summaryrefslogtreecommitdiff
path: root/gn/base/containers/span.h
blob: c9718619bccf76638893b708cdc0a05ba965da03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_CONTAINERS_SPAN_H_
#define BASE_CONTAINERS_SPAN_H_

#include <stddef.h>

#include <algorithm>
#include <array>
#include <iterator>
#include <type_traits>
#include <utility>

#include "base/logging.h"
#include "base/stl_util.h"

namespace base {

// [views.constants]
constexpr size_t dynamic_extent = static_cast<size_t>(-1);

template <typename T, size_t Extent = dynamic_extent>
class span;

namespace internal {

template <typename T>
struct IsSpanImpl : std::false_type {};

template <typename T, size_t Extent>
struct IsSpanImpl<span<T, Extent>> : std::true_type {};

template <typename T>
using IsSpan = IsSpanImpl<std::decay_t<T>>;

template <typename T>
struct IsStdArrayImpl : std::false_type {};

template <typename T, size_t N>
struct IsStdArrayImpl<std::array<T, N>> : std::true_type {};

template <typename T>
using IsStdArray = IsStdArrayImpl<std::decay_t<T>>;

template <typename T>
using IsCArray = std::is_array<std::remove_reference_t<T>>;

template <typename From, typename To>
using IsLegalDataConversion = std::is_convertible<From (*)[], To (*)[]>;

template <typename Container, typename T>
using ContainerHasConvertibleData = IsLegalDataConversion<
    std::remove_pointer_t<decltype(base::data(std::declval<Container>()))>,
    T>;

template <typename Container>
using ContainerHasIntegralSize =
    std::is_integral<decltype(base::size(std::declval<Container>()))>;

template <typename From, size_t FromExtent, typename To, size_t ToExtent>
using EnableIfLegalSpanConversion =
    std::enable_if_t<(ToExtent == dynamic_extent || ToExtent == FromExtent) &&
                     IsLegalDataConversion<From, To>::value>;

// SFINAE check if Array can be converted to a span<T>.
template <typename Array, size_t N, typename T, size_t Extent>
using EnableIfSpanCompatibleArray =
    std::enable_if_t<(Extent == dynamic_extent || Extent == N) &&
                     ContainerHasConvertibleData<Array, T>::value>;

// SFINAE check if Container can be converted to a span<T>.
template <typename Container, typename T>
using EnableIfSpanCompatibleContainer =
    std::enable_if_t<!internal::IsSpan<Container>::value &&
                     !internal::IsStdArray<Container>::value &&
                     !internal::IsCArray<Container>::value &&
                     ContainerHasConvertibleData<Container, T>::value &&
                     ContainerHasIntegralSize<Container>::value>;

}  // namespace internal

// A span is a value type that represents an array of elements of type T. Since
// it only consists of a pointer to memory with an associated size, it is very
// light-weight. It is cheap to construct, copy, move and use spans, so that
// users are encouraged to use it as a pass-by-value parameter. A span does not
// own the underlying memory, so care must be taken to ensure that a span does
// not outlive the backing store.
//
// span is somewhat analogous to StringPiece, but with arbitrary element types,
// allowing mutation if T is non-const.
//
// span is implicitly convertible from C++ arrays, as well as most [1]
// container-like types that provide a data() and size() method (such as
// std::vector<T>). A mutable span<T> can also be implicitly converted to an
// immutable span<const T>.
//
// Consider using a span for functions that take a data pointer and size
// parameter: it allows the function to still act on an array-like type, while
// allowing the caller code to be a bit more concise.
//
// For read-only data access pass a span<const T>: the caller can supply either
// a span<const T> or a span<T>, while the callee will have a read-only view.
// For read-write access a mutable span<T> is required.
//
// Without span:
//   Read-Only:
//     // std::string HexEncode(const uint8_t* data, size_t size);
//     std::vector<uint8_t> data_buffer = GenerateData();
//     std::string r = HexEncode(data_buffer.data(), data_buffer.size());
//
//  Mutable:
//     // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...);
//     char str_buffer[100];
//     SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14);
//
// With span:
//   Read-Only:
//     // std::string HexEncode(base::span<const uint8_t> data);
//     std::vector<uint8_t> data_buffer = GenerateData();
//     std::string r = HexEncode(data_buffer);
//
//  Mutable:
//     // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...);
//     char str_buffer[100];
//     SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14);
//
// Spans with "const" and pointers
// -------------------------------
//
// Const and pointers can get confusing. Here are vectors of pointers and their
// corresponding spans:
//
//   const std::vector<int*>        =>  base::span<int* const>
//   std::vector<const int*>        =>  base::span<const int*>
//   const std::vector<const int*>  =>  base::span<const int* const>
//
// Differences from the working group proposal
// -------------------------------------------
//
// https://wg21.link/P0122 is the latest working group proposal, Chromium
// currently implements R7. Differences between the proposal and the
// implementation are documented in subsections below.
//
// Differences from [span.objectrep]:
// - as_bytes() and as_writable_bytes() return spans of uint8_t instead of
//   std::byte
//
// Differences in constants and types:
// - index_type is aliased to size_t
//
// Differences from [span.sub]:
// - using size_t instead of ptrdiff_t for indexing
//
// Differences from [span.obs]:
// - using size_t instead of ptrdiff_t to represent size()
//
// Differences from [span.elem]:
// - using size_t instead of ptrdiff_t for indexing
//
// Furthermore, all constructors and methods are marked noexcept due to the lack
// of exceptions in Chromium.
//
// Due to the lack of class template argument deduction guides in C++14
// appropriate make_span() utility functions are provided.

// [span], class template span
template <typename T, size_t Extent>
class span {
 public:
  using element_type = T;
  using value_type = std::remove_cv_t<T>;
  using index_type = size_t;
  using difference_type = ptrdiff_t;
  using pointer = T*;
  using reference = T&;
  using iterator = T*;
  using const_iterator = const T*;
  using reverse_iterator = std::reverse_iterator<iterator>;
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
  static constexpr index_type extent = Extent;

  // [span.cons], span constructors, copy, assignment, and destructor
  constexpr span() noexcept : data_(nullptr), size_(0) {
    static_assert(Extent == dynamic_extent || Extent == 0, "Invalid Extent");
  }

  constexpr span(T* data, size_t size) noexcept : data_(data), size_(size) {
    CHECK(Extent == dynamic_extent || Extent == size);
  }

  // Artificially templatized to break ambiguity for span(ptr, 0).
  template <typename = void>
  constexpr span(T* begin, T* end) noexcept : span(begin, end - begin) {
    // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
    CHECK(begin <= end);
  }

  template <
      size_t N,
      typename = internal::EnableIfSpanCompatibleArray<T (&)[N], N, T, Extent>>
  constexpr span(T (&array)[N]) noexcept : span(base::data(array), N) {}

  template <
      size_t N,
      typename = internal::
          EnableIfSpanCompatibleArray<std::array<value_type, N>&, N, T, Extent>>
  constexpr span(std::array<value_type, N>& array) noexcept
      : span(base::data(array), N) {}

  template <size_t N,
            typename = internal::EnableIfSpanCompatibleArray<
                const std::array<value_type, N>&,
                N,
                T,
                Extent>>
  constexpr span(const std::array<value_type, N>& array) noexcept
      : span(base::data(array), N) {}

  // Conversion from a container that has compatible base::data() and integral
  // base::size().
  template <typename Container,
            typename = internal::EnableIfSpanCompatibleContainer<Container&, T>>
  constexpr span(Container& container) noexcept
      : span(base::data(container), base::size(container)) {}

  template <
      typename Container,
      typename = internal::EnableIfSpanCompatibleContainer<const Container&, T>>
  span(const Container& container) noexcept
      : span(base::data(container), base::size(container)) {}

  constexpr span(const span& other) noexcept = default;

  // Conversions from spans of compatible types and extents: this allows a
  // span<T> to be seamlessly used as a span<const T>, but not the other way
  // around. If extent is not dynamic, OtherExtent has to be equal to Extent.
  template <
      typename U,
      size_t OtherExtent,
      typename =
          internal::EnableIfLegalSpanConversion<U, OtherExtent, T, Extent>>
  constexpr span(const span<U, OtherExtent>& other)
      : span(other.data(), other.size()) {}

  constexpr span& operator=(const span& other) noexcept = default;
  ~span() noexcept = default;

  // [span.sub], span subviews
  template <size_t Count>
  constexpr span<T, Count> first() const noexcept {
    static_assert(Extent == dynamic_extent || Count <= Extent,
                  "Count must not exceed Extent");
    CHECK(Extent != dynamic_extent || Count <= size());
    return {data(), Count};
  }

  template <size_t Count>
  constexpr span<T, Count> last() const noexcept {
    static_assert(Extent == dynamic_extent || Count <= Extent,
                  "Count must not exceed Extent");
    CHECK(Extent != dynamic_extent || Count <= size());
    return {data() + (size() - Count), Count};
  }

  template <size_t Offset, size_t Count = dynamic_extent>
  constexpr span<T,
                 (Count != dynamic_extent
                      ? Count
                      : (Extent != dynamic_extent ? Extent - Offset
                                                  : dynamic_extent))>
  subspan() const noexcept {
    static_assert(Extent == dynamic_extent || Offset <= Extent,
                  "Offset must not exceed Extent");
    static_assert(Extent == dynamic_extent || Count == dynamic_extent ||
                      Count <= Extent - Offset,
                  "Count must not exceed Extent - Offset");
    CHECK(Extent != dynamic_extent || Offset <= size());
    CHECK(Extent != dynamic_extent || Count == dynamic_extent ||
          Count <= size() - Offset);
    return {data() + Offset, Count != dynamic_extent ? Count : size() - Offset};
  }

  constexpr span<T, dynamic_extent> first(size_t count) const noexcept {
    // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
    CHECK(count <= size());
    return {data(), count};
  }

  constexpr span<T, dynamic_extent> last(size_t count) const noexcept {
    // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
    CHECK(count <= size());
    return {data() + (size() - count), count};
  }

  constexpr span<T, dynamic_extent> subspan(size_t offset,
                                            size_t count = dynamic_extent) const
      noexcept {
    // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
    CHECK(offset <= size());
    CHECK(count == dynamic_extent || count <= size() - offset);
    return {data() + offset, count != dynamic_extent ? count : size() - offset};
  }

  // [span.obs], span observers
  constexpr size_t size() const noexcept { return size_; }
  constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); }
  constexpr bool empty() const noexcept { return size() == 0; }

  // [span.elem], span element access
  constexpr T& operator[](size_t idx) const noexcept {
    // Note: CHECK_LT is not constexpr, hence regular CHECK must be used.
    CHECK(idx < size());
    return *(data() + idx);
  }

  constexpr T& operator()(size_t idx) const noexcept {
    // Note: CHECK_LT is not constexpr, hence regular CHECK must be used.
    CHECK(idx < size());
    return *(data() + idx);
  }

  constexpr T* data() const noexcept { return data_; }

  // [span.iter], span iterator support
  constexpr iterator begin() const noexcept { return data(); }
  constexpr iterator end() const noexcept { return data() + size(); }

  constexpr const_iterator cbegin() const noexcept { return begin(); }
  constexpr const_iterator cend() const noexcept { return end(); }

  constexpr reverse_iterator rbegin() const noexcept {
    return reverse_iterator(end());
  }
  constexpr reverse_iterator rend() const noexcept {
    return reverse_iterator(begin());
  }

  constexpr const_reverse_iterator crbegin() const noexcept {
    return const_reverse_iterator(cend());
  }
  constexpr const_reverse_iterator crend() const noexcept {
    return const_reverse_iterator(cbegin());
  }

 private:
  T* data_;
  size_t size_;
};

// span<T, Extent>::extent can not be declared inline prior to C++17, hence this
// definition is required.
template <class T, size_t Extent>
constexpr size_t span<T, Extent>::extent;

// [span.comparison], span comparison operators
// Relational operators. Equality is a element-wise comparison.
template <typename T, size_t X, typename U, size_t Y>
constexpr bool operator==(span<T, X> lhs, span<U, Y> rhs) noexcept {
  return std::equal(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend());
}

template <typename T, size_t X, typename U, size_t Y>
constexpr bool operator!=(span<T, X> lhs, span<U, Y> rhs) noexcept {
  return !(lhs == rhs);
}

template <typename T, size_t X, typename U, size_t Y>
constexpr bool operator<(span<T, X> lhs, span<U, Y> rhs) noexcept {
  return std::lexicographical_compare(lhs.cbegin(), lhs.cend(), rhs.cbegin(),
                                      rhs.cend());
}

template <typename T, size_t X, typename U, size_t Y>
constexpr bool operator<=(span<T, X> lhs, span<U, Y> rhs) noexcept {
  return !(rhs < lhs);
}

template <typename T, size_t X, typename U, size_t Y>
constexpr bool operator>(span<T, X> lhs, span<U, Y> rhs) noexcept {
  return rhs < lhs;
}

template <typename T, size_t X, typename U, size_t Y>
constexpr bool operator>=(span<T, X> lhs, span<U, Y> rhs) noexcept {
  return !(lhs < rhs);
}

// [span.objectrep], views of object representation
template <typename T, size_t X>
span<const uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>
as_bytes(span<T, X> s) noexcept {
  return {reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()};
}

template <typename T,
          size_t X,
          typename = std::enable_if_t<!std::is_const<T>::value>>
span<uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>
as_writable_bytes(span<T, X> s) noexcept {
  return {reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()};
}

// Type-deducing helpers for constructing a span.
template <typename T>
constexpr span<T> make_span(T* data, size_t size) noexcept {
  return {data, size};
}

template <typename T>
constexpr span<T> make_span(T* begin, T* end) noexcept {
  return {begin, end};
}

template <typename T, size_t N>
constexpr span<T, N> make_span(T (&array)[N]) noexcept {
  return array;
}

template <typename T, size_t N>
constexpr span<T, N> make_span(std::array<T, N>& array) noexcept {
  return array;
}

template <typename T, size_t N>
constexpr span<const T, N> make_span(const std::array<T, N>& array) noexcept {
  return array;
}

template <typename Container,
          typename T = typename Container::value_type,
          typename = internal::EnableIfSpanCompatibleContainer<Container&, T>>
constexpr span<T> make_span(Container& container) noexcept {
  return container;
}

template <
    typename Container,
    typename T = const typename Container::value_type,
    typename = internal::EnableIfSpanCompatibleContainer<const Container&, T>>
constexpr span<T> make_span(const Container& container) noexcept {
  return container;
}

template <typename T, size_t X>
constexpr span<T, X> make_span(const span<T, X>& span) noexcept {
  return span;
}

}  // namespace base

#endif  // BASE_CONTAINERS_SPAN_H_