summaryrefslogtreecommitdiff
path: root/python/samba/kcc/graph.py
blob: ef261294b80f5e596eb54dda06b8b521a8700305 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
# Graph functions used by KCC intersite
#
# Copyright (C) Dave Craft 2011
# Copyright (C) Andrew Bartlett 2015
#
# Andrew Bartlett's alleged work performed by his underlings Douglas
# Bagnall and Garming Sam.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

import itertools
import heapq

from samba.kcc.graph_utils import write_dot_file, verify_and_dot, verify_graph
from samba.ndr import ndr_pack
from samba.dcerpc import misc

from samba.kcc.debug import DEBUG, DEBUG_FN

MAX_DWORD = 2 ** 32 - 1


class ReplInfo(object):
    """Represents information about replication

    NTDSConnections use one representation a replication schedule, and
    graph vertices use another. This is the Vertex one.

    """
    def __init__(self):
        self.cost = 0
        self.interval = 0
        self.options = 0
        self.schedule = None
        self.duration = 84 * 8

    def set_repltimes_from_schedule(self, schedule):
        """Convert the schedule and calculate duration

        :param schdule: the schedule to convert
        """
        self.schedule = convert_schedule_to_repltimes(schedule)
        self.duration = total_schedule(self.schedule)


def total_schedule(schedule):
    """Return the total number of 15 minute windows in which the schedule
    is set to replicate in a week. If the schedule is None it is
    assumed that the replication will happen in every 15 minute
    window.

    This is essentially a bit population count.
    """

    if schedule is None:
        return 84 * 8  # 84 bytes = 84 * 8 bits

    total = 0
    for byte in schedule:
        while byte != 0:
            total += byte & 1
            byte >>= 1
    return total


def convert_schedule_to_repltimes(schedule):
    """Convert NTDS Connection schedule to replTime schedule.

    Schedule defined in  MS-ADTS 6.1.4.5.2
    ReplTimes defined in MS-DRSR 5.164.

    "Schedule" has 168 bytes but only the lower nibble of each is
    significant. There is one byte per hour. Bit 3 (0x08) represents
    the first 15 minutes of the hour and bit 0 (0x01) represents the
    last 15 minutes. The first byte presumably covers 12am - 1am
    Sunday, though the spec doesn't define the start of a week.

    "ReplTimes" has 84 bytes which are the 168 lower nibbles of
    "Schedule" packed together. Thus each byte covers 2 hours. Bits 7
    (i.e. 0x80) is the first 15 minutes and bit 0 is the last. The
    first byte covers Sunday 12am - 2am (per spec).

    Here we pack two elements of the NTDS Connection schedule slots
    into one element of the replTimes list.

    If no schedule appears in NTDS Connection then a default of 0x11
    is set in each replTimes slot as per behaviour noted in a Windows
    DC. That default would cause replication within the last 15
    minutes of each hour.
    """
    # note, NTDSConnection schedule == None means "once an hour"
    # repl_info == None means "always"
    if schedule is None or schedule.dataArray[0] is None:
        return [0x11] * 84

    times = []
    data = schedule.dataArray[0].slots

    for i in range(84):
        times.append((data[i * 2] & 0xF) << 4 | (data[i * 2 + 1] & 0xF))

    return times


def combine_repl_info(info_a, info_b):
    """Generate an repl_info combining two others

    The schedule is set to be the intersection of the two input schedules.
    The duration is set to be the duration of the new schedule.
    The cost is the sum of the costs (saturating at a huge value).
    The options are the intersection of the input options.
    The interval is the maximum of the two intervals.

    :param info_a: An input replInfo object
    :param info_b: An input replInfo object
    :return: a new ReplInfo combining the other 2
    """
    info_c = ReplInfo()
    info_c.interval = max(info_a.interval, info_b.interval)
    info_c.options = info_a.options & info_b.options

    #schedule of None defaults to "always"
    if info_a.schedule is None:
        info_a.schedule = [0xFF] * 84
    if info_b.schedule is None:
        info_b.schedule = [0xFF] * 84

    info_c.schedule = [a & b for a, b in zip(info_a.schedule, info_b.schedule)]
    info_c.duration = total_schedule(info_c.schedule)

    info_c.cost = min(info_a.cost + info_b.cost, MAX_DWORD)
    return info_c


def get_spanning_tree_edges(graph, my_site, label=None, verify=False,
                            dot_file_dir=None):
    """Find edges for the intersite graph

    From MS-ADTS 6.2.2.3.4.4

    :param graph: a kcc.kcc_utils.Graph object
    :param my_site: the topology generator's site
    :param label: a label for use in dot files and verification
    :param verify: if True, try to verify that graph properties are correct
    :param dot_file_dir: if not None, write Graphviz dot files here
    """
    # Phase 1: Run Dijkstra's to get a list of internal edges, which are
    # just the shortest-paths connecting colored vertices

    internal_edges = set()

    for e_set in graph.edge_set:
        edgeType = None
        for v in graph.vertices:
            v.edges = []

        # All con_type in an edge set is the same
        for e in e_set.edges:
            edgeType = e.con_type
            for v in e.vertices:
                v.edges.append(e)

        if verify or dot_file_dir is not None:
            graph_edges = [(a.site.site_dnstr, b.site.site_dnstr)
                           for a, b in
                           itertools.chain(
                               *(itertools.combinations(edge.vertices, 2)
                                 for edge in e_set.edges))]
            graph_nodes = [v.site.site_dnstr for v in graph.vertices]

            if dot_file_dir is not None:
                write_dot_file('edgeset_%s' % (edgeType,), graph_edges,
                               vertices=graph_nodes, label=label)

            if verify:
                verify_graph('spanning tree edge set %s' % edgeType,
                             graph_edges, vertices=graph_nodes,
                             properties=('complete', 'connected'),
                             debug=DEBUG)

        # Run dijkstra's algorithm with just the red vertices as seeds
        # Seed from the full replicas
        dijkstra(graph, edgeType, False)

        # Process edge set
        process_edge_set(graph, e_set, internal_edges)

        # Run dijkstra's algorithm with red and black vertices as the seeds
        # Seed from both full and partial replicas
        dijkstra(graph, edgeType, True)

        # Process edge set
        process_edge_set(graph, e_set, internal_edges)

    # All vertices have root/component as itself
    setup_vertices(graph)
    process_edge_set(graph, None, internal_edges)

    if verify or dot_file_dir is not None:
        graph_edges = [(e.v1.site.site_dnstr, e.v2.site.site_dnstr)
                       for e in internal_edges]
        graph_nodes = [v.site.site_dnstr for v in graph.vertices]
        verify_properties = ('multi_edge_forest',)
        verify_and_dot('prekruskal', graph_edges, graph_nodes, label=label,
                       properties=verify_properties, debug=DEBUG,
                       verify=verify, dot_file_dir=dot_file_dir)

    # Phase 2: Run Kruskal's on the internal edges
    output_edges, components = kruskal(graph, internal_edges)

    # This recalculates the cost for the path connecting the
    # closest red vertex. Ignoring types is fine because NO
    # suboptimal edge should exist in the graph
    dijkstra(graph, "EDGE_TYPE_ALL", False)  # TODO rename
    # Phase 3: Process the output
    for v in graph.vertices:
        if v.is_red():
            v.dist_to_red = 0
        else:
            v.dist_to_red = v.repl_info.cost

    if verify or dot_file_dir is not None:
        graph_edges = [(e.v1.site.site_dnstr, e.v2.site.site_dnstr)
                       for e in internal_edges]
        graph_nodes = [v.site.site_dnstr for v in graph.vertices]
        verify_properties = ('multi_edge_forest',)
        verify_and_dot('postkruskal', graph_edges, graph_nodes,
                       label=label, properties=verify_properties,
                       debug=DEBUG, verify=verify,
                       dot_file_dir=dot_file_dir)

    # Ensure only one-way connections for partial-replicas,
    # and make sure they point the right way.
    edge_list = []
    for edge in output_edges:
        # We know these edges only have two endpoints because we made
        # them.
        v, w = edge.vertices
        if v.site is my_site or w.site is my_site:
            if (((v.is_black() or w.is_black()) and
                 v.dist_to_red != MAX_DWORD)):
                edge.directed = True

                if w.dist_to_red < v.dist_to_red:
                    edge.vertices[:] = w, v
            edge_list.append(edge)

    if verify or dot_file_dir is not None:
        graph_edges = [[x.site.site_dnstr for x in e.vertices]
                       for e in edge_list]
        #add the reverse edge if not directed.
        graph_edges.extend([x.site.site_dnstr
                            for x in reversed(e.vertices)]
                           for e in edge_list if not e.directed)
        graph_nodes = [x.site.site_dnstr for x in graph.vertices]
        verify_properties = ()
        verify_and_dot('post-one-way-partial', graph_edges, graph_nodes,
                       label=label, properties=verify_properties,
                       debug=DEBUG, verify=verify,
                       directed=True,
                       dot_file_dir=dot_file_dir)

    # count the components
    return edge_list, components


def create_edge(con_type, site_link, guid_to_vertex):
    """Set up a MultiEdge for the intersite graph

    A MultiEdge can have multiple vertices.

    From MS-ADTS 6.2.2.3.4.4

    :param con_type: a transport type GUID
    :param  site_link: a kcc.kcc_utils.SiteLink object
    :param guid_to_vertex: a mapping between GUIDs and vertices
    :return: a MultiEdge
    """
    e = MultiEdge()
    e.site_link = site_link
    e.vertices = []
    for site_guid in site_link.site_list:
        if str(site_guid) in guid_to_vertex:
            e.vertices.extend(guid_to_vertex.get(str(site_guid)))
    e.repl_info.cost = site_link.cost
    e.repl_info.options = site_link.options
    e.repl_info.interval = site_link.interval
    e.repl_info.set_repltimes_from_schedule(site_link.schedule)
    e.con_type = con_type
    e.directed = False
    return e


def create_auto_edge_set(graph, transport_guid):
    """Set up an automatic MultiEdgeSet for the intersite graph

    From within MS-ADTS 6.2.2.3.4.4

    :param graph: the intersite graph object
    :param transport_guid: a transport type GUID
    :return: a MultiEdgeSet
    """
    e_set = MultiEdgeSet()
    # use a NULL guid, not associated with a SiteLinkBridge object
    e_set.guid = misc.GUID()
    for site_link in graph.edges:
        if site_link.con_type == transport_guid:
            e_set.edges.append(site_link)

    return e_set


def create_edge_set(graph, transport, site_link_bridge):
    # TODO not implemented - need to store all site link bridges
    raise NotImplementedError("We don't create fancy edge sets")


def setup_vertices(graph):
    """Initialise vertices in the graph for the Dijkstra's run.

    Part of MS-ADTS 6.2.2.3.4.4

    The schedule and options are set to all-on, so that intersections
    with real data defer to that data.

    Refer to the convert_schedule_to_repltimes() docstring for an
    explanation of the repltimes schedule values.

    :param graph: an IntersiteGraph object
    :return: None
    """
    for v in graph.vertices:
        if v.is_white():
            v.repl_info.cost = MAX_DWORD
            v.root = None
            v.component_id = None
        else:
            v.repl_info.cost = 0
            v.root = v
            v.component_id = v

        v.repl_info.interval = 0
        v.repl_info.options = 0xFFFFFFFF
        # repl_info.schedule == None means "always".
        v.repl_info.schedule = None
        v.repl_info.duration = 84 * 8
        v.demoted = False


def dijkstra(graph, edge_type, include_black):
    """Perform Dijkstra's algorithm on an intersite graph.

    :param graph: an IntersiteGraph object
    :param edge_type: a transport type GUID
    :param include_black: boolean, whether to include black vertices
    :return: None
    """
    queue = setup_dijkstra(graph, edge_type, include_black)
    while len(queue) > 0:
        cost, guid, vertex = heapq.heappop(queue)
        for edge in vertex.edges:
            for v in edge.vertices:
                if v is not vertex:
                    # add new path from vertex to v
                    try_new_path(graph, queue, vertex, edge, v)


def setup_dijkstra(graph, edge_type, include_black):
    """Create a vertex queue for Dijksta's algorithm.

    :param graph: an IntersiteGraph object
    :param edge_type: a transport type GUID
    :param include_black: boolean, whether to include black vertices
    :return: A heap queue of vertices
    """
    queue = []
    setup_vertices(graph)
    for vertex in graph.vertices:
        if vertex.is_white():
            continue

        if (((vertex.is_black() and not include_black)
             or edge_type not in vertex.accept_black
             or edge_type not in vertex.accept_red_red)):
            vertex.repl_info.cost = MAX_DWORD
            vertex.root = None  # NULL GUID
            vertex.demoted = True  # Demoted appears not to be used
        else:
            heapq.heappush(queue, (vertex.repl_info.cost, vertex.guid, vertex))

    return queue


def try_new_path(graph, queue, vfrom, edge, vto):
    """Helper function for Dijksta's algorithm.

    :param graph: an IntersiteGraph object
    :param queue: the empty queue to initialise.
    :param vfrom: Vertex we are coming from
    :param edge: an edge to try
    :param vto: the other Vertex
    :return: None
    """
    new_repl_info = combine_repl_info(vfrom.repl_info, edge.repl_info)

    # Cheaper or longer schedule goes in the heap

    if (new_repl_info.cost < vto.repl_info.cost or
        new_repl_info.duration > vto.repl_info.duration):
        vto.root = vfrom.root
        vto.component_id = vfrom.component_id
        vto.repl_info = new_repl_info
        heapq.heappush(queue, (vto.repl_info.cost, vto.guid, vto))


def check_demote_vertex(vertex, edge_type):
    """Demote non-white vertices that accept only white edges

    This makes them seem temporarily like white vertices.

    :param vertex: a Vertex()
    :param edge_type: a transport type GUID
    :return: None
    """
    if vertex.is_white():
        return

    # Accepts neither red-red nor black edges, demote
    if ((edge_type not in vertex.accept_black and
         edge_type not in vertex.accept_red_red)):
        vertex.repl_info.cost = MAX_DWORD
        vertex.root = None
        vertex.demoted = True  # Demoted appears not to be used


def undemote_vertex(vertex):
    """Un-demote non-white vertices

    Set a vertex's to an undemoted state.

    :param vertex: a Vertex()
    :return: None
    """
    if vertex.is_white():
        return

    vertex.repl_info.cost = 0
    vertex.root = vertex
    vertex.demoted = False


def process_edge_set(graph, e_set, internal_edges):
    """Find internal edges to pass to Kruskal's algorithm

    :param graph: an IntersiteGraph object
    :param e_set: an edge set
    :param internal_edges: a set that internal edges get added to
    :return: None
    """
    if e_set is None:
        for edge in graph.edges:
            for vertex in edge.vertices:
                check_demote_vertex(vertex, edge.con_type)
            process_edge(graph, edge, internal_edges)
            for vertex in edge.vertices:
                undemote_vertex(vertex)
    else:
        for edge in e_set.edges:
            process_edge(graph, edge, internal_edges)


def process_edge(graph, examine, internal_edges):
    """Find the set of all vertices touching an edge to examine

    :param graph: an IntersiteGraph object
    :param examine: an edge
    :param internal_edges: a set that internal edges get added to
    :return: None
    """
    vertices = []
    for v in examine.vertices:
        # Append a 4-tuple of color, repl cost, guid and vertex
        vertices.append((v.color, v.repl_info.cost, v.ndrpacked_guid, v))
    # Sort by color, lower
    DEBUG("vertices is %s" % vertices)
    vertices.sort()

    color, cost, guid, bestv = vertices[0]
    # Add to internal edges an edge from every colored vertex to bestV
    for v in examine.vertices:
        if v.component_id is None or v.root is None:
            continue

        # Only add edge if valid inter-tree edge - needs a root and
        # different components
        if ((bestv.component_id is not None and
             bestv.root is not None and
             v.component_id is not None and
             v.root is not None and
             bestv.component_id != v.component_id)):
            add_int_edge(graph, internal_edges, examine, bestv, v)


def add_int_edge(graph, internal_edges, examine, v1, v2):
    """Add edges between compatible red and black vertices

    Internal edges form the core of the tree -- white and RODC
    vertices attach to it as leaf nodes. An edge needs to have black
    or red endpoints with compatible replication schedules to be
    accepted as an internal edge.

    Here we examine an edge and add it to the set of internal edges if
    it looks good.

    :param graph: the graph object.
    :param internal_edges: a set of internal edges
    :param examine: an edge to examine for suitability.
    :param v1: a Vertex
    :param v2: the other Vertex
    """
    root1 = v1.root
    root2 = v2.root

    red_red = root1.is_red() and root2.is_red()

    if red_red:
        if (examine.con_type not in root1.accept_red_red
            or examine.con_type not in root2.accept_red_red):
            return
    elif (examine.con_type not in root1.accept_black
          or examine.con_type not in root2.accept_black):
        return

    # Create the transitive replInfo for the two trees and this edge
    ri = combine_repl_info(v1.repl_info, v2.repl_info)
    if ri.duration == 0:
        return

    ri2 = combine_repl_info(ri, examine.repl_info)
    if ri2.duration == 0:
        return

    # Order by vertex guid
    if root1.ndrpacked_guid > root2.ndrpacked_guid:
        root1, root2 = root2, root1

    newIntEdge = InternalEdge(root1, root2, red_red, ri2, examine.con_type,
                              examine.site_link)

    internal_edges.add(newIntEdge)


def kruskal(graph, edges):
    """Perform Kruskal's algorithm using the given set of edges

    The input edges are "internal edges" -- between red and black
    nodes. The output edges are a minimal spanning tree.

    :param graph: the graph object.
    :param edges: a set of edges
    :return: a tuple of a list of edges, and the number of components
    """
    for v in graph.vertices:
        v.edges = []

    components = set([x for x in graph.vertices if not x.is_white()])
    edges = list(edges)

    # Sorted based on internal comparison function of internal edge
    edges.sort()

    #XXX expected_num_tree_edges is never used
    expected_num_tree_edges = 0  # TODO this value makes little sense

    count_edges = 0
    output_edges = []
    index = 0
    while index < len(edges):  # TODO and num_components > 1
        e = edges[index]
        parent1 = find_component(e.v1)
        parent2 = find_component(e.v2)
        if parent1 is not parent2:
            count_edges += 1
            add_out_edge(graph, output_edges, e)
            parent1.component_id = parent2
            components.discard(parent1)

        index += 1

    return output_edges, len(components)


def find_component(vertex):
    """Kruskal helper to find the component a vertex belongs to.

    :param vertex: a Vertex
    :return: the Vertex object representing the component
    """
    if vertex.component_id is vertex:
        return vertex

    current = vertex
    while current.component_id is not current:
        current = current.component_id

    root = current
    current = vertex
    while current.component_id is not root:
        n = current.component_id
        current.component_id = root
        current = n

    return root


def add_out_edge(graph, output_edges, e):
    """Kruskal helper to add output edges

    :param graph: the InterSiteGraph
    :param output_edges: the list of spanning tree edges
    :param e: the edge to be added
    :return: None
    """
    v1 = e.v1
    v2 = e.v2

    # This multi-edge is a 'real' undirected 2-vertex edge with no
    # GUID. XXX It is not really the same thing at all as the
    # multi-vertex edges relating to site-links. We shouldn't really
    # be using the same class or storing them in the same list as the
    # other ones. But we do. Historical reasons.
    ee = MultiEdge()
    ee.directed = False
    ee.site_link = e.site_link
    ee.vertices.append(v1)
    ee.vertices.append(v2)
    ee.con_type = e.e_type
    ee.repl_info = e.repl_info
    output_edges.append(ee)

    v1.edges.append(ee)
    v2.edges.append(ee)


def setup_graph(part, site_table, transport_guid, sitelink_table,
                bridges_required):
    """Set up an IntersiteGraph based on intersite topology

    The graph will have a Vertex for each site, a MultiEdge for each
    siteLink object, and a MultiEdgeSet for each siteLinkBridge object
    (or implied siteLinkBridge).

    :param part: the partition we are dealing with
    :param site_table: a mapping of guids to sites (KCC.site_table)
    :param transport_guid: the GUID of the IP transport
    :param sitelink_table: a mapping of dnstrs to sitelinks
    :param bridges_required: boolean

    :return: a new IntersiteGraph
    """
    guid_to_vertex = {}
    # Create graph
    g = IntersiteGraph()
    # Add vertices
    for site_guid, site in site_table.items():
        vertex = Vertex(site, part)
        vertex.guid = site_guid
        vertex.ndrpacked_guid = ndr_pack(site.site_guid)
        g.vertices.add(vertex)
        guid_vertices = guid_to_vertex.setdefault(site_guid, [])
        guid_vertices.append(vertex)

    connected_vertices = set()

    for site_link_dn, site_link in sitelink_table.items():
        new_edge = create_edge(transport_guid, site_link,
                               guid_to_vertex)
        connected_vertices.update(new_edge.vertices)
        g.edges.add(new_edge)

    # If 'Bridge all site links' is enabled and Win2k3 bridges required
    # is not set
    # NTDSTRANSPORT_OPT_BRIDGES_REQUIRED 0x00000002
    # No documentation for this however, ntdsapi.h appears to have:
    # NTDSSETTINGS_OPT_W2K3_BRIDGES_REQUIRED = 0x00001000
    if bridges_required:
        g.edge_set.add(create_auto_edge_set(g, transport_guid))
    else:
        # TODO get all site link bridges
        for site_link_bridge in []:
            g.edge_set.add(create_edge_set(g, transport_guid,
                                           site_link_bridge))

    g.connected_vertices = connected_vertices

    return g


class VertexColor(object):
    """Enumeration of vertex colours"""
    (red, black, white, unknown) = range(0, 4)


class Vertex(object):
    """intersite graph representation of a Site.

    There is a separate vertex for each partition.

    :param site: the site to make a vertex of.
    :param part: the partition.
    """
    def __init__(self, site, part):
        self.site = site
        self.part = part
        self.color = VertexColor.unknown
        self.edges = []
        self.accept_red_red = []
        self.accept_black = []
        self.repl_info = ReplInfo()
        self.root = self
        self.guid = None
        self.component_id = self
        self.demoted = False
        self.options = 0
        self.interval = 0

    def color_vertex(self):
        """Color to indicate which kind of NC replica the vertex contains
        """
        # IF s contains one or more DCs with full replicas of the
        # NC cr!nCName
        #    SET v.Color to COLOR.RED
        # ELSEIF s contains one or more partial replicas of the NC
        #    SET v.Color to COLOR.BLACK
        #ELSE
        #    SET v.Color to COLOR.WHITE

        # set to minimum (no replica)
        self.color = VertexColor.white

        for dnstr, dsa in self.site.dsa_table.items():
            rep = dsa.get_current_replica(self.part.nc_dnstr)
            if rep is None:
                continue

            # We have a full replica which is the largest
            # value so exit
            if not rep.is_partial():
                self.color = VertexColor.red
                break
            else:
                self.color = VertexColor.black

    def is_red(self):
        assert(self.color != VertexColor.unknown)
        return (self.color == VertexColor.red)

    def is_black(self):
        assert(self.color != VertexColor.unknown)
        return (self.color == VertexColor.black)

    def is_white(self):
        assert(self.color != VertexColor.unknown)
        return (self.color == VertexColor.white)


class IntersiteGraph(object):
    """Graph for representing the intersite"""
    def __init__(self):
        self.vertices = set()
        self.edges = set()
        self.edge_set = set()
        # All vertices that are endpoints of edges
        self.connected_vertices = None


class MultiEdgeSet(object):
    """Defines a multi edge set"""
    def __init__(self):
        self.guid = 0  # objectGuid siteLinkBridge
        self.edges = []


class MultiEdge(object):
    """An "edge" between multiple vertices"""
    def __init__(self):
        self.site_link = None  # object siteLink
        self.vertices = []
        self.con_type = None  # interSiteTransport GUID
        self.repl_info = ReplInfo()
        self.directed = True


class InternalEdge(object):
    """An edge that forms part of the minimal spanning tree

    These are used in the Kruskal's algorithm. Their interesting
    feature isa that they are sortable, with the good edges sorting
    before the bad ones -- lower is better.
    """
    def __init__(self, v1, v2, redred, repl, eType, site_link):
        self.v1 = v1
        self.v2 = v2
        self.red_red = redred
        self.repl_info = repl
        self.e_type = eType
        self.site_link = site_link

    def __eq__(self, other):
        return not self < other and not other < self

    def __ne__(self, other):
        return self < other or other < self

    def __gt__(self, other):
        return other < self

    def __ge__(self, other):
        return not self < other

    def __le__(self, other):
        return not other < self

    # TODO compare options and interval
    def __lt__(self, other):
        """Here "less than" means "better".

        From within MS-ADTS 6.2.2.3.4.4:

        SORT internalEdges by (descending RedRed,
                               ascending ReplInfo.Cost,
                               descending available time in ReplInfo.Schedule,
                               ascending V1ID,
                               ascending V2ID,
                               ascending Type)

        """
        if self.red_red != other.red_red:
            return self.red_red

        if self.repl_info.cost != other.repl_info.cost:
            return self.repl_info.cost < other.repl_info.cost

        if self.repl_info.duration != other.repl_info.duration:
            return self.repl_info.duration > other.repl_info.duration

        if self.v1.guid != other.v1.guid:
            return self.v1.ndrpacked_guid < other.v1.ndrpacked_guid

        if self.v2.guid != other.v2.guid:
            return self.v2.ndrpacked_guid < other.v2.ndrpacked_guid

        return self.e_type < other.e_type