in any Kerberos message.
Zhu, et al. Expires September 3, 2007 [Page 3]
Internet-Draft Kerberos Anonymity Support March 2007
The anonymous ticket flag is defined as bit TBA (with the first bit
being bit 0) in the TicketFlags:
TicketFlags ::= KerberosFlags
-- anonymous(TBA)
-- TicketFlags and KerberosFlags are defined in [RFC4120]
An anonymous ticket is a ticket that has all of the following
properties:
o The cname field [RFC4120] contains the anonymous Kerberos
principal name.
o The crealm field [RFC4120] contains the client's realm name, or
the name of the realm that issued the initial ticket for the
client principal, or the anonymous realm name.
o The anonymous ticket contains no information that can reveal the
client's identity. However the ticket may contain the client
realm, intermediate realms on the client's authentication path,
and authorization data that may provide information related to the
client's identity. For example, an anonymous principal that is
identifiable only within a particular group of users can be
implemented using authorization data and such authorization data,
if included in the anonymous ticket, shall disclose the client's
membership of that group.
o The anonymous ticket flag is set.
The request-anonymous KDC option is defined as bit TBA (with the
first bit being bit 0) in the KDCOptions:
KDCOptions ::= KerberosFlags
-- request-anonymous(TBA)
-- KDCOptions and KerberosFlags are defined in [RFC4120]
As described in Section 4, the request-anonymous KDC option is set to
request an anonymous ticket.
4. Protocol Description
In order to request an anonymous ticket, the client sets the request-
anonymous KDC option in an Authentication Exchange (AS) or Ticket
Granting Service (TGS) request [RFC4120]. The client can request an
anonymous Ticket Granting Ticket (TGT) based on a normal TGT. Unless
otherwise specified, the client can obtain an anonymous ticket with
the anonymous realm name only by requesting an anonymous ticket in an
Zhu, et al. Expires September 3, 2007 [Page 4]
Internet-Draft Kerberos Anonymity Support March 2007
AS exchange with the client realm set as anonymous in the request.
If the client wishes to authenticate the KDC anonymously, it sets the
client name as anonymous in the AS exchange and provides a
PA_PK_AS_REQ pre-authentication data [RFC4556] where both the
signerInfos field and the certificates field of the SignedData
[RFC3852] of the PA_PK_AS_REQ are empty. Because the anonymous
client does not have an associated asymmetric key pair, the client
MUST choose the Diffie-Hellman key agreement method by filling in the
Diffie-Hellman domain parameters in the clientPublicValue [RFC4556].
If the ticket in the PA-TGS-REQ [RFC4120] of the TGS request is
anonymous, or if the client in the AS request is anonymous, the
request-anonymous KDC option MUST be set in the request. Otherwise,
the KDC MUST return a KRB-ERROR message with the code
KDC_ERR_BADOPTION [RFC4120], and there is no accompanying e-data
defined in this document.
Upon receiving the AS request with a PA_PK_AS_REQ [RFC4556] from the
anonymous client, the KDC processes the request according to Section
3.1.2 of [RFC4120]. The KDC skips the checks for the client's
signature and the client's public key (such as the verification of
the binding between the client's public key and the client name), but
performs otherwise-applicable checks, and proceeds as normal
according to [RFC4556]. For example, the AS MUST check if the
client's Diffie-Hellman domain parameters are acceptable. The
Diffie-Hellman key agreement method MUST be used and the reply key is
derived according to Section 3.2.3.1 of [RFC4556]. If the
clientPublicValue is not present in the request, the KDC MUST return
a KRB-ERROR [RFC4120] with the code
KDC_ERR_PUBLIC_KEY_ENCRYPTION_NOT_SUPPORTED [RFC4556] and there is no
accompanying e-data. If all goes well, an anonymous ticket is
generated according to Section 3.1.3 of [RFC4120] and a PA_PK_AS_REP
[RFC4556] pre-authentication data is included in the KDC reply
according to [RFC4556]. If the KDC does not have an asymmetric key
pair, it MAY reply anonymously or reject the authentication attempt.
If the KDC replies anonymously, both the signerInfos field and the
certificates field of the SignedData [RFC3852] of PA_PK_AS_REP in the
reply are empty. The server name in the anonymous KDC reply contains
the name of the TGS.
Upon receipt of the KDC reply that contains an anonymous ticket and a
PA_PK_AS_REP [RFC4556] pre-authentication data, the client can then
authenticate the KDC based on the KDC's signature in the
PA_PK_AS_REP. If the KDC's signature is missing in the KDC reply
(the reply is anonymous), the client MUST reject the returned ticket
if it cannot authenticate the KDC otherwise.
Zhu, et al. Expires September 3, 2007 [Page 5]
Internet-Draft Kerberos Anonymity Support March 2007
The client can use the client keys to mutually authenticate with the
KDC, request an anonymous TGT in the AS request. And in that case,
the reply key is selected as normal according to Section 3.1.3 of
[RFC4120].
For the TGS exchange, the reply key is selected as normal according
to Section 3.3.3 of [RFC4120].
When policy allows, the KDC issues an anonymous ticket. Based on
local policy, the client realm in the anonymous ticket can be the
anonymous realm name or the realm of the KDC. However, in all cases,
the client name and the client realm in the EncKDCRepPart of the
reply [RFC4120] MUST match with the corresponding client name and the
client realm of the anonymous ticket in the reply. The client MUST
use the client name and the client realm returned in the
EncKDCRepPart in subsequent message exchanges when using the obtained
anonymous ticket.
During the TGS request, when propagating authorization data, care
MUST be taken by the TGS to ensure that the client confidentiality is
not violated. If a anonymous ticket is returned, any authorization
element that may reveal the client's identity MUST be removed. The
authentication attempt MUST be rejected if there is an authorization
element that is intended to restrict the use of the ticket thus
cannot be removed or the local policy prevents the removal of an
authorization element, and this rule MUST be applied to all critical
and optional authorization data. An optional authorization element
unknown by the TGS MUST be removed if it does not potentially convey
any rights or limit the rights otherwise conveyed in the ticket. If
there is a critical unknown authorization element, unless this
element is encapsulated in a known authorization data element
amending the criticality of the elements it contains, authentication
MUST fail according to [RFC4120]. If it is inappropriate to remove
an authorization element from the TGS request in order to produce an
anonymous ticket, the KDC MUST return an error message with the code
KDC_ERR_POLICY [RFC4120], and there is no accompanying e-data defined
in this document.
The TGS MUST add the name of the previous realm according to Section
3.3.3.2 of [RFC4120]. If the client's realm is the anonymous realm,
the abbreviation forms [RFC4120] that build on the preceding name
cannot be used at the start of the transited encoding. The null-
subfield form (e.g., encoding ending with ",") [RFC4120] could not be
used next to the anonymous realm that can potentially be at the
beginning where the client realm is filled in.
The KDC fills out the authtime field of the anonymous ticket in the
reply as follows: If the anonymous ticket is returned in an AS
Zhu, et al. Expires September 3, 2007 [Page 6]
Internet-Draft Kerberos Anonymity Support March 2007
exchange, the authtime field of the ticket contains the request time.
If the anonymous ticket is returned in a TGS exchange, the authtime
field contains the authtime of the ticket in the PA-TGS-REQ pre-
authentication data [RFC4120]. An anonymous ticket can be renewed,
and the authtime field of a renewed ticket is the authtime in the
anonymous ticket on which the renewed ticket was based.
If the client is anonymous and the KDC does not have a key to encrypt
the reply (this can happen when, for example, the KDC does not
support PKINIT [RFC4556]), the KDC MUST return an error message with
the code KDC_ERR_NULL_KEY [RFC4120] and there is no accompanying
e-data defined in this document.
If a client requires anonymous communication then the client MUST
check to make sure that the ticket in the reply is actually anonymous
by checking the presence of the anonymous ticket flag. This is
because KDCs ignore unknown KDC options. A KDC that does not
understand the request-anonymous KDC option will not return an error,
but will instead return a normal ticket.
The subsequent client and server communications then proceed as
described in [RFC4120].
A server accepting an anonymous service ticket may assume that
subsequent requests using the same ticket originate from the same
client. Requests with different tickets are likely to originate from
different clients.
5. GSS-API Implementation Notes
At the GSS-API [RFC2743] level, the use of an anonymous principal by
the initiator/client requires the initiator/client to assert the
"anonymous" flag when calling GSS_Init_Sec_Context().
GSS-API does not know or define "anonymous credentials", so the
(printable) name of the anonymous principal will rarely be used by or
relevant for the initiator/client. The printable name is relevant
for the acceptor/server when performing an authorization decision
based on the initiator name that is returned from the acceptor side
upon the successful security context establishment.
A GSS-API initiator MUST carefully check the resulting context
attributes from the initial call to GSS_Init_Sec_Context() when
requesting anonymity, because (as in the GSS-API tradition and for
backwards compatibility) anonymity is just another optional context
attribute. It could be that the mechanism doesn't recognize the
attribute at all or that anonymity is not available for some other
Zhu, et al. Expires September 3, 2007 [Page 7]
Internet-Draft Kerberos Anonymity Support March 2007
reasons -- and in that case the initiator must NOT send the initial
security context token to the acceptor, because it will likely reveal
the initiators identity to the acceptor, something that can rarely be
"un-done".
GSS-API defines the name_type GSS_C_NT_ANONYMOUS [RFC2743] to
represent the anonymous identity. In addition, Section 2.1.1 of
[RFC1964] defines the single string representation of a Kerberos
principal name with the name_type GSS_KRB5_NT_PRINCIPAL_NAME. For
the anonymous principals, the name component within the exportable
name as defined in Section 2.1.3 of [RFC1964] MUST signify the realm
name according to Section 2.1.1 of [RFC1964]. Note that in this
specification only the client/initiator can be anonymous.
Portable initiators are RECOMMENDED to use default credentials
whenever possible, and request anonymity only through the input
anon_req_flag [RFC2743] to GSS_Init_Sec_Context().
6. Security Considerations
Since KDCs ignore unknown options [RFC4120], a client requiring
anonymous communication needs to make sure that the ticket is
actually anonymous. This is because a KDC that that does not
understand the anonymous option would not return an anonymous ticket.
By using the mechanism defined in this specification, the client does
not reveal its identity to the server but its identity may be
revealed to the KDC of the server principal (when the server
principal is in a different realm than that of the client), and any
KDC on the cross-realm authentication path. The Kerberos client MUST
verify the ticket being used is indeed anonymous before communicating
with the server, otherwise the client's identity may be revealed
unintentionally.
In cases where specific server principals must not have access to the
client's identity (for example, an anonymous poll service), the KDC
can define server principal specific policy that insure any normal
service ticket can NEVER be issued to any of these server principals.
If the KDC that issued an anonymous ticket were to maintain records
of the association of identities to an anonymous ticket, then someone
obtaining such records could breach the anonymity. Additionally, the
implementations of most (for now all) KDC's respond to requests at
the time that they are received. Traffic analysis on the connection
to the KDC will allow an attacker to match client identities to
anonymous tickets issued. Because there are plaintext parts of the
tickets that are exposed on the wire, such matching by a third party
Zhu, et al. Expires September 3, 2007 [Page 8]
Internet-Draft Kerberos Anonymity Support March 2007
observer is relatively straightforward.
7. Acknowledgements
Clifford Neuman contributed the core notions of this document.
Ken Raeburn reviewed the document and provided suggestions for
improvements.
Martin Rex wrote the text for GSS-API considerations.
Nicolas Williams reviewed the GSS-API considerations section and
suggested ideas for improvements.
Sam Hartman and Nicolas Williams were great champions of this work.
In addition, the following individuals made significant
contributions: Jeffery Altman, Tom Yu, Chaskiel M Grundman, Love
Hoernquist Aestrand, and Jeffery Hutzelman.
8. IANA Considerations
Section 3 defines the anonymous Kerberos name and the anonymous
Kerberos realm based on [KRBNAM]. The IANA registry for [KRBNAM]
need to be updated to add references to this document.
9. Normative References
[KRBNAM] Zhu, L., "Additonal Kerberos Naming Contraints",
draft-ietf-krb-wg-naming, work in progress.
[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
RFC 1964, June 1996.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2743] Linn, J., "Generic Security Service Application Program
Interface Version 2, Update 1", RFC 2743, January 2000.
[RFC3852] Housley, R., "Cryptographic Message Syntax (CMS)",
RFC 3852, July 2004.
[RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
Kerberos Network Authentication Service (V5)", RFC 4120,
July 2005.
Zhu, et al. Expires September 3, 2007 [Page 9]
Internet-Draft Kerberos Anonymity Support March 2007
[RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.1", RFC 4346, April 2006.
[RFC4556] Zhu, L. and B. Tung, "Public Key Cryptography for Initial
Authentication in Kerberos (PKINIT)", RFC 4556, June 2006.
Authors' Addresses
Larry Zhu
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
US
Email: lzhu@microsoft.com
Paul Leach
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
US
Email: paulle@microsoft.com
Karthik Jaganathan
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
US
Email: karthikj@microsoft.com
Zhu, et al. Expires September 3, 2007 [Page 10]
Internet-Draft Kerberos Anonymity Support March 2007
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgment
Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).
Zhu, et al. Expires September 3, 2007 [Page 11]
|