summaryrefslogtreecommitdiff
path: root/chromium/v8/src/objects/js-array-buffer-inl.h
blob: 0fa5737ec71c9e200ccb5df2e5f55ff1cbe1fda1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_JS_ARRAY_BUFFER_INL_H_
#define V8_OBJECTS_JS_ARRAY_BUFFER_INL_H_

#include "src/common/external-pointer.h"
#include "src/objects/js-array-buffer.h"

#include "src/common/external-pointer-inl.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/objects/js-objects-inl.h"
#include "src/objects/objects-inl.h"

// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"

namespace v8 {
namespace internal {

#include "torque-generated/src/objects/js-array-buffer-tq-inl.inc"

TQ_OBJECT_CONSTRUCTORS_IMPL(JSArrayBuffer)
TQ_OBJECT_CONSTRUCTORS_IMPL(JSArrayBufferView)
TQ_OBJECT_CONSTRUCTORS_IMPL(JSTypedArray)
TQ_OBJECT_CONSTRUCTORS_IMPL(JSDataView)

ACCESSORS(JSTypedArray, base_pointer, Object, kBasePointerOffset)
RELEASE_ACQUIRE_ACCESSORS(JSTypedArray, base_pointer, Object,
                          kBasePointerOffset)

void JSArrayBuffer::AllocateExternalPointerEntries(Isolate* isolate) {
  InitExternalPointerField(kBackingStoreOffset, isolate);
}

size_t JSArrayBuffer::byte_length() const {
  return ReadField<size_t>(kByteLengthOffset);
}

void JSArrayBuffer::set_byte_length(size_t value) {
  WriteField<size_t>(kByteLengthOffset, value);
}

DEF_GETTER(JSArrayBuffer, backing_store, void*) {
  Isolate* isolate = GetIsolateForHeapSandbox(*this);
  Address value = ReadExternalPointerField(kBackingStoreOffset, isolate,
                                           kArrayBufferBackingStoreTag);
  return reinterpret_cast<void*>(value);
}

void JSArrayBuffer::set_backing_store(Isolate* isolate, void* value) {
  WriteExternalPointerField(kBackingStoreOffset, isolate,
                            reinterpret_cast<Address>(value),
                            kArrayBufferBackingStoreTag);
}

uint32_t JSArrayBuffer::GetBackingStoreRefForDeserialization() const {
  return static_cast<uint32_t>(
      ReadField<ExternalPointer_t>(kBackingStoreOffset));
}

void JSArrayBuffer::SetBackingStoreRefForSerialization(uint32_t ref) {
  WriteField<ExternalPointer_t>(kBackingStoreOffset,
                                static_cast<ExternalPointer_t>(ref));
}

ArrayBufferExtension* JSArrayBuffer::extension() const {
#if V8_COMPRESS_POINTERS
    // With pointer compression the extension-field might not be
    // pointer-aligned. However on ARM64 this field needs to be aligned to
    // perform atomic operations on it. Therefore we split the pointer into two
    // 32-bit words that we update atomically. We don't have an ABA problem here
    // since there can never be an Attach() after Detach() (transitions only
    // from NULL --> some ptr --> NULL).

    // Synchronize with publishing release store of non-null extension
    uint32_t lo = base::AsAtomic32::Acquire_Load(extension_lo());
    if (lo & kUninitializedTagMask) return nullptr;

    // Synchronize with release store of null extension
    uint32_t hi = base::AsAtomic32::Acquire_Load(extension_hi());
    uint32_t verify_lo = base::AsAtomic32::Relaxed_Load(extension_lo());
    if (lo != verify_lo) return nullptr;

    uintptr_t address = static_cast<uintptr_t>(lo);
    address |= static_cast<uintptr_t>(hi) << 32;
    return reinterpret_cast<ArrayBufferExtension*>(address);
#else
    return base::AsAtomicPointer::Acquire_Load(extension_location());
#endif
}

void JSArrayBuffer::set_extension(ArrayBufferExtension* extension) {
#if V8_COMPRESS_POINTERS
    if (extension != nullptr) {
      uintptr_t address = reinterpret_cast<uintptr_t>(extension);
      base::AsAtomic32::Relaxed_Store(extension_hi(),
                                      static_cast<uint32_t>(address >> 32));
      base::AsAtomic32::Release_Store(extension_lo(),
                                      static_cast<uint32_t>(address));
    } else {
      base::AsAtomic32::Relaxed_Store(extension_lo(),
                                      0 | kUninitializedTagMask);
      base::AsAtomic32::Release_Store(extension_hi(), 0);
    }
#else
    base::AsAtomicPointer::Release_Store(extension_location(), extension);
#endif
    WriteBarrier::Marking(*this, extension);
}

ArrayBufferExtension** JSArrayBuffer::extension_location() const {
  Address location = field_address(kExtensionOffset);
  return reinterpret_cast<ArrayBufferExtension**>(location);
}

#if V8_COMPRESS_POINTERS
uint32_t* JSArrayBuffer::extension_lo() const {
  Address location = field_address(kExtensionOffset);
  return reinterpret_cast<uint32_t*>(location);
}

uint32_t* JSArrayBuffer::extension_hi() const {
  Address location = field_address(kExtensionOffset) + sizeof(uint32_t);
  return reinterpret_cast<uint32_t*>(location);
}
#endif

size_t JSArrayBuffer::allocation_length() const {
  if (backing_store() == nullptr) {
    return 0;
  }
  return byte_length();
}

void* JSArrayBuffer::allocation_base() const {
  if (backing_store() == nullptr) {
    return nullptr;
  }
  return backing_store();
}

void JSArrayBuffer::clear_padding() {
  if (FIELD_SIZE(kOptionalPaddingOffset) != 0) {
    DCHECK_EQ(4, FIELD_SIZE(kOptionalPaddingOffset));
    memset(reinterpret_cast<void*>(address() + kOptionalPaddingOffset), 0,
           FIELD_SIZE(kOptionalPaddingOffset));
  }
}

void JSArrayBuffer::set_bit_field(uint32_t bits) {
  RELAXED_WRITE_UINT32_FIELD(*this, kBitFieldOffset, bits);
}

uint32_t JSArrayBuffer::bit_field() const {
  return RELAXED_READ_UINT32_FIELD(*this, kBitFieldOffset);
}

// |bit_field| fields.
BIT_FIELD_ACCESSORS(JSArrayBuffer, bit_field, is_external,
                    JSArrayBuffer::IsExternalBit)
BIT_FIELD_ACCESSORS(JSArrayBuffer, bit_field, is_detachable,
                    JSArrayBuffer::IsDetachableBit)
BIT_FIELD_ACCESSORS(JSArrayBuffer, bit_field, was_detached,
                    JSArrayBuffer::WasDetachedBit)
BIT_FIELD_ACCESSORS(JSArrayBuffer, bit_field, is_asmjs_memory,
                    JSArrayBuffer::IsAsmJsMemoryBit)
BIT_FIELD_ACCESSORS(JSArrayBuffer, bit_field, is_shared,
                    JSArrayBuffer::IsSharedBit)
BIT_FIELD_ACCESSORS(JSArrayBuffer, bit_field, is_resizable,
                    JSArrayBuffer::IsResizableBit)

size_t JSArrayBufferView::byte_offset() const {
  return ReadField<size_t>(kByteOffsetOffset);
}

void JSArrayBufferView::set_byte_offset(size_t value) {
  WriteField<size_t>(kByteOffsetOffset, value);
}

size_t JSArrayBufferView::byte_length() const {
  return ReadField<size_t>(kByteLengthOffset);
}

void JSArrayBufferView::set_byte_length(size_t value) {
  WriteField<size_t>(kByteLengthOffset, value);
}

bool JSArrayBufferView::WasDetached() const {
  return JSArrayBuffer::cast(buffer()).was_detached();
}

BIT_FIELD_ACCESSORS(JSTypedArray, bit_field, is_length_tracking,
                    JSTypedArray::IsLengthTrackingBit)
BIT_FIELD_ACCESSORS(JSTypedArray, bit_field, is_backed_by_rab,
                    JSTypedArray::IsBackedByRabBit)

bool JSTypedArray::IsVariableLength() const {
  return is_length_tracking() || is_backed_by_rab();
}

size_t JSTypedArray::GetLength() const {
  if (WasDetached()) return 0;
  if (is_length_tracking()) {
    if (is_backed_by_rab()) {
      return buffer().byte_length() / element_size();
    }
    return buffer().GetBackingStore()->byte_length(std::memory_order_seq_cst) /
           element_size();
  }
  size_t array_length = LengthUnchecked();
  if (is_backed_by_rab()) {
    // The sum can't overflow, since we have managed to allocate the
    // JSTypedArray.
    if (byte_offset() + array_length * element_size() >
        buffer().byte_length()) {
      return 0;
    }
  }
  return array_length;
}

void JSTypedArray::AllocateExternalPointerEntries(Isolate* isolate) {
  InitExternalPointerField(kExternalPointerOffset, isolate);
}

size_t JSTypedArray::length() const {
  DCHECK(!is_length_tracking());
  DCHECK(!is_backed_by_rab());
  return ReadField<size_t>(kLengthOffset);
}

size_t JSTypedArray::LengthUnchecked() const {
  return ReadField<size_t>(kLengthOffset);
}

void JSTypedArray::set_length(size_t value) {
  WriteField<size_t>(kLengthOffset, value);
}

DEF_GETTER(JSTypedArray, external_pointer, Address) {
  Isolate* isolate = GetIsolateForHeapSandbox(*this);
  return ReadExternalPointerField(kExternalPointerOffset, isolate,
                                  kTypedArrayExternalPointerTag);
}

DEF_GETTER(JSTypedArray, external_pointer_raw, ExternalPointer_t) {
  return ReadField<ExternalPointer_t>(kExternalPointerOffset);
}

void JSTypedArray::set_external_pointer(Isolate* isolate, Address value) {
  WriteExternalPointerField(kExternalPointerOffset, isolate, value,
                            kTypedArrayExternalPointerTag);
}

Address JSTypedArray::ExternalPointerCompensationForOnHeapArray(
    PtrComprCageBase cage_base) {
#ifdef V8_COMPRESS_POINTERS
  return cage_base.address();
#else
  return 0;
#endif
}

uint32_t JSTypedArray::GetExternalBackingStoreRefForDeserialization() const {
  DCHECK(!is_on_heap());
  return static_cast<uint32_t>(
      ReadField<ExternalPointer_t>(kExternalPointerOffset));
}

void JSTypedArray::SetExternalBackingStoreRefForSerialization(uint32_t ref) {
  DCHECK(!is_on_heap());
  WriteField<ExternalPointer_t>(kExternalPointerOffset,
                                static_cast<ExternalPointer_t>(ref));
}

void JSTypedArray::RemoveExternalPointerCompensationForSerialization(
    Isolate* isolate) {
  DCHECK(is_on_heap());
  // TODO(v8:10391): once we have an external table, avoid the need for
  // compensation by replacing external_pointer and base_pointer fields
  // with one data_pointer field which can point to either external data
  // backing store or into on-heap backing store.
  Address offset =
      external_pointer() - ExternalPointerCompensationForOnHeapArray(isolate);
#ifdef V8_HEAP_SANDBOX
  // Write decompensated offset directly to the external pointer field, thus
  // allowing the offset to be propagated through serialization-deserialization.
  WriteField<ExternalPointer_t>(kExternalPointerOffset, offset);
#else
  set_external_pointer(isolate, offset);
#endif
}

void* JSTypedArray::DataPtr() {
  // Zero-extend Tagged_t to Address according to current compression scheme
  // so that the addition with |external_pointer| (which already contains
  // compensated offset value) will decompress the tagged value.
  // See JSTypedArray::ExternalPointerCompensationForOnHeapArray() for details.
  STATIC_ASSERT(kOffHeapDataPtrEqualsExternalPointer);
  return reinterpret_cast<void*>(external_pointer() +
                                 static_cast<Tagged_t>(base_pointer().ptr()));
}

void JSTypedArray::SetOffHeapDataPtr(Isolate* isolate, void* base,
                                     Address offset) {
  Address address = reinterpret_cast<Address>(base) + offset;
  set_external_pointer(isolate, address);
  // This is the only spot in which the `base_pointer` field can be mutated
  // after object initialization. Note this can happen at most once, when
  // `JSTypedArray::GetBuffer` transitions from an on- to off-heap
  // representation.
  // To play well with Turbofan concurrency requirements, `base_pointer` is set
  // with a release store, after external_pointer has been set.
  set_base_pointer(Smi::zero(), kReleaseStore, SKIP_WRITE_BARRIER);
  DCHECK_EQ(address, reinterpret_cast<Address>(DataPtr()));
}

void JSTypedArray::SetOnHeapDataPtr(Isolate* isolate, HeapObject base,
                                    Address offset) {
  set_base_pointer(base);
  set_external_pointer(
      isolate, offset + ExternalPointerCompensationForOnHeapArray(isolate));
  DCHECK_EQ(base.ptr() + offset, reinterpret_cast<Address>(DataPtr()));
}

bool JSTypedArray::is_on_heap() const {
  // Keep synced with `is_on_heap(AcquireLoadTag)`.
  DisallowGarbageCollection no_gc;
  return base_pointer() != Smi::zero();
}

bool JSTypedArray::is_on_heap(AcquireLoadTag tag) const {
  // Keep synced with `is_on_heap()`.
  // Note: For Turbofan concurrency requirements, it's important that this
  // function reads only `base_pointer`.
  DisallowGarbageCollection no_gc;
  return base_pointer(tag) != Smi::zero();
}

// static
MaybeHandle<JSTypedArray> JSTypedArray::Validate(Isolate* isolate,
                                                 Handle<Object> receiver,
                                                 const char* method_name) {
  if (V8_UNLIKELY(!receiver->IsJSTypedArray())) {
    const MessageTemplate message = MessageTemplate::kNotTypedArray;
    THROW_NEW_ERROR(isolate, NewTypeError(message), JSTypedArray);
  }

  Handle<JSTypedArray> array = Handle<JSTypedArray>::cast(receiver);
  if (V8_UNLIKELY(array->WasDetached())) {
    const MessageTemplate message = MessageTemplate::kDetachedOperation;
    Handle<String> operation =
        isolate->factory()->NewStringFromAsciiChecked(method_name);
    THROW_NEW_ERROR(isolate, NewTypeError(message, operation), JSTypedArray);
  }

  // spec describes to return `buffer`, but it may disrupt current
  // implementations, and it's much useful to return array for now.
  return array;
}

DEF_GETTER(JSDataView, data_pointer, void*) {
  Isolate* isolate = GetIsolateForHeapSandbox(*this);
  return reinterpret_cast<void*>(ReadExternalPointerField(
      kDataPointerOffset, isolate, kDataViewDataPointerTag));
}

void JSDataView::AllocateExternalPointerEntries(Isolate* isolate) {
  InitExternalPointerField(kDataPointerOffset, isolate);
}

void JSDataView::set_data_pointer(Isolate* isolate, void* value) {
  WriteExternalPointerField(kDataPointerOffset, isolate,
                            reinterpret_cast<Address>(value),
                            kDataViewDataPointerTag);
}

}  // namespace internal
}  // namespace v8

#include "src/objects/object-macros-undef.h"

#endif  // V8_OBJECTS_JS_ARRAY_BUFFER_INL_H_