1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
/*
Copyright (C) Andrew Tridgell 1996
Copyright (C) Paul Mackerras 1996
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "rsync.h"
#include "lib/zlib.h"
extern int do_compression;
/* non-compressing recv token */
static int simple_recv_token(int f,char **data)
{
static int residue;
static char *buf;
int n;
if (!buf) {
buf = (char *)malloc(CHUNK_SIZE);
if (!buf) out_of_memory("simple_recv_token");
}
if (residue == 0) {
int i = read_int(f);
if (i <= 0) return i;
residue = i;
}
*data = buf;
n = MIN(CHUNK_SIZE,residue);
residue -= n;
read_buf(f,buf,n);
return n;
}
/* non-compressing send token */
static void simple_send_token(int f,int token,
struct map_struct *buf,int offset,int n)
{
if (n > 0) {
int l = 0;
while (l < n) {
int n1 = MIN(CHUNK_SIZE,n-l);
write_int(f,n1);
write_buf(f,map_ptr(buf,offset+l,n1),n1);
l += n1;
}
}
write_int(f,-(token+1));
}
/* Memory allocation/freeing routines, called by zlib stuff. */
static void *
z_alloc(void *opaque, uInt items, uInt size)
{
return malloc(items * size);
}
static void
z_free(void *opaque, void *adrs, uInt nbytes)
{
free(adrs);
}
/* Flag bytes in compressed stream are encoded as follows: */
#define END_FLAG 0 /* that's all folks */
#define TOKEN_LONG 0x20 /* followed by 32-bit token number */
#define TOKENRUN_LONG 0x21 /* ditto with 16-bit run count */
#define DEFLATED_DATA 0x40 /* + 6-bit high len, then low len byte */
#define TOKEN_REL 0x80 /* + 6-bit relative token number */
#define TOKENRUN_REL 0xc0 /* ditto with 16-bit run count */
#define MAX_DATA_COUNT 16383 /* fit 14 bit count into 2 bytes with flags */
/* For coding runs of tokens */
static int last_token = -1;
static int run_start;
static int last_run_end;
/* Deflation state */
static z_stream tx_strm;
/* Output buffer */
static char *obuf;
/* Send a deflated token */
static void
send_deflated_token(int f, int token,
struct map_struct *buf, int offset, int nb, int toklen)
{
int n, r;
static int init_done;
if (last_token == -1) {
/* initialization */
if (!init_done) {
tx_strm.next_in = NULL;
tx_strm.zalloc = z_alloc;
tx_strm.zfree = z_free;
if (deflateInit2(&tx_strm, Z_DEFAULT_COMPRESSION, 8,
-15, 8, Z_DEFAULT_STRATEGY) != Z_OK) {
fprintf(FERROR, "compression init failed\n");
exit_cleanup(1);
}
if ((obuf = malloc(MAX_DATA_COUNT+2)) == NULL)
out_of_memory("send_deflated_token");
init_done = 1;
} else
deflateReset(&tx_strm);
run_start = token;
last_run_end = 0;
} else if (nb != 0 || token != last_token + 1
|| token >= run_start + 65536) {
/* output previous run */
r = run_start - last_run_end;
n = last_token - run_start;
if (r >= 0 && r <= 63) {
write_byte(f, (n==0? TOKEN_REL: TOKENRUN_REL) + r);
} else {
write_byte(f, (n==0? TOKEN_LONG: TOKENRUN_LONG));
write_int(f, run_start);
}
if (n != 0) {
write_byte(f, n);
write_byte(f, n >> 8);
}
last_run_end = last_token;
run_start = token;
}
last_token = token;
if (nb != 0) {
/* deflate the data starting at offset */
tx_strm.avail_in = 0;
tx_strm.avail_out = 0;
do {
if (tx_strm.avail_in == 0 && nb != 0) {
/* give it some more input */
n = MIN(nb, CHUNK_SIZE);
tx_strm.next_in = (Bytef *)map_ptr(buf, offset, n);
tx_strm.avail_in = n;
nb -= n;
offset += n;
}
if (tx_strm.avail_out == 0) {
tx_strm.next_out = (Bytef *)(obuf + 2);
tx_strm.avail_out = MAX_DATA_COUNT;
}
r = deflate(&tx_strm, nb? Z_NO_FLUSH: Z_PACKET_FLUSH);
if (r != Z_OK) {
fprintf(FERROR, "deflate returned %d\n", r);
exit_cleanup(1);
}
if (nb == 0 || tx_strm.avail_out == 0) {
n = MAX_DATA_COUNT - tx_strm.avail_out;
if (n > 0) {
obuf[0] = DEFLATED_DATA + (n >> 8);
obuf[1] = n;
write_buf(f, obuf, n+2);
}
}
} while (nb != 0 || tx_strm.avail_out == 0);
}
if (token != -1) {
/* add the data in the current block to the compressor's
history and hash table */
tx_strm.next_in = (Bytef *)map_ptr(buf, offset, toklen);
tx_strm.avail_in = toklen;
tx_strm.next_out = NULL;
tx_strm.avail_out = 2 * toklen;
r = deflate(&tx_strm, Z_INSERT_ONLY);
if (r != Z_OK || tx_strm.avail_in != 0) {
fprintf(FERROR, "deflate on token returned %d (%d bytes left)\n",
r, tx_strm.avail_in);
exit_cleanup(1);
}
} else {
/* end of file - clean up */
write_byte(f, END_FLAG);
}
}
/* tells us what the receiver is in the middle of doing */
static enum { r_init, r_idle, r_running, r_inflating, r_inflated } recv_state;
/* for inflating stuff */
static z_stream rx_strm;
static char *cbuf;
static char *dbuf;
/* for decoding runs of tokens */
static int rx_token;
static int rx_run;
/* Receive a deflated token and inflate it */
static int
recv_deflated_token(int f, char **data)
{
int n, r, flag;
static int init_done;
static int saved_flag;
for (;;) {
switch (recv_state) {
case r_init:
if (!init_done) {
rx_strm.next_out = NULL;
rx_strm.zalloc = z_alloc;
rx_strm.zfree = z_free;
if (inflateInit2(&rx_strm, -15) != Z_OK) {
fprintf(FERROR, "inflate init failed\n");
exit_cleanup(1);
}
if ((cbuf = malloc(MAX_DATA_COUNT)) == NULL
|| (dbuf = malloc(CHUNK_SIZE)) == NULL)
out_of_memory("recv_deflated_token");
init_done = 1;
} else {
inflateReset(&rx_strm);
}
recv_state = r_idle;
rx_token = 0;
break;
case r_idle:
case r_inflated:
if (saved_flag) {
flag = saved_flag & 0xff;
saved_flag = 0;
} else
flag = read_byte(f);
if ((flag & 0xC0) == DEFLATED_DATA) {
n = ((flag & 0x3f) << 8) + read_byte(f);
read_buf(f, cbuf, n);
rx_strm.next_in = (Bytef *)cbuf;
rx_strm.avail_in = n;
recv_state = r_inflating;
break;
}
if (recv_state == r_inflated) {
/* check previous inflated stuff ended correctly */
rx_strm.avail_in = 0;
rx_strm.next_out = (Bytef *)dbuf;
rx_strm.avail_out = CHUNK_SIZE;
r = inflate(&rx_strm, Z_PACKET_FLUSH);
n = CHUNK_SIZE - rx_strm.avail_out;
if (r != Z_OK) {
fprintf(FERROR, "inflate flush returned %d (%d bytes)\n",
r, n);
exit_cleanup(1);
}
if (n != 0) {
/* have to return some more data and
save the flag for later. */
saved_flag = flag + 0x10000;
if (rx_strm.avail_out != 0)
recv_state = r_idle;
*data = dbuf;
return n;
}
recv_state = r_idle;
}
if (flag == END_FLAG) {
/* that's all folks */
recv_state = r_init;
return 0;
}
/* here we have a token of some kind */
if (flag & TOKEN_REL) {
rx_token += flag & 0x3f;
flag >>= 6;
} else
rx_token = read_int(f);
if (flag & 1) {
rx_run = read_byte(f);
rx_run += read_byte(f) << 8;
recv_state = r_running;
}
return -1 - rx_token;
case r_inflating:
rx_strm.next_out = (Bytef *)dbuf;
rx_strm.avail_out = CHUNK_SIZE;
r = inflate(&rx_strm, Z_NO_FLUSH);
n = CHUNK_SIZE - rx_strm.avail_out;
if (r != Z_OK) {
fprintf(FERROR, "inflate returned %d (%d bytes)\n", r, n);
exit_cleanup(1);
}
if (rx_strm.avail_in == 0)
recv_state = r_inflated;
if (n != 0) {
*data = dbuf;
return n;
}
break;
case r_running:
++rx_token;
if (--rx_run == 0)
recv_state = r_idle;
return -1 - rx_token;
}
}
}
/*
* put the data corresponding to a token that we've just returned
* from recv_deflated_token into the decompressor's history buffer.
*/
void
see_deflate_token(char *buf, int len)
{
int r;
rx_strm.next_in = (Bytef *)buf;
rx_strm.avail_in = len;
r = inflateIncomp(&rx_strm);
if (r != Z_OK) {
fprintf(FERROR, "inflateIncomp returned %d\n", r);
exit_cleanup(1);
}
}
/*
* transmit a verbatim buffer of length n followed by a token
* If token == -1 then we have reached EOF
* If n == 0 then don't send a buffer
*/
void send_token(int f,int token,struct map_struct *buf,int offset,
int n,int toklen)
{
if (!do_compression) {
simple_send_token(f,token,buf,offset,n);
} else {
send_deflated_token(f, token, buf, offset, n, toklen);
}
}
/*
* receive a token or buffer from the other end. If the reurn value is >0 then
* it is a data buffer of that length, and *data will point at the data.
* if the return value is -i then it represents token i-1
* if the return value is 0 then the end has been reached
*/
int recv_token(int f,char **data)
{
int tok;
if (!do_compression) {
tok = simple_recv_token(f,data);
} else {
tok = recv_deflated_token(f, data);
}
return tok;
}
/*
* look at the data corresponding to a token, if necessary
*/
void see_token(char *data, int toklen)
{
if (do_compression)
see_deflate_token(data, toklen);
}
|