summaryrefslogtreecommitdiff
path: root/chromium/v8/src/regexp/experimental/experimental-compiler.cc
blob: 4d53c2c0c551677c662a8cf86cf9d3cd5c33137a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/regexp/experimental/experimental-compiler.h"

#include "src/regexp/experimental/experimental.h"
#include "src/zone/zone-list-inl.h"

namespace v8 {
namespace internal {

namespace {

// TODO(mbid, v8:10765): Currently the experimental engine doesn't support
// UTF-16, but this shouldn't be too hard to implement.
constexpr uc32 kMaxSupportedCodepoint = 0xFFFFu;

class CanBeHandledVisitor final : private RegExpVisitor {
  // Visitor to implement `ExperimentalRegExp::CanBeHandled`.
 public:
  static bool Check(RegExpTree* tree, JSRegExp::Flags flags,
                    int capture_count) {
    if (!AreSuitableFlags(flags)) return false;
    CanBeHandledVisitor visitor;
    tree->Accept(&visitor, nullptr);
    return visitor.result_;
  }

 private:
  CanBeHandledVisitor() = default;

  static bool AreSuitableFlags(JSRegExp::Flags flags) {
    // TODO(mbid, v8:10765): We should be able to support all flags in the
    // future.
    static constexpr JSRegExp::Flags kAllowedFlags =
        JSRegExp::kGlobal | JSRegExp::kSticky | JSRegExp::kMultiline |
        JSRegExp::kDotAll | JSRegExp::kLinear;
    // We support Unicode iff kUnicode is among the supported flags.
    STATIC_ASSERT(ExperimentalRegExp::kSupportsUnicode ==
                  ((kAllowedFlags & JSRegExp::kUnicode) != 0));
    return (flags & ~kAllowedFlags) == 0;
  }

  void* VisitDisjunction(RegExpDisjunction* node, void*) override {
    for (RegExpTree* alt : *node->alternatives()) {
      alt->Accept(this, nullptr);
      if (!result_) {
        return nullptr;
      }
    }
    return nullptr;
  }

  void* VisitAlternative(RegExpAlternative* node, void*) override {
    for (RegExpTree* child : *node->nodes()) {
      child->Accept(this, nullptr);
      if (!result_) {
        return nullptr;
      }
    }
    return nullptr;
  }

  void* VisitCharacterClass(RegExpCharacterClass* node, void*) override {
    result_ = result_ && AreSuitableFlags(node->flags());
    return nullptr;
  }

  void* VisitAssertion(RegExpAssertion* node, void*) override {
    result_ = result_ && AreSuitableFlags(node->flags());
    return nullptr;
  }

  void* VisitAtom(RegExpAtom* node, void*) override {
    result_ = result_ && AreSuitableFlags(node->flags());
    return nullptr;
  }

  void* VisitText(RegExpText* node, void*) override {
    for (TextElement& el : *node->elements()) {
      el.tree()->Accept(this, nullptr);
      if (!result_) {
        return nullptr;
      }
    }
    return nullptr;
  }

  void* VisitQuantifier(RegExpQuantifier* node, void*) override {
    // Finite but large values of `min()` and `max()` are bad for the
    // breadth-first engine because finite (optional) repetition is dealt with
    // by replicating the bytecode of the body of the quantifier.  The number
    // of replicatons grows exponentially in how deeply quantifiers are nested.
    // `replication_factor_` keeps track of how often the current node will
    // have to be replicated in the generated bytecode, and we don't allow this
    // to exceed some small value.
    static constexpr int kMaxReplicationFactor = 16;

    // First we rule out values for min and max that are too big even before
    // taking into account the ambient replication_factor_.  This also guards
    // against overflows in `local_replication` or `replication_factor_`.
    if (node->min() > kMaxReplicationFactor ||
        (node->max() != RegExpTree::kInfinity &&
         node->max() > kMaxReplicationFactor)) {
      result_ = false;
      return nullptr;
    }

    // Save the current replication factor so that it can be restored if we
    // return with `result_ == true`.
    int before_replication_factor = replication_factor_;

    int local_replication;
    if (node->max() == RegExpTree::kInfinity) {
      local_replication = node->min() + 1;
    } else {
      local_replication = node->max();
    }

    replication_factor_ *= local_replication;
    if (replication_factor_ > kMaxReplicationFactor) {
      result_ = false;
      return nullptr;
    }

    switch (node->quantifier_type()) {
      case RegExpQuantifier::GREEDY:
      case RegExpQuantifier::NON_GREEDY:
        break;
      case RegExpQuantifier::POSSESSIVE:
        // TODO(mbid, v8:10765): It's not clear to me whether this can be
        // supported in breadth-first mode. Re2 doesn't support it.
        result_ = false;
        return nullptr;
    }

    node->body()->Accept(this, nullptr);
    replication_factor_ = before_replication_factor;
    return nullptr;
  }

  void* VisitCapture(RegExpCapture* node, void*) override {
    node->body()->Accept(this, nullptr);
    return nullptr;
  }

  void* VisitGroup(RegExpGroup* node, void*) override {
    node->body()->Accept(this, nullptr);
    return nullptr;
  }

  void* VisitLookaround(RegExpLookaround* node, void*) override {
    // TODO(mbid, v8:10765): This will be hard to support, but not impossible I
    // think.  See product automata.
    result_ = false;
    return nullptr;
  }

  void* VisitBackReference(RegExpBackReference* node, void*) override {
    // This can't be implemented without backtracking.
    result_ = false;
    return nullptr;
  }

  void* VisitEmpty(RegExpEmpty* node, void*) override { return nullptr; }

 private:
  // See comment in `VisitQuantifier`:
  int replication_factor_ = 1;

  bool result_ = true;
};

}  // namespace

bool ExperimentalRegExpCompiler::CanBeHandled(RegExpTree* tree,
                                              JSRegExp::Flags flags,
                                              int capture_count) {
  return CanBeHandledVisitor::Check(tree, flags, capture_count);
}

namespace {

// A label in bytecode which starts with no known address. The address *must*
// be bound with `Bind` before the label goes out of scope.
// Implemented as a linked list through the `payload.pc` of FORK and JMP
// instructions.
struct Label {
 public:
  Label() = default;
  ~Label() {
    DCHECK_EQ(state_, BOUND);
    DCHECK_GE(bound_index_, 0);
  }

  // Don't copy, don't move.  Moving could be implemented, but it's not
  // needed anywhere.
  Label(const Label&) = delete;
  Label& operator=(const Label&) = delete;

 private:
  friend class BytecodeAssembler;

  // UNBOUND implies unbound_patch_list_begin_.
  // BOUND implies bound_index_.
  enum { UNBOUND, BOUND } state_ = UNBOUND;
  union {
    int unbound_patch_list_begin_ = -1;
    int bound_index_;
  };
};

class BytecodeAssembler {
 public:
  // TODO(mbid,v8:10765): Use some upper bound for code_ capacity computed from
  // the `tree` size we're going to compile?
  explicit BytecodeAssembler(Zone* zone) : zone_(zone), code_(0, zone) {}

  ZoneList<RegExpInstruction> IntoCode() && { return std::move(code_); }

  void Accept() { code_.Add(RegExpInstruction::Accept(), zone_); }

  void Assertion(RegExpAssertion::AssertionType t) {
    code_.Add(RegExpInstruction::Assertion(t), zone_);
  }

  void ClearRegister(int32_t register_index) {
    code_.Add(RegExpInstruction::ClearRegister(register_index), zone_);
  }

  void ConsumeRange(uc16 from, uc16 to) {
    code_.Add(RegExpInstruction::ConsumeRange(from, to), zone_);
  }

  void ConsumeAnyChar() {
    code_.Add(RegExpInstruction::ConsumeAnyChar(), zone_);
  }

  void Fork(Label& target) {
    LabelledInstrImpl(RegExpInstruction::Opcode::FORK, target);
  }

  void Jmp(Label& target) {
    LabelledInstrImpl(RegExpInstruction::Opcode::JMP, target);
  }

  void SetRegisterToCp(int32_t register_index) {
    code_.Add(RegExpInstruction::SetRegisterToCp(register_index), zone_);
  }

  void Bind(Label& target) {
    DCHECK_EQ(target.state_, Label::UNBOUND);

    int index = code_.length();

    while (target.unbound_patch_list_begin_ != -1) {
      RegExpInstruction& inst = code_[target.unbound_patch_list_begin_];
      DCHECK(inst.opcode == RegExpInstruction::FORK ||
             inst.opcode == RegExpInstruction::JMP);

      target.unbound_patch_list_begin_ = inst.payload.pc;
      inst.payload.pc = index;
    }

    target.state_ = Label::BOUND;
    target.bound_index_ = index;
  }

  void Fail() { code_.Add(RegExpInstruction::Fail(), zone_); }

 private:
  void LabelledInstrImpl(RegExpInstruction::Opcode op, Label& target) {
    RegExpInstruction result;
    result.opcode = op;

    if (target.state_ == Label::BOUND) {
      result.payload.pc = target.bound_index_;
    } else {
      DCHECK_EQ(target.state_, Label::UNBOUND);
      int new_list_begin = code_.length();
      DCHECK_GE(new_list_begin, 0);

      result.payload.pc = target.unbound_patch_list_begin_;

      target.unbound_patch_list_begin_ = new_list_begin;
    }

    code_.Add(result, zone_);
  }

  Zone* zone_;
  ZoneList<RegExpInstruction> code_;
};

class CompileVisitor : private RegExpVisitor {
 public:
  static ZoneList<RegExpInstruction> Compile(RegExpTree* tree,
                                             JSRegExp::Flags flags,
                                             Zone* zone) {
    CompileVisitor compiler(zone);

    if ((flags & JSRegExp::kSticky) == 0 && !tree->IsAnchoredAtStart()) {
      // The match is not anchored, i.e. may start at any input position, so we
      // emit a preamble corresponding to /.*?/.  This skips an arbitrary
      // prefix in the input non-greedily.
      compiler.CompileNonGreedyStar(
          [&]() { compiler.assembler_.ConsumeAnyChar(); });
    }

    compiler.assembler_.SetRegisterToCp(0);
    tree->Accept(&compiler, nullptr);
    compiler.assembler_.SetRegisterToCp(1);
    compiler.assembler_.Accept();

    return std::move(compiler.assembler_).IntoCode();
  }

 private:
  explicit CompileVisitor(Zone* zone) : zone_(zone), assembler_(zone) {}

  // Generate a disjunction of code fragments compiled by a function `alt_gen`.
  // `alt_gen` is called repeatedly with argument `int i = 0, 1, ..., alt_num -
  // 1` and should build code corresponding to the ith alternative.
  template <class F>
  void CompileDisjunction(int alt_num, F&& gen_alt) {
    // An alternative a1 | ... | an is compiled into
    //
    //     FORK tail1
    //     <a1>
    //     JMP end
    //   tail1:
    //     FORK tail2
    //     <a2>
    //     JMP end
    //   tail2:
    //     ...
    //     ...
    //   tail{n -1}:
    //     <an>
    //   end:
    //
    // By the semantics of the FORK instruction (see above at definition and
    // semantics), a forked thread has lower priority than the thread that
    // spawned it.  This means that with the code we're generating here, the
    // thread matching the alternative a1 has indeed highest priority, followed
    // by the thread for a2 and so on.

    if (alt_num == 0) {
      // The empty disjunction.  This can never match.
      assembler_.Fail();
      return;
    }

    Label end;

    for (int i = 0; i != alt_num - 1; ++i) {
      Label tail;
      assembler_.Fork(tail);
      gen_alt(i);
      assembler_.Jmp(end);
      assembler_.Bind(tail);
    }

    gen_alt(alt_num - 1);

    assembler_.Bind(end);
  }

  void* VisitDisjunction(RegExpDisjunction* node, void*) override {
    ZoneList<RegExpTree*>& alts = *node->alternatives();
    CompileDisjunction(alts.length(),
                       [&](int i) { alts[i]->Accept(this, nullptr); });
    return nullptr;
  }

  void* VisitAlternative(RegExpAlternative* node, void*) override {
    for (RegExpTree* child : *node->nodes()) {
      child->Accept(this, nullptr);
    }
    return nullptr;
  }

  void* VisitAssertion(RegExpAssertion* node, void*) override {
    assembler_.Assertion(node->assertion_type());
    return nullptr;
  }

  void* VisitCharacterClass(RegExpCharacterClass* node, void*) override {
    // A character class is compiled as Disjunction over its `CharacterRange`s.
    ZoneList<CharacterRange>* ranges = node->ranges(zone_);
    CharacterRange::Canonicalize(ranges);
    if (node->is_negated()) {
      // The complement of a disjoint, non-adjacent (i.e. `Canonicalize`d)
      // union of k intervals is a union of at most k + 1 intervals.
      ZoneList<CharacterRange>* negated =
          zone_->New<ZoneList<CharacterRange>>(ranges->length() + 1, zone_);
      CharacterRange::Negate(ranges, negated, zone_);
      DCHECK_LE(negated->length(), ranges->length() + 1);
      ranges = negated;
    }

    CompileDisjunction(ranges->length(), [&](int i) {
      // We don't support utf16 for now, so only ranges that can be specified
      // by (complements of) ranges with uc16 bounds.
      STATIC_ASSERT(kMaxSupportedCodepoint <= std::numeric_limits<uc16>::max());

      uc32 from = (*ranges)[i].from();
      DCHECK_LE(from, kMaxSupportedCodepoint);
      uc16 from_uc16 = static_cast<uc16>(from);

      uc32 to = (*ranges)[i].to();
      DCHECK_IMPLIES(to > kMaxSupportedCodepoint, to == String::kMaxCodePoint);
      uc16 to_uc16 = static_cast<uc16>(std::min(to, kMaxSupportedCodepoint));

      assembler_.ConsumeRange(from_uc16, to_uc16);
    });
    return nullptr;
  }

  void* VisitAtom(RegExpAtom* node, void*) override {
    for (uc16 c : node->data()) {
      assembler_.ConsumeRange(c, c);
    }
    return nullptr;
  }

  void ClearRegisters(Interval indices) {
    if (indices.is_empty()) return;
    DCHECK_EQ(indices.from() % 2, 0);
    DCHECK_EQ(indices.to() % 2, 1);
    for (int i = indices.from(); i <= indices.to(); i += 2) {
      // It suffices to clear the register containing the `begin` of a capture
      // because this indicates that the capture is undefined, regardless of
      // the value in the `end` register.
      assembler_.ClearRegister(i);
    }
  }

  // Emit bytecode corresponding to /<emit_body>*/.
  template <class F>
  void CompileGreedyStar(F&& emit_body) {
    // This is compiled into
    //
    //   begin:
    //     FORK end
    //     <body>
    //     JMP begin
    //   end:
    //     ...
    //
    // This is greedy because a forked thread has lower priority than the
    // thread that spawned it.
    Label begin;
    Label end;

    assembler_.Bind(begin);
    assembler_.Fork(end);
    emit_body();
    assembler_.Jmp(begin);

    assembler_.Bind(end);
  }

  // Emit bytecode corresponding to /<emit_body>*?/.
  template <class F>
  void CompileNonGreedyStar(F&& emit_body) {
    // This is compiled into
    //
    //     FORK body
    //     JMP end
    //   body:
    //     <body>
    //     FORK body
    //   end:
    //     ...

    Label body;
    Label end;

    assembler_.Fork(body);
    assembler_.Jmp(end);

    assembler_.Bind(body);
    emit_body();
    assembler_.Fork(body);

    assembler_.Bind(end);
  }

  // Emit bytecode corresponding to /<emit_body>{0, max_repetition_num}/.
  template <class F>
  void CompileGreedyRepetition(F&& emit_body, int max_repetition_num) {
    // This is compiled into
    //
    //     FORK end
    //     <body>
    //     FORK end
    //     <body>
    //     ...
    //     ...
    //     FORK end
    //     <body>
    //   end:
    //     ...

    Label end;
    for (int i = 0; i != max_repetition_num; ++i) {
      assembler_.Fork(end);
      emit_body();
    }
    assembler_.Bind(end);
  }

  // Emit bytecode corresponding to /<emit_body>{0, max_repetition_num}?/.
  template <class F>
  void CompileNonGreedyRepetition(F&& emit_body, int max_repetition_num) {
    // This is compiled into
    //
    //     FORK body0
    //     JMP end
    //   body0:
    //     <body>
    //     FORK body1
    //     JMP end
    //   body1:
    //     <body>
    //     ...
    //     ...
    //   body{max_repetition_num - 1}:
    //     <body>
    //   end:
    //     ...

    Label end;
    for (int i = 0; i != max_repetition_num; ++i) {
      Label body;
      assembler_.Fork(body);
      assembler_.Jmp(end);

      assembler_.Bind(body);
      emit_body();
    }
    assembler_.Bind(end);
  }

  void* VisitQuantifier(RegExpQuantifier* node, void*) override {
    // Emit the body, but clear registers occuring in body first.
    //
    // TODO(mbid,v8:10765): It's not always necessary to a) capture registers
    // and b) clear them. For example, we don't have to capture anything for
    // the first 4 repetitions if node->min() >= 5, and then we don't have to
    // clear registers in the first node->min() repetitions.
    // Later, and if node->min() == 0, we don't have to clear registers before
    // the first optional repetition.
    Interval body_registers = node->body()->CaptureRegisters();
    auto emit_body = [&]() {
      ClearRegisters(body_registers);
      node->body()->Accept(this, nullptr);
    };

    // First repeat the body `min()` times.
    for (int i = 0; i != node->min(); ++i) emit_body();

    switch (node->quantifier_type()) {
      case RegExpQuantifier::POSSESSIVE:
        UNREACHABLE();
      case RegExpQuantifier::GREEDY: {
        if (node->max() == RegExpTree::kInfinity) {
          CompileGreedyStar(emit_body);
        } else {
          DCHECK_NE(node->max(), RegExpTree::kInfinity);
          CompileGreedyRepetition(emit_body, node->max() - node->min());
        }
        break;
      }
      case RegExpQuantifier::NON_GREEDY: {
        if (node->max() == RegExpTree::kInfinity) {
          CompileNonGreedyStar(emit_body);
        } else {
          DCHECK_NE(node->max(), RegExpTree::kInfinity);
          CompileNonGreedyRepetition(emit_body, node->max() - node->min());
        }
      }
    }
    return nullptr;
  }

  void* VisitCapture(RegExpCapture* node, void*) override {
    int index = node->index();
    int start_register = RegExpCapture::StartRegister(index);
    int end_register = RegExpCapture::EndRegister(index);
    assembler_.SetRegisterToCp(start_register);
    node->body()->Accept(this, nullptr);
    assembler_.SetRegisterToCp(end_register);
    return nullptr;
  }

  void* VisitGroup(RegExpGroup* node, void*) override {
    node->body()->Accept(this, nullptr);
    return nullptr;
  }

  void* VisitLookaround(RegExpLookaround* node, void*) override {
    // TODO(mbid,v8:10765): Support this case.
    UNREACHABLE();
  }

  void* VisitBackReference(RegExpBackReference* node, void*) override {
    UNREACHABLE();
  }

  void* VisitEmpty(RegExpEmpty* node, void*) override { return nullptr; }

  void* VisitText(RegExpText* node, void*) override {
    for (TextElement& text_el : *node->elements()) {
      text_el.tree()->Accept(this, nullptr);
    }
    return nullptr;
  }

 private:
  Zone* zone_;
  BytecodeAssembler assembler_;
};

}  // namespace

ZoneList<RegExpInstruction> ExperimentalRegExpCompiler::Compile(
    RegExpTree* tree, JSRegExp::Flags flags, Zone* zone) {
  return CompileVisitor::Compile(tree, flags, zone);
}

}  // namespace internal
}  // namespace v8