summaryrefslogtreecommitdiff
path: root/math.c
blob: e3a78f74e3c5109b3e4ceaa19a404b5f660265d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
/**********************************************************************

  math.c -

  $Author$
  created at: Tue Jan 25 14:12:56 JST 1994

  Copyright (C) 1993-2007 Yukihiro Matsumoto

**********************************************************************/

#include "ruby/ruby.h"
#include <math.h>
#include <errno.h>

#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))

VALUE rb_mMath;
VALUE rb_eMathDomainError;

extern VALUE rb_to_float(VALUE val);
#define Need_Float(x) do {if (TYPE(x) != T_FLOAT) {(x) = rb_to_float(x);}} while(0)
#define Need_Float2(x,y) do {\
    Need_Float(x);\
    Need_Float(y);\
} while (0)

#define domain_error(msg) \
    rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg);

/*
 *  call-seq:
 *     Math.atan2(y, x)  -> float
 *
 *  Computes the arc tangent given <i>y</i> and <i>x</i>. Returns
 *  -PI..PI.
 *
 *    Math.atan2(-0.0, -1.0) #=> -3.141592653589793
 *    Math.atan2(-1.0, -1.0) #=> -2.356194490192345
 *    Math.atan2(-1.0, 0.0)  #=> -1.5707963267948966
 *    Math.atan2(-1.0, 1.0)  #=> -0.7853981633974483
 *    Math.atan2(-0.0, 1.0)  #=> -0.0
 *    Math.atan2(0.0, 1.0)   #=> 0.0
 *    Math.atan2(1.0, 1.0)   #=> 0.7853981633974483
 *    Math.atan2(1.0, 0.0)   #=> 1.5707963267948966
 *    Math.atan2(1.0, -1.0)  #=> 2.356194490192345
 *    Math.atan2(0.0, -1.0)  #=> 3.141592653589793
 *
 */

static VALUE
math_atan2(VALUE obj, VALUE y, VALUE x)
{
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
    double dx, dy;
    Need_Float2(y, x);
    dx = RFLOAT_VALUE(x);
    dy = RFLOAT_VALUE(y);
    if (dx == 0.0 && dy == 0.0) {
	if (!signbit(dx))
	    return DBL2NUM(dy);
        if (!signbit(dy))
	    return DBL2NUM(M_PI);
	return DBL2NUM(-M_PI);
    }
    if (isinf(dx) && isinf(dy)) domain_error("atan2");
    return DBL2NUM(atan2(dy, dx));
}


/*
 *  call-seq:
 *     Math.cos(x)    -> float
 *
 *  Computes the cosine of <i>x</i> (expressed in radians). Returns
 *  -1..1.
 */

static VALUE
math_cos(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(cos(RFLOAT_VALUE(x)));
}

/*
 *  call-seq:
 *     Math.sin(x)    -> float
 *
 *  Computes the sine of <i>x</i> (expressed in radians). Returns
 *  -1..1.
 */

static VALUE
math_sin(VALUE obj, VALUE x)
{
    Need_Float(x);

    return DBL2NUM(sin(RFLOAT_VALUE(x)));
}


/*
 *  call-seq:
 *     Math.tan(x)    -> float
 *
 *  Returns the tangent of <i>x</i> (expressed in radians).
 */

static VALUE
math_tan(VALUE obj, VALUE x)
{
    Need_Float(x);

    return DBL2NUM(tan(RFLOAT_VALUE(x)));
}

/*
 *  call-seq:
 *     Math.acos(x)    -> float
 *
 *  Computes the arc cosine of <i>x</i>. Returns 0..PI.
 */

static VALUE
math_acos(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < -1.0 || 1.0 < d0) domain_error("acos");
    d = acos(d0);
    return DBL2NUM(d);
}

/*
 *  call-seq:
 *     Math.asin(x)    -> float
 *
 *  Computes the arc sine of <i>x</i>. Returns -{PI/2} .. {PI/2}.
 */

static VALUE
math_asin(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < -1.0 || 1.0 < d0) domain_error("asin");
    d = asin(d0);
    return DBL2NUM(d);
}

/*
 *  call-seq:
 *     Math.atan(x)    -> float
 *
 *  Computes the arc tangent of <i>x</i>. Returns -{PI/2} .. {PI/2}.
 */

static VALUE
math_atan(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(atan(RFLOAT_VALUE(x)));
}

#ifndef HAVE_COSH
double
cosh(double x)
{
    return (exp(x) + exp(-x)) / 2;
}
#endif

/*
 *  call-seq:
 *     Math.cosh(x)    -> float
 *
 *  Computes the hyperbolic cosine of <i>x</i> (expressed in radians).
 */

static VALUE
math_cosh(VALUE obj, VALUE x)
{
    Need_Float(x);

    return DBL2NUM(cosh(RFLOAT_VALUE(x)));
}

#ifndef HAVE_SINH
double
sinh(double x)
{
    return (exp(x) - exp(-x)) / 2;
}
#endif

/*
 *  call-seq:
 *     Math.sinh(x)    -> float
 *
 *  Computes the hyperbolic sine of <i>x</i> (expressed in
 *  radians).
 */

static VALUE
math_sinh(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(sinh(RFLOAT_VALUE(x)));
}

#ifndef HAVE_TANH
double
tanh(double x)
{
    return sinh(x) / cosh(x);
}
#endif

/*
 *  call-seq:
 *     Math.tanh()    -> float
 *
 *  Computes the hyperbolic tangent of <i>x</i> (expressed in
 *  radians).
 */

static VALUE
math_tanh(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(tanh(RFLOAT_VALUE(x)));
}

/*
 *  call-seq:
 *     Math.acosh(x)    -> float
 *
 *  Computes the inverse hyperbolic cosine of <i>x</i>.
 */

static VALUE
math_acosh(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < 1.0) domain_error("acosh");
    d = acosh(d0);
    return DBL2NUM(d);
}

/*
 *  call-seq:
 *     Math.asinh(x)    -> float
 *
 *  Computes the inverse hyperbolic sine of <i>x</i>.
 */

static VALUE
math_asinh(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(asinh(RFLOAT_VALUE(x)));
}

/*
 *  call-seq:
 *     Math.atanh(x)    -> float
 *
 *  Computes the inverse hyperbolic tangent of <i>x</i>.
 */

static VALUE
math_atanh(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 <  -1.0 || +1.0 <  d0) domain_error("atanh");
    /* check for pole error */
    if (d0 == -1.0) return DBL2NUM(-INFINITY);
    if (d0 == +1.0) return DBL2NUM(+INFINITY);
    d = atanh(d0);
    return DBL2NUM(d);
}

/*
 *  call-seq:
 *     Math.exp(x)    -> float
 *
 *  Returns e**x.
 *
 *    Math.exp(0)       #=> 1.0
 *    Math.exp(1)       #=> 2.718281828459045
 *    Math.exp(1.5)     #=> 4.4816890703380645
 *
 */

static VALUE
math_exp(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(exp(RFLOAT_VALUE(x)));
}

#if defined __CYGWIN__
# include <cygwin/version.h>
# if CYGWIN_VERSION_DLL_MAJOR < 1005
#  define nan(x) nan()
# endif
# define log(x) ((x) < 0.0 ? nan("") : log(x))
# define log10(x) ((x) < 0.0 ? nan("") : log10(x))
#endif

/*
 *  call-seq:
 *     Math.log(numeric)    -> float
 *     Math.log(num,base)   -> float
 *
 *  Returns the natural logarithm of <i>numeric</i>.
 *  If additional second argument is given, it will be the base
 *  of logarithm.
 *
 *    Math.log(1)          #=> 0.0
 *    Math.log(Math::E)    #=> 1.0
 *    Math.log(Math::E**3) #=> 3.0
 *    Math.log(12,3)       #=> 2.2618595071429146
 *
 */

static VALUE
math_log(int argc, VALUE *argv)
{
    VALUE x, base;
    double d0, d;

    rb_scan_args(argc, argv, "11", &x, &base);
    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < 0.0) domain_error("log");
    /* check for pole error */
    if (d0 == 0.0) return DBL2NUM(-INFINITY);
    d = log(d0);
    if (argc == 2) {
	Need_Float(base);
	d /= log(RFLOAT_VALUE(base));
    }
    return DBL2NUM(d);
}

#ifndef log2
#ifndef HAVE_LOG2
double
log2(double x)
{
    return log10(x)/log10(2.0);
}
#else
extern double log2(double);
#endif
#endif

/*
 *  call-seq:
 *     Math.log2(numeric)    -> float
 *
 *  Returns the base 2 logarithm of <i>numeric</i>.
 *
 *    Math.log2(1)      #=> 0.0
 *    Math.log2(2)      #=> 1.0
 *    Math.log2(32768)  #=> 15.0
 *    Math.log2(65536)  #=> 16.0
 *
 */

static VALUE
math_log2(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < 0.0) domain_error("log2");
    /* check for pole error */
    if (d0 == 0.0) return DBL2NUM(-INFINITY);
    d = log2(d0);
    return DBL2NUM(d);
}

/*
 *  call-seq:
 *     Math.log10(numeric)    -> float
 *
 *  Returns the base 10 logarithm of <i>numeric</i>.
 *
 *    Math.log10(1)       #=> 0.0
 *    Math.log10(10)      #=> 1.0
 *    Math.log10(10**100) #=> 100.0
 *
 */

static VALUE
math_log10(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < 0.0) domain_error("log10");
    /* check for pole error */
    if (d0 == 0.0) return DBL2NUM(-INFINITY);
    d = log10(d0);
    return DBL2NUM(d);
}

/*
 *  call-seq:
 *     Math.sqrt(numeric)    -> float
 *
 *  Returns the non-negative square root of <i>numeric</i>.
 *
 *    0.upto(10) {|x|
 *      p [x, Math.sqrt(x), Math.sqrt(x)**2]
 *    }
 *    #=>
 *    [0, 0.0, 0.0]
 *    [1, 1.0, 1.0]
 *    [2, 1.4142135623731, 2.0]
 *    [3, 1.73205080756888, 3.0]
 *    [4, 2.0, 4.0]
 *    [5, 2.23606797749979, 5.0]
 *    [6, 2.44948974278318, 6.0]
 *    [7, 2.64575131106459, 7.0]
 *    [8, 2.82842712474619, 8.0]
 *    [9, 3.0, 9.0]
 *    [10, 3.16227766016838, 10.0]
 *
 */

static VALUE
math_sqrt(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < 0.0) domain_error("sqrt");
    if (d0 == 0.0) return DBL2NUM(0.0);
    d = sqrt(d0);
    return DBL2NUM(d);
}

/*
 *  call-seq:
 *     Math.cbrt(numeric)    -> float
 *
 *  Returns the cube root of <i>numeric</i>.
 *
 *    -9.upto(9) {|x|
 *      p [x, Math.cbrt(x), Math.cbrt(x)**3]
 *    }
 *    #=>
 *    [-9, -2.0800838230519, -9.0]
 *    [-8, -2.0, -8.0]
 *    [-7, -1.91293118277239, -7.0]
 *    [-6, -1.81712059283214, -6.0]
 *    [-5, -1.7099759466767, -5.0]
 *    [-4, -1.5874010519682, -4.0]
 *    [-3, -1.44224957030741, -3.0]
 *    [-2, -1.25992104989487, -2.0]
 *    [-1, -1.0, -1.0]
 *    [0, 0.0, 0.0]
 *    [1, 1.0, 1.0]
 *    [2, 1.25992104989487, 2.0]
 *    [3, 1.44224957030741, 3.0]
 *    [4, 1.5874010519682, 4.0]
 *    [5, 1.7099759466767, 5.0]
 *    [6, 1.81712059283214, 6.0]
 *    [7, 1.91293118277239, 7.0]
 *    [8, 2.0, 8.0]
 *    [9, 2.0800838230519, 9.0]
 *
 */

static VALUE
math_cbrt(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(cbrt(RFLOAT_VALUE(x)));
}

/*
 *  call-seq:
 *     Math.frexp(numeric)    -> [ fraction, exponent ]
 *
 *  Returns a two-element array containing the normalized fraction (a
 *  <code>Float</code>) and exponent (a <code>Fixnum</code>) of
 *  <i>numeric</i>.
 *
 *     fraction, exponent = Math.frexp(1234)   #=> [0.6025390625, 11]
 *     fraction * 2**exponent                  #=> 1234.0
 */

static VALUE
math_frexp(VALUE obj, VALUE x)
{
    double d;
    int exp;

    Need_Float(x);

    d = frexp(RFLOAT_VALUE(x), &exp);
    return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}

/*
 *  call-seq:
 *     Math.ldexp(flt, int) -> float
 *
 *  Returns the value of <i>flt</i>*(2**<i>int</i>).
 *
 *     fraction, exponent = Math.frexp(1234)
 *     Math.ldexp(fraction, exponent)   #=> 1234.0
 */

static VALUE
math_ldexp(VALUE obj, VALUE x, VALUE n)
{
    Need_Float(x);
    return DBL2NUM(ldexp(RFLOAT_VALUE(x), NUM2INT(n)));
}

/*
 *  call-seq:
 *     Math.hypot(x, y)    -> float
 *
 *  Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle
 *  with sides <i>x</i> and <i>y</i>.
 *
 *     Math.hypot(3, 4)   #=> 5.0
 */

static VALUE
math_hypot(VALUE obj, VALUE x, VALUE y)
{
    Need_Float2(x, y);
    return DBL2NUM(hypot(RFLOAT_VALUE(x), RFLOAT_VALUE(y)));
}

/*
 * call-seq:
 *    Math.erf(x)  -> float
 *
 *  Calculates the error function of x.
 */

static VALUE
math_erf(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(erf(RFLOAT_VALUE(x)));
}

/*
 * call-seq:
 *    Math.erfc(x)  -> float
 *
 *  Calculates the complementary error function of x.
 */

static VALUE
math_erfc(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(erfc(RFLOAT_VALUE(x)));
}

/*
 * call-seq:
 *    Math.gamma(x)  -> float
 *
 *  Calculates the gamma function of x.
 *
 *  Note that gamma(n) is same as fact(n-1) for integer n > 0.
 *  However gamma(n) returns float and can be an approximation.
 *
 *   def fact(n) (1..n).inject(1) {|r,i| r*i } end
 *   1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
 *   #=> [1, 1.0, 1]
 *   #   [2, 1.0, 1]
 *   #   [3, 2.0, 2]
 *   #   [4, 6.0, 6]
 *   #   [5, 24.0, 24]
 *   #   [6, 120.0, 120]
 *   #   [7, 720.0, 720]
 *   #   [8, 5040.0, 5040]
 *   #   [9, 40320.0, 40320]
 *   #   [10, 362880.0, 362880]
 *   #   [11, 3628800.0, 3628800]
 *   #   [12, 39916800.0, 39916800]
 *   #   [13, 479001600.0, 479001600]
 *   #   [14, 6227020800.0, 6227020800]
 *   #   [15, 87178291200.0, 87178291200]
 *   #   [16, 1307674368000.0, 1307674368000]
 *   #   [17, 20922789888000.0, 20922789888000]
 *   #   [18, 355687428096000.0, 355687428096000]
 *   #   [19, 6.402373705728e+15, 6402373705728000]
 *   #   [20, 1.21645100408832e+17, 121645100408832000]
 *   #   [21, 2.43290200817664e+18, 2432902008176640000]
 *   #   [22, 5.109094217170944e+19, 51090942171709440000]
 *   #   [23, 1.1240007277776077e+21, 1124000727777607680000]
 *   #   [24, 2.5852016738885062e+22, 25852016738884976640000]
 *   #   [25, 6.204484017332391e+23, 620448401733239439360000]
 *   #   [26, 1.5511210043330954e+25, 15511210043330985984000000]
 *
 */

static VALUE
math_gamma(VALUE obj, VALUE x)
{
    static const double fact_table[] = {
        /* fact(0) */ 1.0,
        /* fact(1) */ 1.0,
        /* fact(2) */ 2.0,
        /* fact(3) */ 6.0,
        /* fact(4) */ 24.0,
        /* fact(5) */ 120.0,
        /* fact(6) */ 720.0,
        /* fact(7) */ 5040.0,
        /* fact(8) */ 40320.0,
        /* fact(9) */ 362880.0,
        /* fact(10) */ 3628800.0,
        /* fact(11) */ 39916800.0,
        /* fact(12) */ 479001600.0,
        /* fact(13) */ 6227020800.0,
        /* fact(14) */ 87178291200.0,
        /* fact(15) */ 1307674368000.0,
        /* fact(16) */ 20922789888000.0,
        /* fact(17) */ 355687428096000.0,
        /* fact(18) */ 6402373705728000.0,
        /* fact(19) */ 121645100408832000.0,
        /* fact(20) */ 2432902008176640000.0,
        /* fact(21) */ 51090942171709440000.0,
        /* fact(22) */ 1124000727777607680000.0,
        /* fact(23)=25852016738884976640000 needs 56bit mantissa which is
         * impossible to represent exactly in IEEE 754 double which have
         * 53bit mantissa. */
    };
    double d0, d;
    double intpart, fracpart;
    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (isinf(d0) && signbit(d0)) domain_error("gamma");
    fracpart = modf(d0, &intpart);
    if (fracpart == 0.0) {
	if (intpart < 0) domain_error("gamma");
	if (0 < intpart &&
	    intpart - 1 < (double)numberof(fact_table)) {
	    return DBL2NUM(fact_table[(int)intpart - 1]);
	}
    }
    d = tgamma(d0);
    return DBL2NUM(d);
}

/*
 * call-seq:
 *    Math.lgamma(x)  -> [float, -1 or 1]
 *
 *  Calculates the logarithmic gamma of x and
 *  the sign of gamma of x.
 *
 *  Math.lgamma(x) is same as
 *   [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
 *  but avoid overflow by Math.gamma(x) for large x.
 */

static VALUE
math_lgamma(VALUE obj, VALUE x)
{
    double d0, d;
    int sign=1;
    VALUE v;
    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (isinf(d0)) {
	if (signbit(d0)) domain_error("lgamma");
	return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1));
    }
    d = lgamma_r(d0, &sign);
    v = DBL2NUM(d);
    return rb_assoc_new(v, INT2FIX(sign));
}


#define exp1(n) \
VALUE \
rb_math_##n(VALUE x)\
{\
    return math_##n(rb_mMath, x);\
}

#define exp2(n) \
VALUE \
rb_math_##n(VALUE x, VALUE y)\
{\
    return math_##n(rb_mMath, x, y);\
}

exp2(atan2)
exp1(cos)
exp1(cosh)
exp1(exp)
exp2(hypot)

VALUE
rb_math_log(int argc, VALUE *argv)
{
    return math_log(argc, argv);
}

exp1(sin)
exp1(sinh)
exp1(sqrt)


/*
 *  Document-class: Math::DomainError
 *
 *  Raised when a mathematical function is evaluated outside of its
 *  domain of definition.
 *
 *  For example, since +cos+ returns values in the range -1..1,
 *  its inverse function +acos+ is only defined on that interval:
 *
 *     Math.acos(42)
 *
 *  <em>produces:</em>
 *
 *     Math::DomainError: Numerical argument is out of domain - "acos"
 */

/*
 *  The <code>Math</code> module contains module functions for basic
 *  trigonometric and transcendental functions. See class
 *  <code>Float</code> for a list of constants that
 *  define Ruby's floating point accuracy.
 */


void
Init_Math(void)
{
    rb_mMath = rb_define_module("Math");
    rb_eMathDomainError = rb_define_class_under(rb_mMath, "DomainError", rb_eStandardError);

#ifdef M_PI
    rb_define_const(rb_mMath, "PI", DBL2NUM(M_PI));
#else
    rb_define_const(rb_mMath, "PI", DBL2NUM(atan(1.0)*4.0));
#endif

#ifdef M_E
    rb_define_const(rb_mMath, "E", DBL2NUM(M_E));
#else
    rb_define_const(rb_mMath, "E", DBL2NUM(exp(1.0)));
#endif

    rb_define_module_function(rb_mMath, "atan2", math_atan2, 2);
    rb_define_module_function(rb_mMath, "cos", math_cos, 1);
    rb_define_module_function(rb_mMath, "sin", math_sin, 1);
    rb_define_module_function(rb_mMath, "tan", math_tan, 1);

    rb_define_module_function(rb_mMath, "acos", math_acos, 1);
    rb_define_module_function(rb_mMath, "asin", math_asin, 1);
    rb_define_module_function(rb_mMath, "atan", math_atan, 1);

    rb_define_module_function(rb_mMath, "cosh", math_cosh, 1);
    rb_define_module_function(rb_mMath, "sinh", math_sinh, 1);
    rb_define_module_function(rb_mMath, "tanh", math_tanh, 1);

    rb_define_module_function(rb_mMath, "acosh", math_acosh, 1);
    rb_define_module_function(rb_mMath, "asinh", math_asinh, 1);
    rb_define_module_function(rb_mMath, "atanh", math_atanh, 1);

    rb_define_module_function(rb_mMath, "exp", math_exp, 1);
    rb_define_module_function(rb_mMath, "log", math_log, -1);
    rb_define_module_function(rb_mMath, "log2", math_log2, 1);
    rb_define_module_function(rb_mMath, "log10", math_log10, 1);
    rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1);
    rb_define_module_function(rb_mMath, "cbrt", math_cbrt, 1);

    rb_define_module_function(rb_mMath, "frexp", math_frexp, 1);
    rb_define_module_function(rb_mMath, "ldexp", math_ldexp, 2);

    rb_define_module_function(rb_mMath, "hypot", math_hypot, 2);

    rb_define_module_function(rb_mMath, "erf",  math_erf,  1);
    rb_define_module_function(rb_mMath, "erfc", math_erfc, 1);

    rb_define_module_function(rb_mMath, "gamma", math_gamma, 1);
    rb_define_module_function(rb_mMath, "lgamma", math_lgamma, 1);
}