summaryrefslogtreecommitdiff
path: root/chromium/v8/src/objects/compilation-cache-table.cc
blob: 9ef1468975318abd502d8b56b47f1804bedd9882 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/objects/compilation-cache-table.h"

#include "src/common/assert-scope.h"
#include "src/objects/compilation-cache-table-inl.h"

namespace v8 {
namespace internal {

namespace {

const int kLiteralEntryLength = 2;
const int kLiteralInitialLength = 2;
const int kLiteralContextOffset = 0;
const int kLiteralLiteralsOffset = 1;

// The initial placeholder insertion of the eval cache survives this many GCs.
const int kHashGenerations = 10;

int SearchLiteralsMapEntry(CompilationCacheTable cache, int cache_entry,
                           Context native_context) {
  DisallowGarbageCollection no_gc;
  DCHECK(native_context.IsNativeContext());
  Object obj = cache.get(cache_entry);

  // Check that there's no confusion between FixedArray and WeakFixedArray (the
  // object used to be a FixedArray here).
  DCHECK(!obj.IsFixedArray());
  if (obj.IsWeakFixedArray()) {
    WeakFixedArray literals_map = WeakFixedArray::cast(obj);
    int length = literals_map.length();
    for (int i = 0; i < length; i += kLiteralEntryLength) {
      DCHECK(literals_map.Get(i + kLiteralContextOffset)->IsWeakOrCleared());
      if (literals_map.Get(i + kLiteralContextOffset) ==
          HeapObjectReference::Weak(native_context)) {
        return i;
      }
    }
  }
  return -1;
}

void AddToFeedbackCellsMap(Handle<CompilationCacheTable> cache, int cache_entry,
                           Handle<Context> native_context,
                           Handle<FeedbackCell> feedback_cell) {
  Isolate* isolate = native_context->GetIsolate();
  DCHECK(native_context->IsNativeContext());
  STATIC_ASSERT(kLiteralEntryLength == 2);
  Handle<WeakFixedArray> new_literals_map;
  int entry;

  Object obj = cache->get(cache_entry);

  // Check that there's no confusion between FixedArray and WeakFixedArray (the
  // object used to be a FixedArray here).
  DCHECK(!obj.IsFixedArray());
  if (!obj.IsWeakFixedArray() || WeakFixedArray::cast(obj).length() == 0) {
    new_literals_map = isolate->factory()->NewWeakFixedArray(
        kLiteralInitialLength, AllocationType::kOld);
    entry = 0;
  } else {
    Handle<WeakFixedArray> old_literals_map(WeakFixedArray::cast(obj), isolate);
    entry = SearchLiteralsMapEntry(*cache, cache_entry, *native_context);
    if (entry >= 0) {
      // Just set the code of the entry.
      old_literals_map->Set(entry + kLiteralLiteralsOffset,
                            HeapObjectReference::Weak(*feedback_cell));
      return;
    }

    // Can we reuse an entry?
    DCHECK_LT(entry, 0);
    int length = old_literals_map->length();
    for (int i = 0; i < length; i += kLiteralEntryLength) {
      if (old_literals_map->Get(i + kLiteralContextOffset)->IsCleared()) {
        new_literals_map = old_literals_map;
        entry = i;
        break;
      }
    }

    if (entry < 0) {
      // Copy old optimized code map and append one new entry.
      new_literals_map = isolate->factory()->CopyWeakFixedArrayAndGrow(
          old_literals_map, kLiteralEntryLength);
      entry = old_literals_map->length();
    }
  }

  new_literals_map->Set(entry + kLiteralContextOffset,
                        HeapObjectReference::Weak(*native_context));
  new_literals_map->Set(entry + kLiteralLiteralsOffset,
                        HeapObjectReference::Weak(*feedback_cell));

#ifdef DEBUG
  for (int i = 0; i < new_literals_map->length(); i += kLiteralEntryLength) {
    MaybeObject object = new_literals_map->Get(i + kLiteralContextOffset);
    DCHECK(object->IsCleared() ||
           object->GetHeapObjectAssumeWeak().IsNativeContext());
    object = new_literals_map->Get(i + kLiteralLiteralsOffset);
    DCHECK(object->IsCleared() ||
           object->GetHeapObjectAssumeWeak().IsFeedbackCell());
  }
#endif

  Object old_literals_map = cache->get(cache_entry);
  if (old_literals_map != *new_literals_map) {
    cache->set(cache_entry, *new_literals_map);
  }
}

FeedbackCell SearchLiteralsMap(CompilationCacheTable cache, int cache_entry,
                               Context native_context) {
  FeedbackCell result;
  int entry = SearchLiteralsMapEntry(cache, cache_entry, native_context);
  if (entry >= 0) {
    WeakFixedArray literals_map = WeakFixedArray::cast(cache.get(cache_entry));
    DCHECK_LE(entry + kLiteralEntryLength, literals_map.length());
    MaybeObject object = literals_map.Get(entry + kLiteralLiteralsOffset);

    if (!object->IsCleared()) {
      result = FeedbackCell::cast(object->GetHeapObjectAssumeWeak());
    }
  }
  DCHECK(result.is_null() || result.IsFeedbackCell());
  return result;
}

// StringSharedKeys are used as keys in the eval cache.
class StringSharedKey : public HashTableKey {
 public:
  // This tuple unambiguously identifies calls to eval() or
  // CreateDynamicFunction() (such as through the Function() constructor).
  // * source is the string passed into eval(). For dynamic functions, this is
  //   the effective source for the function, some of which is implicitly
  //   generated.
  // * shared is the shared function info for the function containing the call
  //   to eval(). for dynamic functions, shared is the native context closure.
  // * When positive, position is the position in the source where eval is
  //   called. When negative, position is the negation of the position in the
  //   dynamic function's effective source where the ')' ends the parameters.
  StringSharedKey(Handle<String> source, Handle<SharedFunctionInfo> shared,
                  LanguageMode language_mode, int position)
      : HashTableKey(CompilationCacheShape::StringSharedHash(
            *source, *shared, language_mode, position)),
        source_(source),
        shared_(shared),
        language_mode_(language_mode),
        position_(position) {}

  // This tuple unambiguously identifies script compilation.
  StringSharedKey(Handle<String> source, LanguageMode language_mode)
      : HashTableKey(
            CompilationCacheShape::StringSharedHash(*source, language_mode)),
        source_(source),
        language_mode_(language_mode),
        position_(kNoSourcePosition) {}

  bool IsMatch(Object other) override {
    DisallowGarbageCollection no_gc;
    if (!other.IsFixedArray()) {
      DCHECK(other.IsNumber());
      uint32_t other_hash = static_cast<uint32_t>(other.Number());
      return Hash() == other_hash;
    }
    FixedArray other_array = FixedArray::cast(other);
    DCHECK(other_array.get(0).IsSharedFunctionInfo() ||
           other_array.get(0) == Smi::zero());
    Handle<SharedFunctionInfo> shared;
    if (shared_.ToHandle(&shared)) {
      if (*shared != other_array.get(0)) return false;
    } else {
      if (Smi::zero() != other_array.get(0)) return false;
    }
    int language_unchecked = Smi::ToInt(other_array.get(2));
    DCHECK(is_valid_language_mode(language_unchecked));
    LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
    if (language_mode != language_mode_) return false;
    int position = Smi::ToInt(other_array.get(3));
    if (position != position_) return false;
    String source = String::cast(other_array.get(1));
    return source.Equals(*source_);
  }

  Handle<Object> AsHandle(Isolate* isolate) {
    Handle<FixedArray> array = isolate->factory()->NewFixedArray(4);
    Handle<SharedFunctionInfo> shared;
    if (shared_.ToHandle(&shared)) {
      array->set(0, *shared);
    } else {
      array->set(0, Smi::zero());
    }
    array->set(1, *source_);
    array->set(2, Smi::FromEnum(language_mode_));
    array->set(3, Smi::FromInt(position_));
    array->set_map(ReadOnlyRoots(isolate).fixed_cow_array_map());
    return array;
  }

 private:
  Handle<String> source_;
  MaybeHandle<SharedFunctionInfo> shared_;
  LanguageMode language_mode_;
  int position_;
};

// RegExpKey carries the source and flags of a regular expression as key.
class RegExpKey : public HashTableKey {
 public:
  RegExpKey(Handle<String> string, JSRegExp::Flags flags)
      : HashTableKey(
            CompilationCacheShape::RegExpHash(*string, Smi::FromInt(flags))),
        string_(string),
        flags_(Smi::FromInt(flags)) {}

  // Rather than storing the key in the hash table, a pointer to the
  // stored value is stored where the key should be.  IsMatch then
  // compares the search key to the found object, rather than comparing
  // a key to a key.
  bool IsMatch(Object obj) override {
    FixedArray val = FixedArray::cast(obj);
    return string_->Equals(String::cast(val.get(JSRegExp::kSourceIndex))) &&
           (flags_ == val.get(JSRegExp::kFlagsIndex));
  }

  Handle<String> string_;
  Smi flags_;
};

// CodeKey carries the SharedFunctionInfo key associated with a Code
// object value.
class CodeKey : public HashTableKey {
 public:
  explicit CodeKey(Handle<SharedFunctionInfo> key)
      : HashTableKey(key->Hash()), key_(key) {}

  bool IsMatch(Object string) override { return *key_ == string; }

  Handle<SharedFunctionInfo> key_;
};

}  // namespace

MaybeHandle<SharedFunctionInfo> CompilationCacheTable::LookupScript(
    Handle<CompilationCacheTable> table, Handle<String> src,
    LanguageMode language_mode, Isolate* isolate) {
  src = String::Flatten(isolate, src);
  StringSharedKey key(src, language_mode);
  InternalIndex entry = table->FindEntry(isolate, &key);
  if (entry.is_not_found()) return MaybeHandle<SharedFunctionInfo>();
  int index = EntryToIndex(entry);
  if (!table->get(index).IsFixedArray()) {
    return MaybeHandle<SharedFunctionInfo>();
  }
  Object obj = table->get(index + 1);
  if (obj.IsSharedFunctionInfo()) {
    return handle(SharedFunctionInfo::cast(obj), isolate);
  }
  return MaybeHandle<SharedFunctionInfo>();
}

InfoCellPair CompilationCacheTable::LookupEval(
    Handle<CompilationCacheTable> table, Handle<String> src,
    Handle<SharedFunctionInfo> outer_info, Handle<Context> native_context,
    LanguageMode language_mode, int position) {
  InfoCellPair empty_result;
  Isolate* isolate = native_context->GetIsolate();
  src = String::Flatten(isolate, src);

  StringSharedKey key(src, outer_info, language_mode, position);
  InternalIndex entry = table->FindEntry(isolate, &key);
  if (entry.is_not_found()) return empty_result;

  int index = EntryToIndex(entry);
  if (!table->get(index).IsFixedArray()) return empty_result;
  Object obj = table->get(index + 1);
  if (!obj.IsSharedFunctionInfo()) return empty_result;

  STATIC_ASSERT(CompilationCacheShape::kEntrySize == 3);
  FeedbackCell feedback_cell =
      SearchLiteralsMap(*table, index + 2, *native_context);
  return InfoCellPair(isolate, SharedFunctionInfo::cast(obj), feedback_cell);
}

Handle<Object> CompilationCacheTable::LookupRegExp(Handle<String> src,
                                                   JSRegExp::Flags flags) {
  Isolate* isolate = GetIsolate();
  DisallowGarbageCollection no_gc;
  RegExpKey key(src, flags);
  InternalIndex entry = FindEntry(isolate, &key);
  if (entry.is_not_found()) return isolate->factory()->undefined_value();
  return Handle<Object>(get(EntryToIndex(entry) + 1), isolate);
}

MaybeHandle<Code> CompilationCacheTable::LookupCode(
    Handle<SharedFunctionInfo> key) {
  Isolate* isolate = GetIsolate();
  DisallowGarbageCollection no_gc;
  CodeKey k(key);
  InternalIndex entry = FindEntry(isolate, &k);
  if (entry.is_not_found()) return {};
  return Handle<Code>(Code::cast(get(EntryToIndex(entry) + 1)), isolate);
}

Handle<CompilationCacheTable> CompilationCacheTable::PutScript(
    Handle<CompilationCacheTable> cache, Handle<String> src,
    LanguageMode language_mode, Handle<SharedFunctionInfo> value,
    Isolate* isolate) {
  src = String::Flatten(isolate, src);
  StringSharedKey key(src, language_mode);
  Handle<Object> k = key.AsHandle(isolate);
  cache = EnsureCapacity(isolate, cache);
  InternalIndex entry = cache->FindInsertionEntry(isolate, key.Hash());
  cache->set(EntryToIndex(entry), *k);
  cache->set(EntryToIndex(entry) + 1, *value);
  cache->ElementAdded();
  return cache;
}

Handle<CompilationCacheTable> CompilationCacheTable::PutEval(
    Handle<CompilationCacheTable> cache, Handle<String> src,
    Handle<SharedFunctionInfo> outer_info, Handle<SharedFunctionInfo> value,
    Handle<Context> native_context, Handle<FeedbackCell> feedback_cell,
    int position) {
  Isolate* isolate = native_context->GetIsolate();
  src = String::Flatten(isolate, src);
  StringSharedKey key(src, outer_info, value->language_mode(), position);

  // This block handles 'real' insertions, i.e. the initial dummy insert
  // (below) has already happened earlier.
  {
    Handle<Object> k = key.AsHandle(isolate);
    InternalIndex entry = cache->FindEntry(isolate, &key);
    if (entry.is_found()) {
      cache->set(EntryToIndex(entry), *k);
      cache->set(EntryToIndex(entry) + 1, *value);
      // AddToFeedbackCellsMap may allocate a new sub-array to live in the
      // entry, but it won't change the cache array. Therefore EntryToIndex
      // and entry remains correct.
      STATIC_ASSERT(CompilationCacheShape::kEntrySize == 3);
      AddToFeedbackCellsMap(cache, EntryToIndex(entry) + 2, native_context,
                            feedback_cell);
      // Add hash again even on cache hit to avoid unnecessary cache delay in
      // case of hash collisions.
    }
  }

  // Create a dummy entry to mark that this key has already been inserted once.
  cache = EnsureCapacity(isolate, cache);
  InternalIndex entry = cache->FindInsertionEntry(isolate, key.Hash());
  Handle<Object> k =
      isolate->factory()->NewNumber(static_cast<double>(key.Hash()));
  cache->set(EntryToIndex(entry), *k);
  cache->set(EntryToIndex(entry) + 1, Smi::FromInt(kHashGenerations));
  cache->ElementAdded();
  return cache;
}

Handle<CompilationCacheTable> CompilationCacheTable::PutRegExp(
    Isolate* isolate, Handle<CompilationCacheTable> cache, Handle<String> src,
    JSRegExp::Flags flags, Handle<FixedArray> value) {
  RegExpKey key(src, flags);
  cache = EnsureCapacity(isolate, cache);
  InternalIndex entry = cache->FindInsertionEntry(isolate, key.Hash());
  // We store the value in the key slot, and compare the search key
  // to the stored value with a custom IsMatch function during lookups.
  cache->set(EntryToIndex(entry), *value);
  cache->set(EntryToIndex(entry) + 1, *value);
  cache->ElementAdded();
  return cache;
}

Handle<CompilationCacheTable> CompilationCacheTable::PutCode(
    Isolate* isolate, Handle<CompilationCacheTable> cache,
    Handle<SharedFunctionInfo> key, Handle<Code> value) {
  CodeKey k(key);

  {
    InternalIndex entry = cache->FindEntry(isolate, &k);
    if (entry.is_found()) {
      // Update.
      cache->set(EntryToIndex(entry), *key);
      cache->set(EntryToIndex(entry) + 1, *value);
      return cache;
    }
  }

  // Insert.
  cache = EnsureCapacity(isolate, cache);
  InternalIndex entry = cache->FindInsertionEntry(isolate, k.Hash());
  cache->set(EntryToIndex(entry), *key);
  cache->set(EntryToIndex(entry) + 1, *value);
  cache->ElementAdded();
  return cache;
}

void CompilationCacheTable::Age(Isolate* isolate) {
  DisallowGarbageCollection no_gc;
  for (InternalIndex entry : IterateEntries()) {
    const int entry_index = EntryToIndex(entry);
    const int value_index = entry_index + 1;

    Object key = get(entry_index);
    if (key.IsNumber()) {
      // The ageing mechanism for the initial dummy entry in the eval cache.
      // The 'key' is the hash represented as a Number. The 'value' is a smi
      // counting down from kHashGenerations. On reaching zero, the entry is
      // cleared.
      // Note: The following static assert only establishes an explicit
      // connection between initialization- and use-sites of the smi value
      // field.
      STATIC_ASSERT(kHashGenerations);
      const int new_count = Smi::ToInt(get(value_index)) - 1;
      if (new_count == 0) {
        RemoveEntry(entry_index);
      } else {
        DCHECK_GT(new_count, 0);
        NoWriteBarrierSet(*this, value_index, Smi::FromInt(new_count));
      }
    } else if (key.IsFixedArray()) {
      // The ageing mechanism for script and eval caches.
      SharedFunctionInfo info = SharedFunctionInfo::cast(get(value_index));
      if (info.IsInterpreted() && info.GetBytecodeArray(isolate).IsOld()) {
        RemoveEntry(entry_index);
      }
    }
  }
}

void CompilationCacheTable::Remove(Object value) {
  DisallowGarbageCollection no_gc;
  for (InternalIndex entry : IterateEntries()) {
    int entry_index = EntryToIndex(entry);
    int value_index = entry_index + 1;
    if (get(value_index) == value) {
      RemoveEntry(entry_index);
    }
  }
}

void CompilationCacheTable::RemoveEntry(int entry_index) {
  Object the_hole_value = GetReadOnlyRoots().the_hole_value();
  for (int i = 0; i < kEntrySize; i++) {
    NoWriteBarrierSet(*this, entry_index + i, the_hole_value);
  }
  ElementRemoved();
}

}  // namespace internal
}  // namespace v8