summaryrefslogtreecommitdiff
path: root/chromium/v8/src/unique.h
blob: a93b04699350dddc4aa9de528eba9abfbd199177 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_HYDROGEN_UNIQUE_H_
#define V8_HYDROGEN_UNIQUE_H_

#include "handles.h"
#include "objects.h"
#include "utils.h"
#include "zone.h"

namespace v8 {
namespace internal {


template <typename T>
class UniqueSet;


// Represents a handle to an object on the heap, but with the additional
// ability of checking for equality and hashing without accessing the heap.
//
// Creating a Unique<T> requires first dereferencing the handle to obtain
// the address of the object, which is used as the hashcode and the basis for
// comparison. The object can be moved later by the GC, but comparison
// and hashing use the old address of the object, without dereferencing it.
//
// Careful! Comparison of two Uniques is only correct if both were created
// in the same "era" of GC or if at least one is a non-movable object.
template <typename T>
class Unique V8_FINAL {
 public:
  // TODO(titzer): make private and introduce a uniqueness scope.
  explicit Unique(Handle<T> handle) {
    if (handle.is_null()) {
      raw_address_ = NULL;
    } else {
      // This is a best-effort check to prevent comparing Unique<T>'s created
      // in different GC eras; we require heap allocation to be disallowed at
      // creation time.
      // NOTE: we currently consider maps to be non-movable, so no special
      // assurance is required for creating a Unique<Map>.
      // TODO(titzer): other immortable immovable objects are also fine.
      ASSERT(!AllowHeapAllocation::IsAllowed() || handle->IsMap());
      raw_address_ = reinterpret_cast<Address>(*handle);
      ASSERT_NE(raw_address_, NULL);  // Non-null should imply non-zero address.
    }
    handle_ = handle;
  }

  // TODO(titzer): this is a hack to migrate to Unique<T> incrementally.
  Unique(Address raw_address, Handle<T> handle)
    : raw_address_(raw_address), handle_(handle) { }

  // Constructor for handling automatic up casting.
  // Eg. Unique<JSFunction> can be passed when Unique<Object> is expected.
  template <class S> Unique(Unique<S> uniq) {
#ifdef DEBUG
    T* a = NULL;
    S* b = NULL;
    a = b;  // Fake assignment to enforce type checks.
    USE(a);
#endif
    raw_address_ = uniq.raw_address_;
    handle_ = uniq.handle_;
  }

  template <typename U>
  inline bool operator==(const Unique<U>& other) const {
    ASSERT(IsInitialized() && other.IsInitialized());
    return raw_address_ == other.raw_address_;
  }

  template <typename U>
  inline bool operator!=(const Unique<U>& other) const {
    ASSERT(IsInitialized() && other.IsInitialized());
    return raw_address_ != other.raw_address_;
  }

  inline intptr_t Hashcode() const {
    ASSERT(IsInitialized());
    return reinterpret_cast<intptr_t>(raw_address_);
  }

  inline bool IsNull() const {
    ASSERT(IsInitialized());
    return raw_address_ == NULL;
  }

  inline bool IsKnownGlobal(void* global) const {
    ASSERT(IsInitialized());
    return raw_address_ == reinterpret_cast<Address>(global);
  }

  inline Handle<T> handle() const {
    return handle_;
  }

  template <class S> static Unique<T> cast(Unique<S> that) {
    return Unique<T>(that.raw_address_, Handle<T>::cast(that.handle_));
  }

  inline bool IsInitialized() const {
    return raw_address_ != NULL || handle_.is_null();
  }

  // TODO(titzer): this is a hack to migrate to Unique<T> incrementally.
  static Unique<T> CreateUninitialized(Handle<T> handle) {
    return Unique<T>(reinterpret_cast<Address>(NULL), handle);
  }

  static Unique<T> CreateImmovable(Handle<T> handle) {
    return Unique<T>(reinterpret_cast<Address>(*handle), handle);
  }

  friend class UniqueSet<T>;  // Uses internal details for speed.
  template <class U>
  friend class Unique;  // For comparing raw_address values.

 private:
  Address raw_address_;
  Handle<T> handle_;
};


template <typename T>
class UniqueSet V8_FINAL : public ZoneObject {
 public:
  // Constructor. A new set will be empty.
  UniqueSet() : size_(0), capacity_(0), array_(NULL) { }

  // Add a new element to this unique set. Mutates this set. O(|this|).
  void Add(Unique<T> uniq, Zone* zone) {
    ASSERT(uniq.IsInitialized());
    // Keep the set sorted by the {raw_address} of the unique elements.
    for (int i = 0; i < size_; i++) {
      if (array_[i] == uniq) return;
      if (array_[i].raw_address_ > uniq.raw_address_) {
        // Insert in the middle.
        Grow(size_ + 1, zone);
        for (int j = size_ - 1; j >= i; j--) array_[j + 1] = array_[j];
        array_[i] = uniq;
        size_++;
        return;
      }
    }
    // Append the element to the the end.
    Grow(size_ + 1, zone);
    array_[size_++] = uniq;
  }

  // Remove an element from this set. Mutates this set. O(|this|)
  void Remove(Unique<T> uniq) {
    for (int i = 0; i < size_; i++) {
      if (array_[i] == uniq) {
        while (++i < size_) array_[i - 1] = array_[i];
        size_--;
        return;
      }
    }
  }

  // Compare this set against another set. O(|this|).
  bool Equals(UniqueSet<T>* that) const {
    if (that->size_ != this->size_) return false;
    for (int i = 0; i < this->size_; i++) {
      if (this->array_[i] != that->array_[i]) return false;
    }
    return true;
  }

  // Check whether this set contains the given element. O(|this|)
  // TODO(titzer): use binary search for large sets to make this O(log|this|)
  template <typename U>
  bool Contains(Unique<U> elem) const {
    for (int i = 0; i < size_; i++) {
      if (this->array_[i] == elem) return true;
    }
    return false;
  }

  // Check if this set is a subset of the given set. O(|this| + |that|).
  bool IsSubset(UniqueSet<T>* that) const {
    if (that->size_ < this->size_) return false;
    int j = 0;
    for (int i = 0; i < this->size_; i++) {
      Unique<T> sought = this->array_[i];
      while (true) {
        if (sought == that->array_[j++]) break;
        // Fail whenever there are more elements in {this} than {that}.
        if ((this->size_ - i) > (that->size_ - j)) return false;
      }
    }
    return true;
  }

  // Returns a new set representing the intersection of this set and the other.
  // O(|this| + |that|).
  UniqueSet<T>* Intersect(UniqueSet<T>* that, Zone* zone) const {
    if (that->size_ == 0 || this->size_ == 0) return new(zone) UniqueSet<T>();

    UniqueSet<T>* out = new(zone) UniqueSet<T>();
    out->Grow(Min(this->size_, that->size_), zone);

    int i = 0, j = 0, k = 0;
    while (i < this->size_ && j < that->size_) {
      Unique<T> a = this->array_[i];
      Unique<T> b = that->array_[j];
      if (a == b) {
        out->array_[k++] = a;
        i++;
        j++;
      } else if (a.raw_address_ < b.raw_address_) {
        i++;
      } else {
        j++;
      }
    }

    out->size_ = k;
    return out;
  }

  // Returns a new set representing the union of this set and the other.
  // O(|this| + |that|).
  UniqueSet<T>* Union(UniqueSet<T>* that, Zone* zone) const {
    if (that->size_ == 0) return this->Copy(zone);
    if (this->size_ == 0) return that->Copy(zone);

    UniqueSet<T>* out = new(zone) UniqueSet<T>();
    out->Grow(this->size_ + that->size_, zone);

    int i = 0, j = 0, k = 0;
    while (i < this->size_ && j < that->size_) {
      Unique<T> a = this->array_[i];
      Unique<T> b = that->array_[j];
      if (a == b) {
        out->array_[k++] = a;
        i++;
        j++;
      } else if (a.raw_address_ < b.raw_address_) {
        out->array_[k++] = a;
        i++;
      } else {
        out->array_[k++] = b;
        j++;
      }
    }

    while (i < this->size_) out->array_[k++] = this->array_[i++];
    while (j < that->size_) out->array_[k++] = that->array_[j++];

    out->size_ = k;
    return out;
  }

  // Makes an exact copy of this set. O(|this| + |that|).
  UniqueSet<T>* Copy(Zone* zone) const {
    UniqueSet<T>* copy = new(zone) UniqueSet<T>();
    copy->size_ = this->size_;
    copy->capacity_ = this->size_;
    copy->array_ = zone->NewArray<Unique<T> >(this->size_);
    memcpy(copy->array_, this->array_, this->size_ * sizeof(Unique<T>));
    return copy;
  }

  void Clear() {
    size_ = 0;
  }

  inline int size() const {
    return size_;
  }

  inline Unique<T> at(int index) const {
    ASSERT(index >= 0 && index < size_);
    return array_[index];
  }

 private:
  // These sets should be small, since operations are implemented with simple
  // linear algorithms. Enforce a maximum size.
  static const int kMaxCapacity = 65535;

  uint16_t size_;
  uint16_t capacity_;
  Unique<T>* array_;

  // Grow the size of internal storage to be at least {size} elements.
  void Grow(int size, Zone* zone) {
    CHECK(size < kMaxCapacity);  // Enforce maximum size.
    if (capacity_ < size) {
      int new_capacity = 2 * capacity_ + size;
      if (new_capacity > kMaxCapacity) new_capacity = kMaxCapacity;
      Unique<T>* new_array = zone->NewArray<Unique<T> >(new_capacity);
      if (size_ > 0) {
        memcpy(new_array, array_, size_ * sizeof(Unique<T>));
      }
      capacity_ = new_capacity;
      array_ = new_array;
    }
  }
};


} }  // namespace v8::internal

#endif  // V8_HYDROGEN_UNIQUE_H_