1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
|
require 'ipaddress/prefix'
module IPAddress;
#
# =Name
#
# IPAddress::IPv4 - IP version 4 address manipulation library
#
# =Synopsis
#
# require 'ipaddress'
#
# =Description
#
# Class IPAddress::IPv4 is used to handle IPv4 type addresses.
#
class IPv4
include IPAddress
include Enumerable
include Comparable
#
# This Hash contains the prefix values for Classful networks
#
# Note that classes C, D and E will all have a default
# prefix of /24 or 255.255.255.0
#
CLASSFUL = {
/^0../ => 8, # Class A, from 0.0.0.0 to 127.255.255.255
/^10./ => 16, # Class B, from 128.0.0.0 to 191.255.255.255
/^110/ => 24 # Class C, D and E, from 192.0.0.0 to 255.255.255.254
}
#
# Regular expression to match an IPv4 address
#
REGEXP = Regexp.new(/((25[0-5]|2[0-4]\d|1\d\d|[1-9]\d|\d)\.){3}(25[0-5]|2[0-4]\d|1\d\d|[1-9]\d|\d)/)
#
# Creates a new IPv4 address object.
#
# An IPv4 address can be expressed in any of the following forms:
#
# * "10.1.1.1/24": ip +address+ and +prefix+. This is the common and
# suggested way to create an object .
# * "10.1.1.1/255.255.255.0": ip +address+ and +netmask+. Although
# convenient sometimes, this format is less clear than the previous
# one.
# * "10.1.1.1": if the address alone is specified, the prefix will be
# set as default 32, also known as the host prefix
#
# Examples:
#
# # These two are the same
# ip = IPAddress::IPv4.new("10.0.0.1/24")
# ip = IPAddress("10.0.0.1/24")
#
# # These two are the same
# IPAddress::IPv4.new "10.0.0.1/8"
# IPAddress::IPv4.new "10.0.0.1/255.0.0.0"
#
def initialize(str)
ip, netmask = str.split("/")
# Check the ip and remove white space
if IPAddress.valid_ipv4?(ip)
@address = ip.strip
else
raise ArgumentError, "Invalid IP #{ip.inspect}"
end
# Check the netmask
if netmask # netmask is defined
netmask.strip!
if netmask =~ /^\d{1,2}$/ # netmask in cidr format
@prefix = Prefix32.new(netmask.to_i)
elsif IPAddress.valid_ipv4_netmask?(netmask) # netmask in IP format
@prefix = Prefix32.parse_netmask(netmask)
else # invalid netmask
raise ArgumentError, "Invalid netmask #{netmask}"
end
else # netmask is nil, reverting to defaul classful mask
@prefix = Prefix32.new(32)
end
# Array formed with the IP octets
@octets = @address.split(".").map{|i| i.to_i}
# 32 bits interger containing the address
@u32 = (@octets[0]<< 24) + (@octets[1]<< 16) + (@octets[2]<< 8) + (@octets[3])
end # def initialize
#
# Returns the address portion of the IPv4 object
# as a string.
#
# ip = IPAddress("172.16.100.4/22")
#
# ip.address
# #=> "172.16.100.4"
#
def address
@address
end
#
# Returns the prefix portion of the IPv4 object
# as a IPAddress::Prefix32 object
#
# ip = IPAddress("172.16.100.4/22")
#
# ip.prefix
# #=> 22
#
# ip.prefix.class
# #=> IPAddress::Prefix32
#
def prefix
@prefix
end
#
# Set a new prefix number for the object
#
# This is useful if you want to change the prefix
# to an object created with IPv4::parse_u32 or
# if the object was created using the classful
# mask.
#
# ip = IPAddress("172.16.100.4")
#
# puts ip
# #=> 172.16.100.4/16
#
# ip.prefix = 22
#
# puts ip
# #=> 172.16.100.4/22
#
def prefix=(num)
@prefix = Prefix32.new(num)
end
#
# Returns the address as an array of decimal values
#
# ip = IPAddress("172.16.100.4")
#
# ip.octets
# #=> [172, 16, 100, 4]
#
def octets
@octets
end
#
# Returns a string with the address portion of
# the IPv4 object
#
# ip = IPAddress("172.16.100.4/22")
#
# ip.to_s
# #=> "172.16.100.4"
#
def to_s
@address
end
#
# Returns a string with the IP address in canonical
# form.
#
# ip = IPAddress("172.16.100.4/22")
#
# ip.to_string
# #=> "172.16.100.4/22"
#
def to_string
"#@address/#@prefix"
end
#
# Returns the prefix as a string in IP format
#
# ip = IPAddress("172.16.100.4/22")
#
# ip.netmask
# #=> "255.255.252.0"
#
def netmask
@prefix.to_ip
end
#
# Like IPv4#prefix=, this method allow you to
# change the prefix / netmask of an IP address
# object.
#
# ip = IPAddress("172.16.100.4")
#
# puts ip
# #=> 172.16.100.4/16
#
# ip.netmask = "255.255.252.0"
#
# puts ip
# #=> 172.16.100.4/22
#
def netmask=(addr)
@prefix = Prefix32.parse_netmask(addr)
end
#
# Returns the address portion in unsigned
# 32 bits integer format.
#
# This method is identical to the C function
# inet_pton to create a 32 bits address family
# structure.
#
# ip = IPAddress("10.0.0.0/8")
#
# ip.to_i
# #=> 167772160
#
def u32
@u32
end
alias_method :to_i, :u32
alias_method :to_u32, :u32
#
# Returns the address portion of an IPv4 object
# in a network byte order format.
#
# ip = IPAddress("172.16.10.1/24")
#
# ip.data
# #=> "\254\020\n\001"
#
# It is usually used to include an IP address
# in a data packet to be sent over a socket
#
# a = Socket.open(params) # socket details here
# ip = IPAddress("10.1.1.0/24")
# binary_data = ["Address: "].pack("a*") + ip.data
#
# # Send binary data
# a.puts binary_data
#
def data
[@u32].pack("N")
end
#
# Returns the octet specified by index
#
# ip = IPAddress("172.16.100.50/24")
#
# ip[0]
# #=> 172
# ip[1]
# #=> 16
# ip[2]
# #=> 100
# ip[3]
# #=> 50
#
def [](index)
@octets[index]
end
alias_method :octet, :[]
#
# Returns the address portion of an IP in binary format,
# as a string containing a sequence of 0 and 1
#
# ip = IPAddress("127.0.0.1")
#
# ip.bits
# #=> "01111111000000000000000000000001"
#
def bits
data.unpack("B*").first
end
#
# Returns the broadcast address for the given IP.
#
# ip = IPAddress("172.16.10.64/24")
#
# ip.broadcast.to_s
# #=> "172.16.10.255"
#
def broadcast
self.class.parse_u32(broadcast_u32, @prefix)
end
#
# Checks if the IP address is actually a network
#
# ip = IPAddress("172.16.10.64/24")
#
# ip.network?
# #=> false
#
# ip = IPAddress("172.16.10.64/26")
#
# ip.network?
# #=> true
#
def network?
(@prefix < 32) && (@u32 | @prefix.to_u32 == @prefix.to_u32)
end
#
# Returns a new IPv4 object with the network number
# for the given IP.
#
# ip = IPAddress("172.16.10.64/24")
#
# ip.network.to_s
# #=> "172.16.10.0"
#
def network
self.class.parse_u32(network_u32, @prefix)
end
#
# Returns a new IPv4 object with the
# first host IP address in the range.
#
# Example: given the 192.168.100.0/24 network, the first
# host IP address is 192.168.100.1.
#
# ip = IPAddress("192.168.100.0/24")
#
# ip.first.to_s
# #=> "192.168.100.1"
#
# The object IP doesn't need to be a network: the method
# automatically gets the network number from it
#
# ip = IPAddress("192.168.100.50/24")
#
# ip.first.to_s
# #=> "192.168.100.1"
#
def first
self.class.parse_u32(network_u32+1, @prefix)
end
#
# Like its sibling method IPv4#first, this method
# returns a new IPv4 object with the
# last host IP address in the range.
#
# Example: given the 192.168.100.0/24 network, the last
# host IP address is 192.168.100.254
#
# ip = IPAddress("192.168.100.0/24")
#
# ip.last.to_s
# #=> "192.168.100.254"
#
# The object IP doesn't need to be a network: the method
# automatically gets the network number from it
#
# ip = IPAddress("192.168.100.50/24")
#
# ip.last.to_s
# #=> "192.168.100.254"
#
def last
self.class.parse_u32(broadcast_u32-1, @prefix)
end
#
# Iterates over all the hosts IP addresses for the given
# network (or IP address).
#
# ip = IPAddress("10.0.0.1/29")
#
# ip.each_host do |i|
# p i.to_s
# end
# #=> "10.0.0.1"
# #=> "10.0.0.2"
# #=> "10.0.0.3"
# #=> "10.0.0.4"
# #=> "10.0.0.5"
# #=> "10.0.0.6"
#
def each_host
(network_u32+1..broadcast_u32-1).each do |i|
yield self.class.parse_u32(i, @prefix)
end
end
#
# Iterates over all the IP addresses for the given
# network (or IP address).
#
# The object yielded is a new IPv4 object created
# from the iteration.
#
# ip = IPAddress("10.0.0.1/29")
#
# ip.each do |i|
# p i.address
# end
# #=> "10.0.0.0"
# #=> "10.0.0.1"
# #=> "10.0.0.2"
# #=> "10.0.0.3"
# #=> "10.0.0.4"
# #=> "10.0.0.5"
# #=> "10.0.0.6"
# #=> "10.0.0.7"
#
def each
(network_u32..broadcast_u32).each do |i|
yield self.class.parse_u32(i, @prefix)
end
end
#
# Spaceship operator to compare IPv4 objects
#
# Comparing IPv4 addresses is useful to ordinate
# them into lists that match our intuitive
# perception of ordered IP addresses.
#
# The first comparison criteria is the u32 value.
# For example, 10.100.100.1 will be considered
# to be less than 172.16.0.1, because, in a ordered list,
# we expect 10.100.100.1 to come before 172.16.0.1.
#
# The second criteria, in case two IPv4 objects
# have identical addresses, is the prefix. An higher
# prefix will be considered greater than a lower
# prefix. This is because we expect to see
# 10.100.100.0/24 come before 10.100.100.0/25.
#
# Example:
#
# ip1 = IPAddress "10.100.100.1/8"
# ip2 = IPAddress "172.16.0.1/16"
# ip3 = IPAddress "10.100.100.1/16"
#
# ip1 < ip2
# #=> true
# ip1 > ip3
# #=> false
#
# [ip1,ip2,ip3].sort.map{|i| i.to_string}
# #=> ["10.100.100.1/8","10.100.100.1/16","172.16.0.1/16"]
#
def <=>(oth)
return prefix <=> oth.prefix if to_u32 == oth.to_u32
to_u32 <=> oth.to_u32
end
#
# Returns the number of IP addresses included
# in the network. It also counts the network
# address and the broadcast address.
#
# ip = IPAddress("10.0.0.1/29")
#
# ip.size
# #=> 8
#
def size
2 ** @prefix.host_prefix
end
#
# Returns an array with the IP addresses of
# all the hosts in the network.
#
# ip = IPAddress("10.0.0.1/29")
#
# ip.hosts.map {|i| i.address}
# #=> ["10.0.0.1",
# #=> "10.0.0.2",
# #=> "10.0.0.3",
# #=> "10.0.0.4",
# #=> "10.0.0.5",
# #=> "10.0.0.6"]
#
def hosts
to_a[1..-2]
end
#
# Returns the network number in Unsigned 32bits format
#
# ip = IPAddress("10.0.0.1/29")
#
# ip.network_u32
# #=> 167772160
#
def network_u32
@u32 & @prefix.to_u32
end
#
# Returns the broadcast address in Unsigned 32bits format
#
# ip = IPaddress("10.0.0.1/29")
#
# ip.broadcast_u32
# #=> 167772167
#
def broadcast_u32
network_u32 + size - 1
end
#
# Checks whether a subnet includes the given IP address.
#
# Accepts an IPAddress::IPv4 object.
#
# ip = IPAddress("192.168.10.100/24")
#
# addr = IPAddress("192.168.10.102/24")
#
# ip.include? addr
# #=> true
#
# ip.include? IPAddress("172.16.0.48/16")
# #=> false
#
def include?(oth)
@prefix <= oth.prefix and network_u32 == (oth.to_u32 & @prefix.to_u32)
end
#
# Checks whether a subnet includes all the
# given IPv4 objects.
#
# ip = IPAddress("192.168.10.100/24")
#
# addr1 = IPAddress("192.168.10.102/24")
# addr2 = IPAddress("192.168.10.103/24")
#
# ip.include_all?(addr1,addr2)
# #=> true
#
def include_all?(*others)
others.all? {|oth| include?(oth)}
end
#
# Checks if an IPv4 address objects belongs
# to a private network RFC1918
#
# Example:
#
# ip = IPAddress "10.1.1.1/24"
# ip.private?
# #=> true
#
def private?
[self.class.new("10.0.0.0/8"),
self.class.new("172.16.0.0/12"),
self.class.new("192.168.0.0/16")].any? {|i| i.include? self}
end
#
# Returns the IP address in in-addr.arpa format
# for DNS lookups
#
# ip = IPAddress("172.16.100.50/24")
#
# ip.reverse
# #=> "50.100.16.172.in-addr.arpa"
#
def reverse
@octets.reverse.join(".") + ".in-addr.arpa"
end
alias_method :arpa, :reverse
#
# Splits a network into different subnets
#
# If the IP Address is a network, it can be divided into
# multiple networks. If +self+ is not a network, this
# method will calculate the network from the IP and then
# subnet it.
#
# If +subnets+ is an power of two number, the resulting
# networks will be divided evenly from the supernet.
#
# network = IPAddress("172.16.10.0/24")
#
# network / 4 # implies map{|i| i.to_string}
# #=> ["172.16.10.0/26",
# "172.16.10.64/26",
# "172.16.10.128/26",
# "172.16.10.192/26"]
#
# If +num+ is any other number, the supernet will be
# divided into some networks with a even number of hosts and
# other networks with the remaining addresses.
#
# network = IPAddress("172.16.10.0/24")
#
# network / 3 # implies map{|i| i.to_string}
# #=> ["172.16.10.0/26",
# "172.16.10.64/26",
# "172.16.10.128/25"]
#
# Returns an array of IPv4 objects
#
def split(subnets=2)
unless (1..(2**@prefix.host_prefix)).include? subnets
raise ArgumentError, "Value #{subnets} out of range"
end
networks = subnet(newprefix(subnets))
until networks.size == subnets
networks = sum_first_found(networks)
end
return networks
end
alias_method :/, :split
#
# Returns a new IPv4 object from the supernetting
# of the instance network.
#
# Supernetting is similar to subnetting, except
# that you getting as a result a network with a
# smaller prefix (bigger host space). For example,
# given the network
#
# ip = IPAddress("172.16.10.0/24")
#
# you can supernet it with a new /23 prefix
#
# ip.supernet(23).to_string
# #=> "172.16.10.0/23"
#
# However if you supernet it with a /22 prefix, the
# network address will change:
#
# ip.supernet(22).to_string
# #=> "172.16.8.0/22"
#
# If +new_prefix+ is less than 1, returns 0.0.0.0/0
#
def supernet(new_prefix)
raise ArgumentError, "New prefix must be smaller than existing prefix" if new_prefix >= @prefix.to_i
return self.class.new("0.0.0.0/0") if new_prefix < 1
return self.class.new(@address+"/#{new_prefix}").network
end
#
# This method implements the subnetting function
# similar to the one described in RFC3531.
#
# By specifying a new prefix, the method calculates
# the network number for the given IPv4 object
# and calculates the subnets associated to the new
# prefix.
#
# For example, given the following network:
#
# ip = IPAddress "172.16.10.0/24"
#
# we can calculate the subnets with a /26 prefix
#
# ip.subnets(26).map{&:to_string)
# #=> ["172.16.10.0/26", "172.16.10.64/26",
# "172.16.10.128/26", "172.16.10.192/26"]
#
# The resulting number of subnets will of course always be
# a power of two.
#
def subnet(subprefix)
unless ((@prefix.to_i)..32).include? subprefix
raise ArgumentError, "New prefix must be between #@prefix and 32"
end
Array.new(2**(subprefix-@prefix.to_i)) do |i|
self.class.parse_u32(network_u32+(i*(2**(32-subprefix))), subprefix)
end
end
#
# Returns the difference between two IP addresses
# in unsigned int 32 bits format
#
# Example:
#
# ip1 = IPAddress("172.16.10.0/24")
# ip2 = IPAddress("172.16.11.0/24")
#
# puts ip1 - ip2
# #=> 256
#
def -(oth)
return (to_u32 - oth.to_u32).abs
end
#
# Returns a new IPv4 object which is the result
# of the summarization, if possible, of the two
# objects
#
# Example:
#
# ip1 = IPAddress("172.16.10.1/24")
# ip2 = IPAddress("172.16.11.2/24")
#
# p (ip1 + ip2).map {|i| i.to_string}
# #=> ["172.16.10.0/23"]
#
# If the networks are not contiguous, returns
# the two network numbers from the objects
#
# ip1 = IPAddress("10.0.0.1/24")
# ip2 = IPAddress("10.0.2.1/24")
#
# p (ip1 + ip2).map {|i| i.to_string}
# #=> ["10.0.0.0/24","10.0.2.0/24"]
#
def +(oth)
aggregate(*[self,oth].sort.map{|i| i.network})
end
#
# Checks whether the ip address belongs to a
# RFC 791 CLASS A network, no matter
# what the subnet mask is.
#
# Example:
#
# ip = IPAddress("10.0.0.1/24")
#
# ip.a?
# #=> true
#
def a?
CLASSFUL.key(8) === bits
end
#
# Checks whether the ip address belongs to a
# RFC 791 CLASS B network, no matter
# what the subnet mask is.
#
# Example:
#
# ip = IPAddress("172.16.10.1/24")
#
# ip.b?
# #=> true
#
def b?
CLASSFUL.key(16) === bits
end
#
# Checks whether the ip address belongs to a
# RFC 791 CLASS C network, no matter
# what the subnet mask is.
#
# Example:
#
# ip = IPAddress("192.168.1.1/30")
#
# ip.c?
# #=> true
#
def c?
CLASSFUL.key(24) === bits
end
#
# Return the ip address in a format compatible
# with the IPv6 Mapped IPv4 addresses
#
# Example:
#
# ip = IPAddress("172.16.10.1/24")
#
# ip.to_ipv6
# #=> "ac10:0a01"
#
def to_ipv6
"%.4x:%.4x" % [to_u32].pack("N").unpack("nn")
end
#
# Creates a new IPv4 object from an
# unsigned 32bits integer.
#
# ip = IPAddress::IPv4::parse_u32(167772160)
#
# ip.prefix = 8
# ip.to_string
# #=> "10.0.0.0/8"
#
# The +prefix+ parameter is optional:
#
# ip = IPAddress::IPv4::parse_u32(167772160, 8)
#
# ip.to_string
# #=> "10.0.0.0/8"
#
def self.parse_u32(u32, prefix=32)
self.new([u32].pack("N").unpack("C4").join(".")+"/#{prefix}")
end
#
# Creates a new IPv4 object from binary data,
# like the one you get from a network stream.
#
# For example, on a network stream the IP 172.16.0.1
# is represented with the binary "\254\020\n\001".
#
# ip = IPAddress::IPv4::parse_data "\254\020\n\001"
# ip.prefix = 24
#
# ip.to_string
# #=> "172.16.10.1/24"
#
def self.parse_data(str, prefix=32)
self.new(str.unpack("C4").join(".")+"/#{prefix}")
end
#
# Extract an IPv4 address from a string and
# returns a new object
#
# Example:
#
# str = "foobar172.16.10.1barbaz"
# ip = IPAddress::IPv4::extract str
#
# ip.to_s
# #=> "172.16.10.1"
#
def self.extract(str)
self.new REGEXP.match(str).to_s
end
#
# Summarization (or aggregation) is the process when two or more
# networks are taken together to check if a supernet, including all
# and only these networks, exists. If it exists then this supernet
# is called the summarized (or aggregated) network.
#
# It is very important to understand that summarization can only
# occur if there are no holes in the aggregated network, or, in other
# words, if the given networks fill completely the address space
# of the supernet. So the two rules are:
#
# 1) The aggregate network must contain +all+ the IP addresses of the
# original networks;
# 2) The aggregate network must contain +only+ the IP addresses of the
# original networks;
#
# A few examples will help clarify the above. Let's consider for
# instance the following two networks:
#
# ip1 = IPAddress("172.16.10.0/24")
# ip2 = IPAddress("172.16.11.0/24")
#
# These two networks can be expressed using only one IP address
# network if we change the prefix. Let Ruby do the work:
#
# IPAddress::IPv4::summarize(ip1,ip2).to_s
# #=> "172.16.10.0/23"
#
# We note how the network "172.16.10.0/23" includes all the addresses
# specified in the above networks, and (more important) includes
# ONLY those addresses.
#
# If we summarized +ip1+ and +ip2+ with the following network:
#
# "172.16.0.0/16"
#
# we would have satisfied rule #1 above, but not rule #2. So "172.16.0.0/16"
# is not an aggregate network for +ip1+ and +ip2+.
#
# If it's not possible to compute a single aggregated network for all the
# original networks, the method returns an array with all the aggregate
# networks found. For example, the following four networks can be
# aggregated in a single /22:
#
# ip1 = IPAddress("10.0.0.1/24")
# ip2 = IPAddress("10.0.1.1/24")
# ip3 = IPAddress("10.0.2.1/24")
# ip4 = IPAddress("10.0.3.1/24")
#
# IPAddress::IPv4::summarize(ip1,ip2,ip3,ip4).to_string
# #=> "10.0.0.0/22",
#
# But the following networks can't be summarized in a single network:
#
# ip1 = IPAddress("10.0.1.1/24")
# ip2 = IPAddress("10.0.2.1/24")
# ip3 = IPAddress("10.0.3.1/24")
# ip4 = IPAddress("10.0.4.1/24")
#
# IPAddress::IPv4::summarize(ip1,ip2,ip3,ip4).map{|i| i.to_string}
# #=> ["10.0.1.0/24","10.0.2.0/23","10.0.4.0/24"]
#
def self.summarize(*args)
# one network? no need to summarize
return [args.first.network] if args.size == 1
i = 0
result = args.dup.sort.map{|ip| ip.network}
while i < result.size-1
sum = result[i] + result[i+1]
result[i..i+1] = sum.first if sum.size == 1
i += 1
end
result.flatten!
if result.size == args.size
# nothing more to summarize
return result
else
# keep on summarizing
return self.summarize(*result)
end
end
#
# Creates a new IPv4 address object by parsing the
# address in a classful way.
#
# Classful addresses have a fixed netmask based on the
# class they belong to:
#
# * Class A, from 0.0.0.0 to 127.255.255.255
# * Class B, from 128.0.0.0 to 191.255.255.255
# * Class C, D and E, from 192.0.0.0 to 255.255.255.254
#
# Example:
#
# ip = IPAddress::IPv4.parse_classful "10.0.0.1"
#
# ip.netmask
# #=> "255.0.0.0"
# ip.a?
# #=> true
#
# Note that classes C, D and E will all have a default
# prefix of /24 or 255.255.255.0
#
def self.parse_classful(ip)
if IPAddress.valid_ipv4?(ip)
address = ip.strip
else
raise ArgumentError, "Invalid IP #{ip.inspect}"
end
prefix = CLASSFUL.find{|h,k| h === ("%.8b" % address.to_i)}.last
self.new "#{address}/#{prefix}"
end
#
# private methods
#
private
def newprefix(num)
num.upto(32) do |i|
if (a = Math::log2(i).to_i) == Math::log2(i)
return @prefix + a
end
end
end
def sum_first_found(arr)
dup = arr.dup.reverse
dup.each_with_index do |obj,i|
a = [self.class.summarize(obj,dup[i+1])].flatten
if a.size == 1
dup[i..i+1] = a
return dup.reverse
end
end
return dup.reverse
end
def aggregate(ip1,ip2)
return [ip1] if ip1.include? ip2
snet = ip1.supernet(ip1.prefix-1)
if snet.include_all?(ip1, ip2) && ((ip1.size + ip2.size) == snet.size)
return [snet]
else
return [ip1, ip2]
end
end
end # class IPv4
end # module IPAddress
|