summaryrefslogtreecommitdiff
path: root/tests
diff options
context:
space:
mode:
authorAndrew Bartlett <abartlet@samba.org>2014-01-22 16:03:57 +1300
committerAndreas Schneider <asn@cryptomilk.org>2014-04-15 12:32:09 +0200
commitd7ce127de9ae2e065f46694b90c45b3eb40d0c7a (patch)
tree5a9387d85c722d6fc7bc306f55655632d73e5091 /tests
parent634cc8fdffbf83e339844a8da2812fae3964cd31 (diff)
downloadsamba-d7ce127de9ae2e065f46694b90c45b3eb40d0c7a.tar.gz
auth: Remove support for HAVE_TRUNCATED_SALT from pass_check.c
The comments indicate that this was needed for HP-UX at one point, but the configure code was never ported to WAF. Signed-off-by: Andrew Bartlett <abartlet@samba.org> Reviewed-by: Andreas Schneider <asn@samba.org> Autobuild-User(master): Andreas Schneider <asn@cryptomilk.org> Autobuild-Date(master): Tue Apr 15 12:32:09 CEST 2014 on sn-devel-104
Diffstat (limited to 'tests')
-rw-r--r--tests/crypttest.c851
1 files changed, 0 insertions, 851 deletions
diff --git a/tests/crypttest.c b/tests/crypttest.c
deleted file mode 100644
index 0e500d54817..00000000000
--- a/tests/crypttest.c
+++ /dev/null
@@ -1,851 +0,0 @@
-#if defined(HAVE_UNISTD_H)
-#include <unistd.h>
-#endif
-
-#include <sys/types.h>
-
-#ifdef HAVE_STRING_H
-#include <string.h>
-#endif
-
-#ifdef HAVE_STRINGS_H
-#include <strings.h>
-#endif
-
-#if !defined(HAVE_CRYPT)
-
-/*
- This bit of code was derived from the UFC-crypt package which
- carries the following copyright
-
- Modified for use by Samba by Andrew Tridgell, October 1994
-
- Note that this routine is only faster on some machines. Under Linux 1.1.51
- libc 4.5.26 I actually found this routine to be slightly slower.
-
- Under SunOS I found a huge speedup by using these routines
- (a factor of 20 or so)
-
- Warning: I've had a report from Steve Kennedy <steve@gbnet.org>
- that this crypt routine may sometimes get the wrong answer. Only
- use UFC_CRYT if you really need it.
-
-*/
-
-/*
- * UFC-crypt: ultra fast crypt(3) implementation
- *
- * Copyright (C) 1991-1998, Free Software Foundation, Inc.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 3 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, see <http://www.gnu.org/licenses/>.
- *
- * @(#)crypt_util.c 2.31 02/08/92
- *
- * Support routines
- *
- */
-
-
-#ifndef long32
-#if (SIZEOF_INT == 4)
-#define long32 int
-#elif (SIZEOF_LONG == 4)
-#define long32 long
-#elif (SIZEOF_SHORT == 4)
-#define long32 short
-#else
-/* uggh - no 32 bit type?? probably a CRAY. just hope this works ... */
-#define long32 int
-#endif
-#endif
-
-#ifndef long64
-#ifdef HAVE_LONGLONG
-#define long64 long long long
-#endif
-#endif
-
-#ifndef ufc_long
-#define ufc_long unsigned
-#endif
-
-#ifndef _UFC_64_
-#define _UFC_32_
-#endif
-
-/*
- * Permutation done once on the 56 bit
- * key derived from the original 8 byte ASCII key.
- */
-static int pc1[56] = {
- 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
- 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
- 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
- 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
-};
-
-/*
- * How much to rotate each 28 bit half of the pc1 permutated
- * 56 bit key before using pc2 to give the i' key
- */
-static int rots[16] = {
- 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
-};
-
-/*
- * Permutation giving the key
- * of the i' DES round
- */
-static int pc2[48] = {
- 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
- 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
- 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
- 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
-};
-
-/*
- * The E expansion table which selects
- * bits from the 32 bit intermediate result.
- */
-static int esel[48] = {
- 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
- 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
- 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
- 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
-};
-static int e_inverse[64];
-
-/*
- * Permutation done on the
- * result of sbox lookups
- */
-static int perm32[32] = {
- 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
- 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
-};
-
-/*
- * The sboxes
- */
-static int sbox[8][4][16]= {
- { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
- { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
- { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
- { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
- },
-
- { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
- { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
- { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
- { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
- },
-
- { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
- { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
- { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
- { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
- },
-
- { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
- { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
- { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
- { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
- },
-
- { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
- { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
- { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
- { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
- },
-
- { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
- { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
- { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
- { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
- },
-
- { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
- { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
- { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
- { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
- },
-
- { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
- { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
- { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
- { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
- }
-};
-
-/*
- * This is the final
- * permutation matrix
- */
-static int final_perm[64] = {
- 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
- 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
- 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
- 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
-};
-
-/*
- * The 16 DES keys in BITMASK format
- */
-#ifdef _UFC_32_
-long32 _ufc_keytab[16][2];
-#endif
-
-#ifdef _UFC_64_
-long64 _ufc_keytab[16];
-#endif
-
-
-#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
-#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
-
-/* Macro to set a bit (0..23) */
-#define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) )
-
-/*
- * sb arrays:
- *
- * Workhorses of the inner loop of the DES implementation.
- * They do sbox lookup, shifting of this value, 32 bit
- * permutation and E permutation for the next round.
- *
- * Kept in 'BITMASK' format.
- */
-
-#ifdef _UFC_32_
-long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];
-static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
-#endif
-
-#ifdef _UFC_64_
-long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];
-static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
-#endif
-
-/*
- * eperm32tab: do 32 bit permutation and E selection
- *
- * The first index is the byte number in the 32 bit value to be permuted
- * - second - is the value of this byte
- * - third - selects the two 32 bit values
- *
- * The table is used and generated internally in init_des to speed it up
- */
-static ufc_long eperm32tab[4][256][2];
-
-/*
- * do_pc1: permform pc1 permutation in the key schedule generation.
- *
- * The first index is the byte number in the 8 byte ASCII key
- * - second - - the two 28 bits halfs of the result
- * - third - selects the 7 bits actually used of each byte
- *
- * The result is kept with 28 bit per 32 bit with the 4 most significant
- * bits zero.
- */
-static ufc_long do_pc1[8][2][128];
-
-/*
- * do_pc2: permform pc2 permutation in the key schedule generation.
- *
- * The first index is the septet number in the two 28 bit intermediate values
- * - second - - - septet values
- *
- * Knowledge of the structure of the pc2 permutation is used.
- *
- * The result is kept with 28 bit per 32 bit with the 4 most significant
- * bits zero.
- */
-static ufc_long do_pc2[8][128];
-
-/*
- * efp: undo an extra e selection and do final
- * permutation giving the DES result.
- *
- * Invoked 6 bit a time on two 48 bit values
- * giving two 32 bit longs.
- */
-static ufc_long efp[16][64][2];
-
-static unsigned char bytemask[8] = {
- 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
-};
-
-static ufc_long longmask[32] = {
- 0x80000000, 0x40000000, 0x20000000, 0x10000000,
- 0x08000000, 0x04000000, 0x02000000, 0x01000000,
- 0x00800000, 0x00400000, 0x00200000, 0x00100000,
- 0x00080000, 0x00040000, 0x00020000, 0x00010000,
- 0x00008000, 0x00004000, 0x00002000, 0x00001000,
- 0x00000800, 0x00000400, 0x00000200, 0x00000100,
- 0x00000080, 0x00000040, 0x00000020, 0x00000010,
- 0x00000008, 0x00000004, 0x00000002, 0x00000001
-};
-
-
-/*
- * Silly rewrite of 'bzero'. I do so
- * because some machines don't have
- * bzero and some don't have memset.
- */
-
-static void clearmem(char *start, int cnt)
- { while(cnt--)
- *start++ = '\0';
- }
-
-static int initialized = 0;
-
-/* lookup a 6 bit value in sbox */
-
-#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
-
-/*
- * Initialize unit - may be invoked directly
- * by fcrypt users.
- */
-
-static void ufc_init_des(void)
- { int comes_from_bit;
- int bit, sg;
- ufc_long j;
- ufc_long mask1, mask2;
-
- /*
- * Create the do_pc1 table used
- * to affect pc1 permutation
- * when generating keys
- */
- for(bit = 0; bit < 56; bit++) {
- comes_from_bit = pc1[bit] - 1;
- mask1 = bytemask[comes_from_bit % 8 + 1];
- mask2 = longmask[bit % 28 + 4];
- for(j = 0; j < 128; j++) {
- if(j & mask1)
- do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
- }
- }
-
- /*
- * Create the do_pc2 table used
- * to affect pc2 permutation when
- * generating keys
- */
- for(bit = 0; bit < 48; bit++) {
- comes_from_bit = pc2[bit] - 1;
- mask1 = bytemask[comes_from_bit % 7 + 1];
- mask2 = BITMASK(bit % 24);
- for(j = 0; j < 128; j++) {
- if(j & mask1)
- do_pc2[comes_from_bit / 7][j] |= mask2;
- }
- }
-
- /*
- * Now generate the table used to do combined
- * 32 bit permutation and e expansion
- *
- * We use it because we have to permute 16384 32 bit
- * longs into 48 bit in order to initialize sb.
- *
- * Looping 48 rounds per permutation becomes
- * just too slow...
- *
- */
-
- clearmem((char*)eperm32tab, sizeof(eperm32tab));
-
- for(bit = 0; bit < 48; bit++) {
- ufc_long inner_mask1,comes_from;
-
- comes_from = perm32[esel[bit]-1]-1;
- inner_mask1 = bytemask[comes_from % 8];
-
- for(j = 256; j--;) {
- if(j & inner_mask1)
- eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24);
- }
- }
-
- /*
- * Create the sb tables:
- *
- * For each 12 bit segment of an 48 bit intermediate
- * result, the sb table precomputes the two 4 bit
- * values of the sbox lookups done with the two 6
- * bit halves, shifts them to their proper place,
- * sends them through perm32 and finally E expands
- * them so that they are ready for the next
- * DES round.
- *
- */
- for(sg = 0; sg < 4; sg++) {
- int j1, j2;
- int s1, s2;
-
- for(j1 = 0; j1 < 64; j1++) {
- s1 = s_lookup(2 * sg, j1);
- for(j2 = 0; j2 < 64; j2++) {
- ufc_long to_permute, inx;
-
- s2 = s_lookup(2 * sg + 1, j2);
- to_permute = ((s1 << 4) | s2) << (24 - 8 * sg);
-
-#ifdef _UFC_32_
- inx = ((j1 << 6) | j2) << 1;
- sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
- sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
- sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
- sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
- sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
- sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
- sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
- sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
-#endif
-#ifdef _UFC_64_
- inx = ((j1 << 6) | j2);
- sb[sg][inx] =
- ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
- (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
- sb[sg][inx] |=
- ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
- (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
- sb[sg][inx] |=
- ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
- (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
- sb[sg][inx] |=
- ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
- (long64)eperm32tab[3][(to_permute) & 0xff][1];
-#endif
- }
- }
- }
-
- /*
- * Create an inverse matrix for esel telling
- * where to plug out bits if undoing it
- */
- for(bit=48; bit--;) {
- e_inverse[esel[bit] - 1 ] = bit;
- e_inverse[esel[bit] - 1 + 32] = bit + 48;
- }
-
- /*
- * create efp: the matrix used to
- * undo the E expansion and effect final permutation
- */
- clearmem((char*)efp, sizeof efp);
- for(bit = 0; bit < 64; bit++) {
- int o_bit, o_long;
- ufc_long word_value, inner_mask1, inner_mask2;
- int comes_from_f_bit, comes_from_e_bit;
- int comes_from_word, bit_within_word;
-
- /* See where bit i belongs in the two 32 bit long's */
- o_long = bit / 32; /* 0..1 */
- o_bit = bit % 32; /* 0..31 */
-
- /*
- * And find a bit in the e permutated value setting this bit.
- *
- * Note: the e selection may have selected the same bit several
- * times. By the initialization of e_inverse, we only look
- * for one specific instance.
- */
- comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
- comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
- comes_from_word = comes_from_e_bit / 6; /* 0..15 */
- bit_within_word = comes_from_e_bit % 6; /* 0..5 */
-
- inner_mask1 = longmask[bit_within_word + 26];
- inner_mask2 = longmask[o_bit];
-
- for(word_value = 64; word_value--;) {
- if(word_value & inner_mask1)
- efp[comes_from_word][word_value][o_long] |= inner_mask2;
- }
- }
- initialized++;
- }
-
-/*
- * Process the elements of the sb table permuting the
- * bits swapped in the expansion by the current salt.
- */
-
-#ifdef _UFC_32_
-static void shuffle_sb(long32 *k, ufc_long saltbits)
- { ufc_long j;
- long32 x;
- for(j=4096; j--;) {
- x = (k[0] ^ k[1]) & (long32)saltbits;
- *k++ ^= x;
- *k++ ^= x;
- }
- }
-#endif
-
-#ifdef _UFC_64_
-static void shuffle_sb(long64 *k, ufc_long saltbits)
- { ufc_long j;
- long64 x;
- for(j=4096; j--;) {
- x = ((*k >> 32) ^ *k) & (long64)saltbits;
- *k++ ^= (x << 32) | x;
- }
- }
-#endif
-
-/*
- * Setup the unit for a new salt
- * Hopefully we'll not see a new salt in each crypt call.
- */
-
-static unsigned char current_salt[3] = "&&"; /* invalid value */
-static ufc_long current_saltbits = 0;
-static int direction = 0;
-
-static void setup_salt(const char *s1)
- { ufc_long i, j, saltbits;
- const unsigned char *s2 = (const unsigned char *)s1;
-
- if(!initialized)
- ufc_init_des();
-
- if(s2[0] == current_salt[0] && s2[1] == current_salt[1])
- return;
- current_salt[0] = s2[0]; current_salt[1] = s2[1];
-
- /*
- * This is the only crypt change to DES:
- * entries are swapped in the expansion table
- * according to the bits set in the salt.
- */
- saltbits = 0;
- for(i = 0; i < 2; i++) {
- long c=ascii_to_bin(s2[i]);
- if(c < 0 || c > 63)
- c = 0;
- for(j = 0; j < 6; j++) {
- if((c >> j) & 0x1)
- saltbits |= BITMASK(6 * i + j);
- }
- }
-
- /*
- * Permute the sb table values
- * to reflect the changed e
- * selection table
- */
- shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits);
- shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits);
- shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits);
- shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits);
-
- current_saltbits = saltbits;
- }
-
-static void ufc_mk_keytab(char *key)
- { ufc_long v1, v2, *k1;
- int i;
-#ifdef _UFC_32_
- long32 v, *k2 = &_ufc_keytab[0][0];
-#endif
-#ifdef _UFC_64_
- long64 v, *k2 = &_ufc_keytab[0];
-#endif
-
- v1 = v2 = 0; k1 = &do_pc1[0][0][0];
- for(i = 8; i--;) {
- v1 |= k1[*key & 0x7f]; k1 += 128;
- v2 |= k1[*key++ & 0x7f]; k1 += 128;
- }
-
- for(i = 0; i < 16; i++) {
- k1 = &do_pc2[0][0];
-
- v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
- v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
- v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
- v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
- v |= k1[(v1 ) & 0x7f]; k1 += 128;
-
-#ifdef _UFC_32_
- *k2++ = v;
- v = 0;
-#endif
-#ifdef _UFC_64_
- v <<= 32;
-#endif
-
- v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
- v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
- v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
- v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
- v |= k1[(v2 ) & 0x7f];
-
- *k2++ = v;
- }
-
- direction = 0;
- }
-
-/*
- * Undo an extra E selection and do final permutations
- */
-
-ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2)
- { ufc_long v1, v2, x;
- static ufc_long ary[2];
-
- x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x;
- x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x;
-
- v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
-
- v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
- v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
- v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
- v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
-
- v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
- v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
- v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
- v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
-
- v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
- v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
- v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
- v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
-
- v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
- v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
- v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
- v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
-
- ary[0] = v1; ary[1] = v2;
- return ary;
- }
-
-/*
- * crypt only: convert from 64 bit to 11 bit ASCII
- * prefixing with the salt
- */
-
-static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt)
- { static char outbuf[14];
- int i, s;
-
- outbuf[0] = salt[0];
- outbuf[1] = salt[1] ? salt[1] : salt[0];
-
- for(i = 0; i < 5; i++)
- outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f);
-
- s = (v2 & 0xf) << 2;
- v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
-
- for(i = 5; i < 10; i++)
- outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f);
-
- outbuf[12] = bin_to_ascii(s);
- outbuf[13] = 0;
-
- return outbuf;
- }
-
-/*
- * UNIX crypt function
- */
-
-static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long);
-
-char *ufc_crypt(const char *key,const char *salt)
- { ufc_long *s;
- char ktab[9];
-
- /*
- * Hack DES tables according to salt
- */
- setup_salt(salt);
-
- /*
- * Setup key schedule
- */
- clearmem(ktab, sizeof ktab);
- strncpy(ktab, key, 8);
- ufc_mk_keytab(ktab);
-
- /*
- * Go for the 25 DES encryptions
- */
- s = _ufc_doit((ufc_long)0, (ufc_long)0,
- (ufc_long)0, (ufc_long)0, (ufc_long)25);
-
- /*
- * And convert back to 6 bit ASCII
- */
- return output_conversion(s[0], s[1], salt);
- }
-
-
-#ifdef _UFC_32_
-
-/*
- * 32 bit version
- */
-
-extern long32 _ufc_keytab[16][2];
-extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
-
-#define SBA(sb, v) (*(long32*)((char*)(sb)+(v)))
-
-static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
- { int i;
- long32 s, *k;
-
- while(itr--) {
- k = &_ufc_keytab[0][0];
- for(i=8; i--; ) {
- s = *k++ ^ r1;
- l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
- l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4);
- s = *k++ ^ r2;
- l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
- l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4);
-
- s = *k++ ^ l1;
- r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
- r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4);
- s = *k++ ^ l2;
- r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
- r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4);
- }
- s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s;
- }
- return _ufc_dofinalperm(l1, l2, r1, r2);
- }
-
-#endif
-
-#ifdef _UFC_64_
-
-/*
- * 64 bit version
- */
-
-extern long64 _ufc_keytab[16];
-extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
-
-#define SBA(sb, v) (*(long64*)((char*)(sb)+(v)))
-
-static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
- { int i;
- long64 l, r, s, *k;
-
- l = (((long64)l1) << 32) | ((long64)l2);
- r = (((long64)r1) << 32) | ((long64)r2);
-
- while(itr--) {
- k = &_ufc_keytab[0];
- for(i=8; i--; ) {
- s = *k++ ^ r;
- l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
- l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
- l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
- l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
-
- s = *k++ ^ l;
- r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
- r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
- r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
- r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
- }
- s=l; l=r; r=s;
- }
-
- l1 = l >> 32; l2 = l & 0xffffffff;
- r1 = r >> 32; r2 = r & 0xffffffff;
- return _ufc_dofinalperm(l1, l2, r1, r2);
- }
-
-#endif
-
-#define crypt ufc_crypt
-#endif
-
-main()
-{
- char passwd[9];
- char salt[9];
- char c_out1[256];
- char c_out2[256];
-
- char expected_out[14];
-
- strcpy(expected_out, "12yJ.Of/NQ.Pk");
- strcpy(passwd, "12345678");
- strcpy(salt, "12345678");
-
- strcpy(c_out1, crypt(passwd, salt));
- salt[2] = '\0';
- strcpy(c_out2, crypt(passwd, salt));
-
- /*
- * If the non-trucated salt fails but the
- * truncated salt succeeds then exit 1.
- */
-
- if((strcmp(c_out1, expected_out) != 0) &&
- (strcmp(c_out2, expected_out) == 0))
- exit(1);
-
-#ifdef HAVE_BIGCRYPT
- /*
- * Try the same with bigcrypt...
- */
-
- {
- char big_passwd[17];
- char big_salt[17];
- char big_c_out1[256];
- char big_c_out2[256];
- char big_expected_out[27];
-
- strcpy(big_passwd, "1234567812345678");
- strcpy(big_salt, "1234567812345678");
- strcpy(big_expected_out, "12yJ.Of/NQ.PklfyCuHi/rwM");
-
- strcpy(big_c_out1, bigcrypt(big_passwd, big_salt));
- big_salt[2] = '\0';
- strcpy(big_c_out2, bigcrypt(big_passwd, big_salt));
-
- /*
- * If the non-trucated salt fails but the
- * truncated salt succeeds then exit 1.
- */
-
- if((strcmp(big_c_out1, big_expected_out) != 0) &&
- (strcmp(big_c_out2, big_expected_out) == 0))
- exit(1);
-
- }
-#endif
-
- exit(0);
-}