summaryrefslogtreecommitdiff
path: root/chromium/v8/src/objects/backing-store.cc
blob: 77eaf3a722cdbb0e36df13d506ee1d6f9e7524ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/objects/backing-store.h"

#include <cstring>

#include "src/base/platform/wrappers.h"
#include "src/execution/isolate.h"
#include "src/handles/global-handles.h"
#include "src/logging/counters.h"
#include "src/trap-handler/trap-handler.h"

#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/wasm-constants.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-objects-inl.h"
#endif  // V8_ENABLE_WEBASSEMBLY

#define TRACE_BS(...)                                  \
  do {                                                 \
    if (FLAG_trace_backing_store) PrintF(__VA_ARGS__); \
  } while (false)

namespace v8 {
namespace internal {

namespace {

#if V8_ENABLE_WEBASSEMBLY
// Trying to allocate 4 GiB on a 32-bit platform is guaranteed to fail.
// We don't lower the official max_mem_pages() limit because that would be
// observable upon instantiation; this way the effective limit on 32-bit
// platforms is defined by the allocator.
constexpr size_t kPlatformMaxPages =
    std::numeric_limits<size_t>::max() / wasm::kWasmPageSize;

constexpr uint64_t kNegativeGuardSize = uint64_t{2} * GB;

#if V8_TARGET_ARCH_64_BIT
constexpr uint64_t kFullGuardSize = uint64_t{10} * GB;
#endif

#endif  // V8_ENABLE_WEBASSEMBLY

#if V8_TARGET_ARCH_MIPS64
// MIPS64 has a user space of 2^40 bytes on most processors,
// address space limits needs to be smaller.
constexpr size_t kAddressSpaceLimit = 0x8000000000L;  // 512 GiB
#elif V8_TARGET_ARCH_RISCV64
// RISC-V64 has a user space of 256GB on the Sv39 scheme.
constexpr size_t kAddressSpaceLimit = 0x4000000000L;  // 256 GiB
#elif V8_TARGET_ARCH_64_BIT
constexpr size_t kAddressSpaceLimit = 0x10100000000L;  // 1 TiB + 4 GiB
#else
constexpr size_t kAddressSpaceLimit = 0xC0000000;  // 3 GiB
#endif

std::atomic<uint64_t> reserved_address_space_{0};

// Allocation results are reported to UMA
//
// See wasm_memory_allocation_result in counters.h
enum class AllocationStatus {
  kSuccess,  // Succeeded on the first try

  kSuccessAfterRetry,  // Succeeded after garbage collection

  kAddressSpaceLimitReachedFailure,  // Failed because Wasm is at its address
                                     // space limit

  kOtherFailure  // Failed for an unknown reason
};

base::AddressRegion GetReservedRegion(bool has_guard_regions,
                                      void* buffer_start,
                                      size_t byte_capacity) {
#if V8_TARGET_ARCH_64_BIT && V8_ENABLE_WEBASSEMBLY
  if (has_guard_regions) {
    // Guard regions always look like this:
    // |xxx(2GiB)xxx|.......(4GiB)..xxxxx|xxxxxx(4GiB)xxxxxx|
    //              ^ buffer_start
    //                              ^ byte_length
    // ^ negative guard region           ^ positive guard region

    Address start = reinterpret_cast<Address>(buffer_start);
    DCHECK_EQ(8, sizeof(size_t));  // only use on 64-bit
    DCHECK_EQ(0, start % AllocatePageSize());
    return base::AddressRegion(start - kNegativeGuardSize,
                               static_cast<size_t>(kFullGuardSize));
  }
#endif

  DCHECK(!has_guard_regions);
  return base::AddressRegion(reinterpret_cast<Address>(buffer_start),
                             byte_capacity);
}

size_t GetReservationSize(bool has_guard_regions, size_t byte_capacity) {
#if V8_TARGET_ARCH_64_BIT && V8_ENABLE_WEBASSEMBLY
  if (has_guard_regions) return kFullGuardSize;
#else
  DCHECK(!has_guard_regions);
#endif

  return byte_capacity;
}

void RecordStatus(Isolate* isolate, AllocationStatus status) {
  isolate->counters()->wasm_memory_allocation_result()->AddSample(
      static_cast<int>(status));
}

inline void DebugCheckZero(void* start, size_t byte_length) {
#if DEBUG
  // Double check memory is zero-initialized. Despite being DEBUG-only,
  // this function is somewhat optimized for the benefit of test suite
  // execution times (some tests allocate several gigabytes).
  const byte* bytes = reinterpret_cast<const byte*>(start);
  const size_t kBaseCase = 32;
  for (size_t i = 0; i < kBaseCase && i < byte_length; i++) {
    DCHECK_EQ(0, bytes[i]);
  }
  // Having checked the first kBaseCase bytes to be zero, we can now use
  // {memcmp} to compare the range against itself shifted by that amount,
  // thereby inductively checking the remaining bytes.
  if (byte_length > kBaseCase) {
    DCHECK_EQ(0, memcmp(bytes, bytes + kBaseCase, byte_length - kBaseCase));
  }
#endif
}
}  // namespace

// The backing store for a Wasm shared memory remembers all the isolates
// with which it has been shared.
struct SharedWasmMemoryData {
  std::vector<Isolate*> isolates_;
};

void BackingStore::Clear() {
  buffer_start_ = nullptr;
  byte_length_ = 0;
  has_guard_regions_ = false;
  if (holds_shared_ptr_to_allocator_) {
    type_specific_data_.v8_api_array_buffer_allocator_shared
        .std::shared_ptr<v8::ArrayBuffer::Allocator>::~shared_ptr();
    holds_shared_ptr_to_allocator_ = false;
  }
  type_specific_data_.v8_api_array_buffer_allocator = nullptr;
}

BackingStore::~BackingStore() {
  GlobalBackingStoreRegistry::Unregister(this);

  if (buffer_start_ == nullptr) {
    Clear();
    return;
  }

#if V8_ENABLE_WEBASSEMBLY
  if (is_wasm_memory_) {
    // TODO(v8:11111): RAB / GSAB - Wasm integration.
    DCHECK(!is_resizable_);
    DCHECK(free_on_destruct_);
    DCHECK(!custom_deleter_);
    size_t reservation_size =
        GetReservationSize(has_guard_regions_, byte_capacity_);
    TRACE_BS(
        "BSw:free  bs=%p mem=%p (length=%zu, capacity=%zu, reservation=%zu)\n",
        this, buffer_start_, byte_length(), byte_capacity_, reservation_size);
    if (is_shared_) {
      // Deallocate the list of attached memory objects.
      SharedWasmMemoryData* shared_data = get_shared_wasm_memory_data();
      delete shared_data;
      type_specific_data_.shared_wasm_memory_data = nullptr;
    }

    // Wasm memories are always allocated through the page allocator.
    auto region =
        GetReservedRegion(has_guard_regions_, buffer_start_, byte_capacity_);

    bool pages_were_freed =
        region.size() == 0 /* no need to free any pages */ ||
        FreePages(GetPlatformPageAllocator(),
                  reinterpret_cast<void*>(region.begin()), region.size());
    CHECK(pages_were_freed);
    BackingStore::ReleaseReservation(reservation_size);
    Clear();
    return;
  }
#endif  // V8_ENABLE_WEBASSEMBLY

  if (is_resizable_) {
    DCHECK(free_on_destruct_);
    DCHECK(!custom_deleter_);
    size_t reservation_size =
        GetReservationSize(has_guard_regions_, byte_capacity_);
    auto region =
        GetReservedRegion(has_guard_regions_, buffer_start_, byte_capacity_);

    bool pages_were_freed =
        region.size() == 0 /* no need to free any pages */ ||
        FreePages(GetPlatformPageAllocator(),
                  reinterpret_cast<void*>(region.begin()), region.size());
    CHECK(pages_were_freed);
    BackingStore::ReleaseReservation(reservation_size);
    Clear();
    return;
  }
  if (custom_deleter_) {
    DCHECK(free_on_destruct_);
    TRACE_BS("BS:custom deleter bs=%p mem=%p (length=%zu, capacity=%zu)\n",
             this, buffer_start_, byte_length(), byte_capacity_);
    type_specific_data_.deleter.callback(buffer_start_, byte_length_,
                                         type_specific_data_.deleter.data);
    Clear();
    return;
  }
  if (free_on_destruct_) {
    // JSArrayBuffer backing store. Deallocate through the embedder's allocator.
    auto allocator = get_v8_api_array_buffer_allocator();
    TRACE_BS("BS:free   bs=%p mem=%p (length=%zu, capacity=%zu)\n", this,
             buffer_start_, byte_length(), byte_capacity_);
    allocator->Free(buffer_start_, byte_length_);
  }
  Clear();
}

// Allocate a backing store using the array buffer allocator from the embedder.
std::unique_ptr<BackingStore> BackingStore::Allocate(
    Isolate* isolate, size_t byte_length, SharedFlag shared,
    InitializedFlag initialized) {
  void* buffer_start = nullptr;
  auto allocator = isolate->array_buffer_allocator();
  CHECK_NOT_NULL(allocator);
  if (byte_length != 0) {
    auto counters = isolate->counters();
    int mb_length = static_cast<int>(byte_length / MB);
    if (mb_length > 0) {
      counters->array_buffer_big_allocations()->AddSample(mb_length);
    }
    if (shared == SharedFlag::kShared) {
      counters->shared_array_allocations()->AddSample(mb_length);
    }
    auto allocate_buffer = [allocator, initialized](size_t byte_length) {
      if (initialized == InitializedFlag::kUninitialized) {
        return allocator->AllocateUninitialized(byte_length);
      }
      void* buffer_start = allocator->Allocate(byte_length);
      if (buffer_start) {
        // TODO(wasm): node does not implement the zero-initialization API.
        // Reenable this debug check when node does implement it properly.
        constexpr bool
            kDebugCheckZeroDisabledDueToNodeNotImplementingZeroInitAPI = true;
        if ((!(kDebugCheckZeroDisabledDueToNodeNotImplementingZeroInitAPI)) &&
            !FLAG_mock_arraybuffer_allocator) {
          DebugCheckZero(buffer_start, byte_length);
        }
      }
      return buffer_start;
    };

    buffer_start = isolate->heap()->AllocateExternalBackingStore(
        allocate_buffer, byte_length);

    if (buffer_start == nullptr) {
      // Allocation failed.
      counters->array_buffer_new_size_failures()->AddSample(mb_length);
      return {};
    }
  }

  auto result = new BackingStore(buffer_start,                  // start
                                 byte_length,                   // length
                                 byte_length,                   // capacity
                                 shared,                        // shared
                                 ResizableFlag::kNotResizable,  // resizable
                                 false,   // is_wasm_memory
                                 true,    // free_on_destruct
                                 false,   // has_guard_regions
                                 false,   // custom_deleter
                                 false);  // empty_deleter

  TRACE_BS("BS:alloc  bs=%p mem=%p (length=%zu)\n", result,
           result->buffer_start(), byte_length);
  result->SetAllocatorFromIsolate(isolate);
  return std::unique_ptr<BackingStore>(result);
}

void BackingStore::SetAllocatorFromIsolate(Isolate* isolate) {
  if (auto allocator_shared = isolate->array_buffer_allocator_shared()) {
    holds_shared_ptr_to_allocator_ = true;
    new (&type_specific_data_.v8_api_array_buffer_allocator_shared)
        std::shared_ptr<v8::ArrayBuffer::Allocator>(
            std::move(allocator_shared));
  } else {
    type_specific_data_.v8_api_array_buffer_allocator =
        isolate->array_buffer_allocator();
  }
}

#if V8_ENABLE_WEBASSEMBLY
// Allocate a backing store for a Wasm memory. Always use the page allocator
// and add guard regions.
std::unique_ptr<BackingStore> BackingStore::TryAllocateWasmMemory(
    Isolate* isolate, size_t initial_pages, size_t maximum_pages,
    SharedFlag shared) {
  // Compute size of reserved memory.
  size_t engine_max_pages = wasm::max_mem_pages();
  maximum_pages = std::min(engine_max_pages, maximum_pages);

  auto result = TryAllocateAndPartiallyCommitMemory(
      isolate, initial_pages * wasm::kWasmPageSize, wasm::kWasmPageSize,
      initial_pages, maximum_pages, true, shared);
  // Shared Wasm memories need an anchor for the memory object list.
  if (result && shared == SharedFlag::kShared) {
    result->type_specific_data_.shared_wasm_memory_data =
        new SharedWasmMemoryData();
  }
  return result;
}
#endif  // V8_ENABLE_WEBASSEMBLY

bool BackingStore::ReserveAddressSpace(uint64_t num_bytes) {
  uint64_t reservation_limit = kAddressSpaceLimit;
  uint64_t old_count = reserved_address_space_.load(std::memory_order_relaxed);
  while (true) {
    if (old_count > reservation_limit) return false;
    if (reservation_limit - old_count < num_bytes) return false;
    if (reserved_address_space_.compare_exchange_weak(
            old_count, old_count + num_bytes, std::memory_order_acq_rel)) {
      return true;
    }
  }
}

void BackingStore::ReleaseReservation(uint64_t num_bytes) {
  uint64_t old_reserved = reserved_address_space_.fetch_sub(num_bytes);
  USE(old_reserved);
  DCHECK_LE(num_bytes, old_reserved);
}

std::unique_ptr<BackingStore> BackingStore::TryAllocateAndPartiallyCommitMemory(
    Isolate* isolate, size_t byte_length, size_t page_size,
    size_t initial_pages, size_t maximum_pages, bool is_wasm_memory,
    SharedFlag shared) {
  // Enforce engine limitation on the maximum number of pages.
  if (maximum_pages > std::numeric_limits<size_t>::max() / page_size) {
    return nullptr;
  }

  // Cannot reserve 0 pages on some OSes.
  if (maximum_pages == 0) maximum_pages = 1;

  TRACE_BS("BSw:try   %zu pages, %zu max\n", initial_pages, maximum_pages);

  bool guards = is_wasm_memory && trap_handler::IsTrapHandlerEnabled();

  // For accounting purposes, whether a GC was necessary.
  bool did_retry = false;

  // A helper to try running a function up to 3 times, executing a GC
  // if the first and second attempts failed.
  auto gc_retry = [&](const std::function<bool()>& fn) {
    for (int i = 0; i < 3; i++) {
      if (fn()) return true;
      // Collect garbage and retry.
      did_retry = true;
      // TODO(wasm): try Heap::EagerlyFreeExternalMemory() first?
      isolate->heap()->MemoryPressureNotification(
          MemoryPressureLevel::kCritical, true);
    }
    return false;
  };

  size_t byte_capacity = maximum_pages * page_size;
  size_t reservation_size = GetReservationSize(guards, byte_capacity);

  //--------------------------------------------------------------------------
  // 1. Enforce maximum address space reservation per engine.
  //--------------------------------------------------------------------------
  auto reserve_memory_space = [&] {
    return BackingStore::ReserveAddressSpace(reservation_size);
  };

  if (!gc_retry(reserve_memory_space)) {
    // Crash on out-of-memory if the correctness fuzzer is running.
    if (FLAG_correctness_fuzzer_suppressions) {
      FATAL("could not allocate wasm memory backing store");
    }
    RecordStatus(isolate, AllocationStatus::kAddressSpaceLimitReachedFailure);
    TRACE_BS("BSw:try   failed to reserve address space (size %zu)\n",
             reservation_size);
    return {};
  }

  //--------------------------------------------------------------------------
  // 2. Allocate pages (inaccessible by default).
  //--------------------------------------------------------------------------
  void* allocation_base = nullptr;
  auto allocate_pages = [&] {
    allocation_base =
        AllocatePages(GetPlatformPageAllocator(), nullptr, reservation_size,
                      page_size, PageAllocator::kNoAccess);
    return allocation_base != nullptr;
  };
  if (!gc_retry(allocate_pages)) {
    // Page allocator could not reserve enough pages.
    BackingStore::ReleaseReservation(reservation_size);
    RecordStatus(isolate, AllocationStatus::kOtherFailure);
    TRACE_BS("BSw:try   failed to allocate pages\n");
    return {};
  }

  // Get a pointer to the start of the buffer, skipping negative guard region
  // if necessary.
#if V8_ENABLE_WEBASSEMBLY
  byte* buffer_start = reinterpret_cast<byte*>(allocation_base) +
                       (guards ? kNegativeGuardSize : 0);
#else
  DCHECK(!guards);
  byte* buffer_start = reinterpret_cast<byte*>(allocation_base);
#endif
  //--------------------------------------------------------------------------
  // 3. Commit the initial pages (allow read/write).
  //--------------------------------------------------------------------------
  size_t committed_byte_length = initial_pages * page_size;
  auto commit_memory = [&] {
    return committed_byte_length == 0 ||
           SetPermissions(GetPlatformPageAllocator(), buffer_start,
                          committed_byte_length, PageAllocator::kReadWrite);
  };
  if (!gc_retry(commit_memory)) {
    TRACE_BS("BSw:try   failed to set permissions (%p, %zu)\n", buffer_start,
             committed_byte_length);
    // SetPermissions put us over the process memory limit.
    V8::FatalProcessOutOfMemory(nullptr, "BackingStore::AllocateMemory()");
  }

  DebugCheckZero(buffer_start, byte_length);  // touch the bytes.

  RecordStatus(isolate, did_retry ? AllocationStatus::kSuccessAfterRetry
                                  : AllocationStatus::kSuccess);

  ResizableFlag resizable =
      is_wasm_memory ? ResizableFlag::kNotResizable : ResizableFlag::kResizable;

  auto result = new BackingStore(buffer_start,    // start
                                 byte_length,     // length
                                 byte_capacity,   // capacity
                                 shared,          // shared
                                 resizable,       // resizable
                                 is_wasm_memory,  // is_wasm_memory
                                 true,            // free_on_destruct
                                 guards,          // has_guard_regions
                                 false,           // custom_deleter
                                 false);          // empty_deleter

  TRACE_BS(
      "BSw:alloc bs=%p mem=%p (length=%zu, capacity=%zu, reservation=%zu)\n",
      result, result->buffer_start(), byte_length, byte_capacity,
      reservation_size);

  return std::unique_ptr<BackingStore>(result);
}

#if V8_ENABLE_WEBASSEMBLY
// Allocate a backing store for a Wasm memory. Always use the page allocator
// and add guard regions.
std::unique_ptr<BackingStore> BackingStore::AllocateWasmMemory(
    Isolate* isolate, size_t initial_pages, size_t maximum_pages,
    SharedFlag shared) {
  // Wasm pages must be a multiple of the allocation page size.
  DCHECK_EQ(0, wasm::kWasmPageSize % AllocatePageSize());

  // Enforce engine limitation on the maximum number of pages.
  if (initial_pages > wasm::kV8MaxWasmMemoryPages) return nullptr;
  if (initial_pages > kPlatformMaxPages) return nullptr;

  auto backing_store =
      TryAllocateWasmMemory(isolate, initial_pages, maximum_pages, shared);
  if (maximum_pages == initial_pages) {
    // If initial pages, and maximum are equal, nothing more to do return early.
    return backing_store;
  }

  // Retry with smaller maximum pages at each retry.
  const int kAllocationTries = 3;
  auto delta = (maximum_pages - initial_pages) / (kAllocationTries + 1);
  size_t sizes[] = {maximum_pages - delta, maximum_pages - 2 * delta,
                    maximum_pages - 3 * delta, initial_pages};

  for (size_t i = 0; i < arraysize(sizes) && !backing_store; i++) {
    backing_store =
        TryAllocateWasmMemory(isolate, initial_pages, sizes[i], shared);
  }
  return backing_store;
}

std::unique_ptr<BackingStore> BackingStore::CopyWasmMemory(Isolate* isolate,
                                                           size_t new_pages) {
  // Note that we could allocate uninitialized to save initialization cost here,
  // but since Wasm memories are allocated by the page allocator, the zeroing
  // cost is already built-in.
  // TODO(titzer): should we use a suitable maximum here?
  auto new_backing_store = BackingStore::AllocateWasmMemory(
      isolate, new_pages, new_pages,
      is_shared() ? SharedFlag::kShared : SharedFlag::kNotShared);

  if (!new_backing_store ||
      new_backing_store->has_guard_regions() != has_guard_regions_) {
    return {};
  }

  if (byte_length_ > 0) {
    // If the allocation was successful, then the new buffer must be at least
    // as big as the old one.
    DCHECK_GE(new_pages * wasm::kWasmPageSize, byte_length_);
    base::Memcpy(new_backing_store->buffer_start(), buffer_start_,
                 byte_length_);
  }

  return new_backing_store;
}

// Try to grow the size of a wasm memory in place, without realloc + copy.
base::Optional<size_t> BackingStore::GrowWasmMemoryInPlace(Isolate* isolate,
                                                           size_t delta_pages,
                                                           size_t max_pages) {
  // This function grows wasm memory by
  // * changing the permissions of additional {delta_pages} pages to kReadWrite;
  // * increment {byte_length_};
  //
  // As this code is executed concurrently, the following steps are executed:
  // 1) Read the current value of {byte_length_};
  // 2) Change the permission of all pages from {buffer_start_} to
  //    {byte_length_} + {delta_pages} * {page_size} to kReadWrite;
  //    * This operation may be executed racefully. The OS takes care of
  //      synchronization.
  // 3) Try to update {byte_length_} with a compare_exchange;
  // 4) Repeat 1) to 3) until the compare_exchange in 3) succeeds;
  //
  // The result of this function is the {byte_length_} before growing in pages.
  // The result of this function appears like the result of an RMW-update on
  // {byte_length_}, i.e. two concurrent calls to this function will result in
  // different return values if {delta_pages} != 0.
  //
  // Invariants:
  // * Permissions are always set incrementally, i.e. for any page {b} with
  //   kReadWrite permission, all pages between the first page {a} and page {b}
  //   also have kReadWrite permission.
  // * {byte_length_} is always lower or equal than the amount of memory with
  //   permissions set to kReadWrite;
  //     * This is guaranteed by incrementing {byte_length_} with a
  //       compare_exchange after changing the permissions.
  //     * This invariant is the reason why we cannot use a fetch_add.
  DCHECK(is_wasm_memory_);
  max_pages = std::min(max_pages, byte_capacity_ / wasm::kWasmPageSize);

  // Do a compare-exchange loop, because we also need to adjust page
  // permissions. Note that multiple racing grows both try to set page
  // permissions for the entire range (to be RW), so the operating system
  // should deal with that raciness. We know we succeeded when we can
  // compare/swap the old length with the new length.
  size_t old_length = byte_length_.load(std::memory_order_relaxed);

  if (delta_pages == 0)
    return {old_length / wasm::kWasmPageSize};  // degenerate grow.
  if (delta_pages > max_pages) return {};       // would never work.

  size_t new_length = 0;
  while (true) {
    size_t current_pages = old_length / wasm::kWasmPageSize;

    // Check if we have exceed the supplied maximum.
    if (current_pages > (max_pages - delta_pages)) return {};

    new_length = (current_pages + delta_pages) * wasm::kWasmPageSize;

    // Try to adjust the permissions on the memory.
    if (!i::SetPermissions(GetPlatformPageAllocator(), buffer_start_,
                           new_length, PageAllocator::kReadWrite)) {
      return {};
    }
    if (byte_length_.compare_exchange_weak(old_length, new_length,
                                           std::memory_order_acq_rel)) {
      // Successfully updated both the length and permissions.
      break;
    }
  }

  if (!is_shared_ && free_on_destruct_) {
    // Only do per-isolate accounting for non-shared backing stores.
    reinterpret_cast<v8::Isolate*>(isolate)
        ->AdjustAmountOfExternalAllocatedMemory(new_length - old_length);
  }
  return {old_length / wasm::kWasmPageSize};
}

void BackingStore::AttachSharedWasmMemoryObject(
    Isolate* isolate, Handle<WasmMemoryObject> memory_object) {
  DCHECK(is_wasm_memory_);
  DCHECK(is_shared_);
  // We need to take the global registry lock for this operation.
  GlobalBackingStoreRegistry::AddSharedWasmMemoryObject(isolate, this,
                                                        memory_object);
}

void BackingStore::BroadcastSharedWasmMemoryGrow(
    Isolate* isolate, std::shared_ptr<BackingStore> backing_store) {
  GlobalBackingStoreRegistry::BroadcastSharedWasmMemoryGrow(isolate,
                                                            backing_store);
}

void BackingStore::RemoveSharedWasmMemoryObjects(Isolate* isolate) {
  GlobalBackingStoreRegistry::Purge(isolate);
}

void BackingStore::UpdateSharedWasmMemoryObjects(Isolate* isolate) {
  GlobalBackingStoreRegistry::UpdateSharedWasmMemoryObjects(isolate);
}
#endif  // V8_ENABLE_WEBASSEMBLY

// Commit already reserved memory (for RAB backing stores (not shared)).
BackingStore::ResizeOrGrowResult BackingStore::ResizeInPlace(
    Isolate* isolate, size_t new_byte_length, size_t new_committed_length) {
  DCHECK_LE(new_byte_length, new_committed_length);
  DCHECK(!is_shared());

  if (new_byte_length < byte_length_) {
    // TOOO(v8:11111): Figure out a strategy for shrinking - when do we
    // un-commit the memory?

    // Zero the memory so that in case the buffer is grown later, we have
    // zeroed the contents already.
    memset(reinterpret_cast<byte*>(buffer_start_) + new_byte_length, 0,
           byte_length_ - new_byte_length);

    // Changing the byte length wouldn't strictly speaking be needed, since
    // the JSArrayBuffer already stores the updated length. This is to keep
    // the BackingStore and JSArrayBuffer in sync.
    byte_length_ = new_byte_length;
    return kSuccess;
  }
  if (new_byte_length == byte_length_) {
    // i::SetPermissions with size 0 fails on some platforms, so special
    // handling for the case byte_length_ == new_byte_length == 0 is required.
    return kSuccess;
  }

  // Try to adjust the permissions on the memory.
  if (!i::SetPermissions(GetPlatformPageAllocator(), buffer_start_,
                         new_committed_length, PageAllocator::kReadWrite)) {
    return kFailure;
  }

  // Do per-isolate accounting for non-shared backing stores.
  DCHECK(free_on_destruct_);
  reinterpret_cast<v8::Isolate*>(isolate)
      ->AdjustAmountOfExternalAllocatedMemory(new_byte_length - byte_length_);
  byte_length_ = new_byte_length;
  return kSuccess;
}

// Commit already reserved memory (for GSAB backing stores (shared)).
BackingStore::ResizeOrGrowResult BackingStore::GrowInPlace(
    Isolate* isolate, size_t new_byte_length, size_t new_committed_length) {
  DCHECK_LE(new_byte_length, new_committed_length);
  DCHECK(is_shared());
  // See comment in GrowWasmMemoryInPlace.
  // GrowableSharedArrayBuffer.prototype.grow can be called from several
  // threads. If two threads try to grow() in a racy way, the spec allows the
  // larger grow to throw also if the smaller grow succeeds first. The
  // implementation below doesn't throw in that case - instead, it retries and
  // succeeds. If the larger grow finishes first though, the smaller grow must
  // throw.
  size_t old_byte_length = byte_length_.load(std::memory_order_seq_cst);
  while (true) {
    if (new_byte_length < old_byte_length) {
      // The caller checks for the new_byte_length < old_byte_length_ case. This
      // can only happen if another thread grew the memory after that.
      return kRace;
    }
    if (new_byte_length == old_byte_length) {
      // i::SetPermissions with size 0 fails on some platforms, so special
      // handling for the case old_byte_length == new_byte_length == 0 is
      // required.
      return kSuccess;
    }

    // Try to adjust the permissions on the memory.
    if (!i::SetPermissions(GetPlatformPageAllocator(), buffer_start_,
                           new_committed_length, PageAllocator::kReadWrite)) {
      return kFailure;
    }

    // compare_exchange_weak updates old_byte_length.
    if (byte_length_.compare_exchange_weak(old_byte_length, new_byte_length,
                                           std::memory_order_seq_cst)) {
      // Successfully updated both the length and permissions.
      break;
    }
  }
  return kSuccess;
}

std::unique_ptr<BackingStore> BackingStore::WrapAllocation(
    Isolate* isolate, void* allocation_base, size_t allocation_length,
    SharedFlag shared, bool free_on_destruct) {
  auto result = new BackingStore(allocation_base,               // start
                                 allocation_length,             // length
                                 allocation_length,             // capacity
                                 shared,                        // shared
                                 ResizableFlag::kNotResizable,  // resizable
                                 false,             // is_wasm_memory
                                 free_on_destruct,  // free_on_destruct
                                 false,             // has_guard_regions
                                 false,             // custom_deleter
                                 false);            // empty_deleter
  result->SetAllocatorFromIsolate(isolate);
  TRACE_BS("BS:wrap   bs=%p mem=%p (length=%zu)\n", result,
           result->buffer_start(), result->byte_length());
  return std::unique_ptr<BackingStore>(result);
}

std::unique_ptr<BackingStore> BackingStore::WrapAllocation(
    void* allocation_base, size_t allocation_length,
    v8::BackingStore::DeleterCallback deleter, void* deleter_data,
    SharedFlag shared) {
  bool is_empty_deleter = (deleter == v8::BackingStore::EmptyDeleter);
  auto result = new BackingStore(allocation_base,               // start
                                 allocation_length,             // length
                                 allocation_length,             // capacity
                                 shared,                        // shared
                                 ResizableFlag::kNotResizable,  // resizable
                                 false,              // is_wasm_memory
                                 true,               // free_on_destruct
                                 false,              // has_guard_regions
                                 true,               // custom_deleter
                                 is_empty_deleter);  // empty_deleter
  result->type_specific_data_.deleter = {deleter, deleter_data};
  TRACE_BS("BS:wrap   bs=%p mem=%p (length=%zu)\n", result,
           result->buffer_start(), result->byte_length());
  return std::unique_ptr<BackingStore>(result);
}

std::unique_ptr<BackingStore> BackingStore::EmptyBackingStore(
    SharedFlag shared) {
  auto result = new BackingStore(nullptr,                       // start
                                 0,                             // length
                                 0,                             // capacity
                                 shared,                        // shared
                                 ResizableFlag::kNotResizable,  // resizable
                                 false,   // is_wasm_memory
                                 true,    // free_on_destruct
                                 false,   // has_guard_regions
                                 false,   // custom_deleter
                                 false);  // empty_deleter

  return std::unique_ptr<BackingStore>(result);
}

bool BackingStore::Reallocate(Isolate* isolate, size_t new_byte_length) {
  CHECK(!is_wasm_memory_ && !custom_deleter_ && !globally_registered_ &&
        free_on_destruct_);
  auto allocator = get_v8_api_array_buffer_allocator();
  CHECK_EQ(isolate->array_buffer_allocator(), allocator);
  CHECK_EQ(byte_length_, byte_capacity_);
  void* new_start =
      allocator->Reallocate(buffer_start_, byte_length_, new_byte_length);
  if (!new_start) return false;
  buffer_start_ = new_start;
  byte_capacity_ = new_byte_length;
  byte_length_ = new_byte_length;
  return true;
}

v8::ArrayBuffer::Allocator* BackingStore::get_v8_api_array_buffer_allocator() {
  CHECK(!is_wasm_memory_);
  auto array_buffer_allocator =
      holds_shared_ptr_to_allocator_
          ? type_specific_data_.v8_api_array_buffer_allocator_shared.get()
          : type_specific_data_.v8_api_array_buffer_allocator;
  CHECK_NOT_NULL(array_buffer_allocator);
  return array_buffer_allocator;
}

SharedWasmMemoryData* BackingStore::get_shared_wasm_memory_data() {
  CHECK(is_wasm_memory_ && is_shared_);
  auto shared_wasm_memory_data = type_specific_data_.shared_wasm_memory_data;
  CHECK(shared_wasm_memory_data);
  return shared_wasm_memory_data;
}

namespace {
// Implementation details of GlobalBackingStoreRegistry.
struct GlobalBackingStoreRegistryImpl {
  GlobalBackingStoreRegistryImpl() = default;
  base::Mutex mutex_;
  std::unordered_map<const void*, std::weak_ptr<BackingStore>> map_;
};
base::LazyInstance<GlobalBackingStoreRegistryImpl>::type global_registry_impl_ =
    LAZY_INSTANCE_INITIALIZER;
inline GlobalBackingStoreRegistryImpl* impl() {
  return global_registry_impl_.Pointer();
}
}  // namespace

void GlobalBackingStoreRegistry::Register(
    std::shared_ptr<BackingStore> backing_store) {
  if (!backing_store || !backing_store->buffer_start()) return;
  // Only wasm memory backing stores need to be registered globally.
  CHECK(backing_store->is_wasm_memory());

  base::MutexGuard scope_lock(&impl()->mutex_);
  if (backing_store->globally_registered_) return;
  TRACE_BS("BS:reg    bs=%p mem=%p (length=%zu, capacity=%zu)\n",
           backing_store.get(), backing_store->buffer_start(),
           backing_store->byte_length(), backing_store->byte_capacity());
  std::weak_ptr<BackingStore> weak = backing_store;
  auto result = impl()->map_.insert({backing_store->buffer_start(), weak});
  CHECK(result.second);
  backing_store->globally_registered_ = true;
}

void GlobalBackingStoreRegistry::Unregister(BackingStore* backing_store) {
  if (!backing_store->globally_registered_) return;

  CHECK(backing_store->is_wasm_memory());

  DCHECK_NOT_NULL(backing_store->buffer_start());

  base::MutexGuard scope_lock(&impl()->mutex_);
  const auto& result = impl()->map_.find(backing_store->buffer_start());
  if (result != impl()->map_.end()) {
    DCHECK(!result->second.lock());
    impl()->map_.erase(result);
  }
  backing_store->globally_registered_ = false;
}

void GlobalBackingStoreRegistry::Purge(Isolate* isolate) {
  // We need to keep a reference to all backing stores that are inspected
  // in the purging loop below. Otherwise, we might get a deadlock
  // if the temporary backing store reference created in the loop is
  // the last reference. In that case the destructor of the backing store
  // may try to take the &impl()->mutex_ in order to unregister itself.
  std::vector<std::shared_ptr<BackingStore>> prevent_destruction_under_lock;
  base::MutexGuard scope_lock(&impl()->mutex_);
  // Purge all entries in the map that refer to the given isolate.
  for (auto& entry : impl()->map_) {
    auto backing_store = entry.second.lock();
    prevent_destruction_under_lock.emplace_back(backing_store);
    if (!backing_store) continue;  // skip entries where weak ptr is null
    CHECK(backing_store->is_wasm_memory());
    if (!backing_store->is_shared()) continue;       // skip non-shared memory
    SharedWasmMemoryData* shared_data =
        backing_store->get_shared_wasm_memory_data();
    // Remove this isolate from the isolates list.
    auto& isolates = shared_data->isolates_;
    for (size_t i = 0; i < isolates.size(); i++) {
      if (isolates[i] == isolate) isolates[i] = nullptr;
    }
  }
}

#if V8_ENABLE_WEBASSEMBLY
void GlobalBackingStoreRegistry::AddSharedWasmMemoryObject(
    Isolate* isolate, BackingStore* backing_store,
    Handle<WasmMemoryObject> memory_object) {
  // Add to the weak array list of shared memory objects in the isolate.
  isolate->AddSharedWasmMemory(memory_object);

  // Add the isolate to the list of isolates sharing this backing store.
  base::MutexGuard scope_lock(&impl()->mutex_);
  SharedWasmMemoryData* shared_data =
      backing_store->get_shared_wasm_memory_data();
  auto& isolates = shared_data->isolates_;
  int free_entry = -1;
  for (size_t i = 0; i < isolates.size(); i++) {
    if (isolates[i] == isolate) return;
    if (isolates[i] == nullptr) free_entry = static_cast<int>(i);
  }
  if (free_entry >= 0)
    isolates[free_entry] = isolate;
  else
    isolates.push_back(isolate);
}

void GlobalBackingStoreRegistry::BroadcastSharedWasmMemoryGrow(
    Isolate* isolate, std::shared_ptr<BackingStore> backing_store) {
  {
    // The global lock protects the list of isolates per backing store.
    base::MutexGuard scope_lock(&impl()->mutex_);
    SharedWasmMemoryData* shared_data =
        backing_store->get_shared_wasm_memory_data();
    for (Isolate* other : shared_data->isolates_) {
      if (other && other != isolate) {
        other->stack_guard()->RequestGrowSharedMemory();
      }
    }
  }
  // Update memory objects in this isolate.
  UpdateSharedWasmMemoryObjects(isolate);
}

void GlobalBackingStoreRegistry::UpdateSharedWasmMemoryObjects(
    Isolate* isolate) {
  HandleScope scope(isolate);
  Handle<WeakArrayList> shared_wasm_memories =
      isolate->factory()->shared_wasm_memories();

  for (int i = 0; i < shared_wasm_memories->length(); i++) {
    HeapObject obj;
    if (!shared_wasm_memories->Get(i).GetHeapObject(&obj)) continue;

    Handle<WasmMemoryObject> memory_object(WasmMemoryObject::cast(obj),
                                           isolate);
    Handle<JSArrayBuffer> old_buffer(memory_object->array_buffer(), isolate);
    std::shared_ptr<BackingStore> backing_store = old_buffer->GetBackingStore();

    Handle<JSArrayBuffer> new_buffer =
        isolate->factory()->NewJSSharedArrayBuffer(std::move(backing_store));
    memory_object->update_instances(isolate, new_buffer);
  }
}
#endif  // V8_ENABLE_WEBASSEMBLY

}  // namespace internal
}  // namespace v8

#undef TRACE_BS