summaryrefslogtreecommitdiff
path: root/chromium/v8/src/snapshot/serializer-deserializer.h
blob: 0e156f75a096f40083750b26e887b92e50929b85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_SNAPSHOT_SERIALIZER_DESERIALIZER_H_
#define V8_SNAPSHOT_SERIALIZER_DESERIALIZER_H_

#include "src/common/assert-scope.h"
#include "src/objects/visitors.h"
#include "src/snapshot/references.h"

namespace v8 {
namespace internal {

class CallHandlerInfo;
class Isolate;

// The Serializer/Deserializer class is a common superclass for Serializer and
// Deserializer which is used to store common constants and methods used by
// both.
class SerializerDeserializer : public RootVisitor {
 public:
  static void Iterate(Isolate* isolate, RootVisitor* visitor);

 protected:
  static bool CanBeDeferred(HeapObject o);

  void RestoreExternalReferenceRedirector(Isolate* isolate,
                                          Handle<AccessorInfo> accessor_info);
  void RestoreExternalReferenceRedirector(
      Isolate* isolate, Handle<CallHandlerInfo> call_handler_info);

// clang-format off
#define UNUSED_SERIALIZER_BYTE_CODES(V)                           \
  /* Free range 0x1c..0x1f */                                     \
  V(0x1c) V(0x1d) V(0x1e) V(0x1f)                                 \
  /* Free range 0x20..0x2f */                                     \
  V(0x20) V(0x21) V(0x22) V(0x23) V(0x24) V(0x25) V(0x26) V(0x27) \
  V(0x28) V(0x29) V(0x2a) V(0x2b) V(0x2c) V(0x2d) V(0x2e) V(0x2f) \
  /* Free range 0x30..0x3f */                                     \
  V(0x30) V(0x31) V(0x32) V(0x33) V(0x34) V(0x35) V(0x36) V(0x37) \
  V(0x38) V(0x39) V(0x3a) V(0x3b) V(0x3c) V(0x3d) V(0x3e) V(0x3f) \
  /* Free range 0x97..0x9f */                                     \
  V(0x98) V(0x99) V(0x9a) V(0x9b) V(0x9c) V(0x9d) V(0x9e) V(0x9f) \
  /* Free range 0xa0..0xaf */                                     \
  V(0xa0) V(0xa1) V(0xa2) V(0xa3) V(0xa4) V(0xa5) V(0xa6) V(0xa7) \
  V(0xa8) V(0xa9) V(0xaa) V(0xab) V(0xac) V(0xad) V(0xae) V(0xaf) \
  /* Free range 0xb0..0xbf */                                     \
  V(0xb0) V(0xb1) V(0xb2) V(0xb3) V(0xb4) V(0xb5) V(0xb6) V(0xb7) \
  V(0xb8) V(0xb9) V(0xba) V(0xbb) V(0xbc) V(0xbd) V(0xbe) V(0xbf) \
  /* Free range 0xc0..0xcf */                                     \
  V(0xc0) V(0xc1) V(0xc2) V(0xc3) V(0xc4) V(0xc5) V(0xc6) V(0xc7) \
  V(0xc8) V(0xc9) V(0xca) V(0xcb) V(0xcc) V(0xcd) V(0xce) V(0xcf) \
  /* Free range 0xd0..0xdf */                                     \
  V(0xd0) V(0xd1) V(0xd2) V(0xd3) V(0xd4) V(0xd5) V(0xd6) V(0xd7) \
  V(0xd8) V(0xd9) V(0xda) V(0xdb) V(0xdc) V(0xdd) V(0xde) V(0xdf) \
  /* Free range 0xe0..0xef */                                     \
  V(0xe0) V(0xe1) V(0xe2) V(0xe3) V(0xe4) V(0xe5) V(0xe6) V(0xe7) \
  V(0xe8) V(0xe9) V(0xea) V(0xeb) V(0xec) V(0xed) V(0xee) V(0xef) \
  /* Free range 0xf0..0xff */                                     \
  V(0xf0) V(0xf1) V(0xf2) V(0xf3) V(0xf4) V(0xf5) V(0xf6) V(0xf7) \
  V(0xf8) V(0xf9) V(0xfa) V(0xfb) V(0xfc) V(0xfd) V(0xfe) V(0xff)
  // clang-format on

  // The static assert below will trigger when the number of preallocated spaces
  // changed. If that happens, update the kNewObject and kBackref bytecode
  // ranges in the comments below.
  STATIC_ASSERT(4 == kNumberOfSnapshotSpaces);

  // First 32 root array items.
  static const int kRootArrayConstantsCount = 0x20;

  // 32 common raw data lengths.
  static const int kFixedRawDataCount = 0x20;
  // 16 repeats lengths.
  static const int kFixedRepeatCount = 0x10;

  // 8 hot (recently seen or back-referenced) objects with optional skip.
  static const int kHotObjectCount = 8;

  enum Bytecode : byte {
    //
    // ---------- byte code range 0x00..0x1b ----------
    //

    // 0x00..0x03  Allocate new object, in specified space.
    kNewObject = 0x00,
    // Reference to previously allocated object.
    kBackref = 0x04,
    // Reference to an object in the read only heap.
    kReadOnlyHeapRef,
    // Object in the startup object cache.
    kStartupObjectCache,
    // Root array item.
    kRootArray,
    // Object provided in the attached list.
    kAttachedReference,
    // Object in the read-only object cache.
    kReadOnlyObjectCache,
    // Do nothing, used for padding.
    kNop,
    // A tag emitted at strategic points in the snapshot to delineate sections.
    // If the deserializer does not find these at the expected moments then it
    // is an indication that the snapshot and the VM do not fit together.
    // Examine the build process for architecture, version or configuration
    // mismatches.
    kSynchronize,
    // Repeats of variable length.
    kVariableRepeat,
    // Used for embedder-allocated backing stores for TypedArrays.
    kOffHeapBackingStore,
    // Used for embedder-provided serialization data for embedder fields.
    kEmbedderFieldsData,
    // Raw data of variable length.
    kVariableRawData,
    // Used to encode external references provided through the API.
    kApiReference,
    // External reference referenced by id.
    kExternalReference,
    // Same as two bytecodes above but for serializing sandboxed external
    // pointer values.
    // TODO(v8:10391): Remove them once all ExternalPointer usages are
    // sandbox-ready.
    kSandboxedApiReference,
    kSandboxedExternalReference,
    // Internal reference of a code objects in code stream.
    kInternalReference,
    // In-place weak references.
    kClearedWeakReference,
    kWeakPrefix,
    // Encodes an off-heap instruction stream target.
    kOffHeapTarget,
    // Registers the current slot as a "pending" forward reference, to be later
    // filled by a corresponding resolution bytecode.
    kRegisterPendingForwardRef,
    // Resolves an existing "pending" forward reference to point to the current
    // object.
    kResolvePendingForwardRef,
    // Special construction bytecode for the metamap. In theory we could re-use
    // forward-references for this, but then the forward reference would be
    // registered during object map deserialization, before the object is
    // allocated, so there wouldn't be a allocated object whose map field we can
    // register as the pending field. We could either hack around this, or
    // simply introduce this new bytecode.
    kNewMetaMap,
    // Special construction bytecode for Code object bodies, which have a more
    // complex deserialization ordering and RelocInfo processing.
    kCodeBody,

    //
    // ---------- byte code range 0x40..0x7f ----------
    //

    // 0x40..0x5f
    kRootArrayConstants = 0x40,

    // 0x60..0x7f
    kFixedRawData = 0x60,

    //
    // ---------- byte code range 0x80..0x9f ----------
    //

    // 0x80..0x8f
    kFixedRepeat = 0x80,

    // 0x90..0x97
    kHotObject = 0x90,
  };

  // Helper class for encoding and decoding a value into and from a bytecode.
  //
  // The value is encoded by allocating an entire bytecode range, and encoding
  // the value as an index in that range, starting at kMinValue; thus the range
  // of values
  //   [kMinValue, kMinValue + 1, ... , kMaxValue]
  // is encoded as
  //   [kBytecode, kBytecode + 1, ... , kBytecode + (N - 1)]
  // where N is the number of values, i.e. kMaxValue - kMinValue + 1.
  template <Bytecode kBytecode, int kMinValue, int kMaxValue,
            typename TValue = int>
  struct BytecodeValueEncoder {
    STATIC_ASSERT((kBytecode + kMaxValue - kMinValue) <= kMaxUInt8);

    static constexpr bool IsEncodable(TValue value) {
      return base::IsInRange(static_cast<int>(value), kMinValue, kMaxValue);
    }

    static constexpr byte Encode(TValue value) {
      CONSTEXPR_DCHECK(IsEncodable(value));
      return static_cast<byte>(kBytecode + static_cast<int>(value) - kMinValue);
    }

    static constexpr TValue Decode(byte bytecode) {
      CONSTEXPR_DCHECK(base::IsInRange(bytecode,
                                       Encode(static_cast<TValue>(kMinValue)),
                                       Encode(static_cast<TValue>(kMaxValue))));
      return static_cast<TValue>(bytecode - kBytecode + kMinValue);
    }
  };

  template <Bytecode bytecode>
  using SpaceEncoder =
      BytecodeValueEncoder<bytecode, 0, kNumberOfSnapshotSpaces - 1,
                           SnapshotSpace>;

  using NewObject = SpaceEncoder<kNewObject>;

  //
  // Some other constants.
  //

  // Sentinel after a new object to indicate that double alignment is needed.
  static const int kDoubleAlignmentSentinel = 0;

  // Raw data size encoding helpers.
  static const int kFirstEncodableFixedRawDataSize = 1;
  static const int kLastEncodableFixedRawDataSize =
      kFirstEncodableFixedRawDataSize + kFixedRawDataCount - 1;

  using FixedRawDataWithSize =
      BytecodeValueEncoder<kFixedRawData, kFirstEncodableFixedRawDataSize,
                           kLastEncodableFixedRawDataSize>;

  // Repeat count encoding helpers.
  static const int kFirstEncodableRepeatCount = 2;
  static const int kLastEncodableFixedRepeatCount =
      kFirstEncodableRepeatCount + kFixedRepeatCount - 1;
  static const int kFirstEncodableVariableRepeatCount =
      kLastEncodableFixedRepeatCount + 1;

  using FixedRepeatWithCount =
      BytecodeValueEncoder<kFixedRepeat, kFirstEncodableRepeatCount,
                           kLastEncodableFixedRepeatCount>;

  // Encodes/decodes repeat count into a serialized variable repeat count
  // value.
  struct VariableRepeatCount {
    static constexpr bool IsEncodable(int repeat_count) {
      return repeat_count >= kFirstEncodableVariableRepeatCount;
    }

    static constexpr int Encode(int repeat_count) {
      CONSTEXPR_DCHECK(IsEncodable(repeat_count));
      return repeat_count - kFirstEncodableVariableRepeatCount;
    }

    static constexpr int Decode(int value) {
      return value + kFirstEncodableVariableRepeatCount;
    }
  };

  using RootArrayConstant =
      BytecodeValueEncoder<kRootArrayConstants, 0, kRootArrayConstantsCount - 1,
                           RootIndex>;
  using HotObject = BytecodeValueEncoder<kHotObject, 0, kHotObjectCount - 1>;

  // This backing store reference value represents nullptr values during
  // serialization/deserialization.
  static const uint32_t kNullRefSentinel = 0;
};

}  // namespace internal
}  // namespace v8

#endif  // V8_SNAPSHOT_SERIALIZER_DESERIALIZER_H_