summaryrefslogtreecommitdiff
path: root/chromium/v8/src/heap/new-spaces.cc
blob: 8486c7bcc442da09298edf00e2c7a6d5b6f4e610 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/new-spaces.h"

#include "src/common/globals.h"
#include "src/heap/array-buffer-sweeper.h"
#include "src/heap/heap-inl.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact.h"
#include "src/heap/memory-allocator.h"
#include "src/heap/paged-spaces.h"
#include "src/heap/safepoint.h"
#include "src/heap/spaces-inl.h"
#include "src/heap/spaces.h"

namespace v8 {
namespace internal {

Page* SemiSpace::InitializePage(MemoryChunk* chunk) {
  bool in_to_space = (id() != kFromSpace);
  chunk->SetFlag(in_to_space ? MemoryChunk::TO_PAGE : MemoryChunk::FROM_PAGE);
  Page* page = static_cast<Page*>(chunk);
  page->SetYoungGenerationPageFlags(heap()->incremental_marking()->IsMarking());
  page->list_node().Initialize();
#ifdef ENABLE_MINOR_MC
  if (FLAG_minor_mc) {
    page->AllocateYoungGenerationBitmap();
    heap()
        ->minor_mark_compact_collector()
        ->non_atomic_marking_state()
        ->ClearLiveness(page);
  }
#endif  // ENABLE_MINOR_MC
  page->InitializationMemoryFence();
  return page;
}

bool SemiSpace::EnsureCurrentCapacity() {
  if (IsCommitted()) {
    const int expected_pages =
        static_cast<int>(target_capacity_ / Page::kPageSize);
    MemoryChunk* current_page = first_page();
    int actual_pages = 0;

    // First iterate through the pages list until expected pages if so many
    // pages exist.
    while (current_page != nullptr && actual_pages < expected_pages) {
      actual_pages++;
      current_page = current_page->list_node().next();
    }

    // Free all overallocated pages which are behind current_page.
    while (current_page) {
      MemoryChunk* next_current = current_page->list_node().next();
      memory_chunk_list_.Remove(current_page);
      // Clear new space flags to avoid this page being treated as a new
      // space page that is potentially being swept.
      current_page->SetFlags(0, Page::kIsInYoungGenerationMask);
      heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
          current_page);
      current_page = next_current;
    }

    // Add more pages if we have less than expected_pages.
    IncrementalMarking::NonAtomicMarkingState* marking_state =
        heap()->incremental_marking()->non_atomic_marking_state();
    while (actual_pages < expected_pages) {
      actual_pages++;
      current_page =
          heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
              MemoryChunkLayout::AllocatableMemoryInDataPage(), this,
              NOT_EXECUTABLE);
      if (current_page == nullptr) return false;
      DCHECK_NOT_NULL(current_page);
      memory_chunk_list_.PushBack(current_page);
      marking_state->ClearLiveness(current_page);
      current_page->SetFlags(first_page()->GetFlags(),
                             static_cast<uintptr_t>(Page::kCopyAllFlags));
      heap()->CreateFillerObjectAt(current_page->area_start(),
                                   static_cast<int>(current_page->area_size()),
                                   ClearRecordedSlots::kNo);
    }
  }
  return true;
}

// -----------------------------------------------------------------------------
// SemiSpace implementation

void SemiSpace::SetUp(size_t initial_capacity, size_t maximum_capacity) {
  DCHECK_GE(maximum_capacity, static_cast<size_t>(Page::kPageSize));
  minimum_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
  target_capacity_ = minimum_capacity_;
  maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
}

void SemiSpace::TearDown() {
  // Properly uncommit memory to keep the allocator counters in sync.
  if (IsCommitted()) {
    Uncommit();
  }
  target_capacity_ = maximum_capacity_ = 0;
}

bool SemiSpace::Commit() {
  DCHECK(!IsCommitted());
  const int num_pages = static_cast<int>(target_capacity_ / Page::kPageSize);
  DCHECK(num_pages);
  for (int pages_added = 0; pages_added < num_pages; pages_added++) {
    // Pages in the new spaces can be moved to the old space by the full
    // collector. Therefore, they must be initialized with the same FreeList as
    // old pages.
    Page* new_page =
        heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
            MemoryChunkLayout::AllocatableMemoryInDataPage(), this,
            NOT_EXECUTABLE);
    if (new_page == nullptr) {
      if (pages_added) RewindPages(pages_added);
      DCHECK(!IsCommitted());
      return false;
    }
    memory_chunk_list_.PushBack(new_page);
  }
  Reset();
  AccountCommitted(target_capacity_);
  if (age_mark_ == kNullAddress) {
    age_mark_ = first_page()->area_start();
  }
  DCHECK(IsCommitted());
  return true;
}

bool SemiSpace::Uncommit() {
  DCHECK(IsCommitted());
  while (!memory_chunk_list_.Empty()) {
    MemoryChunk* chunk = memory_chunk_list_.front();
    memory_chunk_list_.Remove(chunk);
    heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(chunk);
  }
  current_page_ = nullptr;
  current_capacity_ = 0;
  AccountUncommitted(target_capacity_);
  heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
  DCHECK(!IsCommitted());
  return true;
}

size_t SemiSpace::CommittedPhysicalMemory() {
  if (!IsCommitted()) return 0;
  size_t size = 0;
  for (Page* p : *this) {
    size += p->CommittedPhysicalMemory();
  }
  return size;
}

bool SemiSpace::GrowTo(size_t new_capacity) {
  if (!IsCommitted()) {
    if (!Commit()) return false;
  }
  DCHECK_EQ(new_capacity & kPageAlignmentMask, 0u);
  DCHECK_LE(new_capacity, maximum_capacity_);
  DCHECK_GT(new_capacity, target_capacity_);
  const size_t delta = new_capacity - target_capacity_;
  DCHECK(IsAligned(delta, AllocatePageSize()));
  const int delta_pages = static_cast<int>(delta / Page::kPageSize);
  DCHECK(last_page());
  IncrementalMarking::NonAtomicMarkingState* marking_state =
      heap()->incremental_marking()->non_atomic_marking_state();
  for (int pages_added = 0; pages_added < delta_pages; pages_added++) {
    Page* new_page =
        heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
            MemoryChunkLayout::AllocatableMemoryInDataPage(), this,
            NOT_EXECUTABLE);
    if (new_page == nullptr) {
      if (pages_added) RewindPages(pages_added);
      return false;
    }
    memory_chunk_list_.PushBack(new_page);
    marking_state->ClearLiveness(new_page);
    // Duplicate the flags that was set on the old page.
    new_page->SetFlags(last_page()->GetFlags(), Page::kCopyOnFlipFlagsMask);
  }
  AccountCommitted(delta);
  target_capacity_ = new_capacity;
  return true;
}

void SemiSpace::RewindPages(int num_pages) {
  DCHECK_GT(num_pages, 0);
  DCHECK(last_page());
  while (num_pages > 0) {
    MemoryChunk* last = last_page();
    memory_chunk_list_.Remove(last);
    heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(last);
    num_pages--;
  }
}

void SemiSpace::ShrinkTo(size_t new_capacity) {
  DCHECK_EQ(new_capacity & kPageAlignmentMask, 0u);
  DCHECK_GE(new_capacity, minimum_capacity_);
  DCHECK_LT(new_capacity, target_capacity_);
  if (IsCommitted()) {
    const size_t delta = target_capacity_ - new_capacity;
    DCHECK(IsAligned(delta, Page::kPageSize));
    int delta_pages = static_cast<int>(delta / Page::kPageSize);
    RewindPages(delta_pages);
    AccountUncommitted(delta);
    heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
  }
  target_capacity_ = new_capacity;
}

void SemiSpace::FixPagesFlags(intptr_t flags, intptr_t mask) {
  for (Page* page : *this) {
    page->set_owner(this);
    page->SetFlags(flags, mask);
    if (id_ == kToSpace) {
      page->ClearFlag(MemoryChunk::FROM_PAGE);
      page->SetFlag(MemoryChunk::TO_PAGE);
      page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
      heap()->incremental_marking()->non_atomic_marking_state()->SetLiveBytes(
          page, 0);
    } else {
      page->SetFlag(MemoryChunk::FROM_PAGE);
      page->ClearFlag(MemoryChunk::TO_PAGE);
    }
    DCHECK(page->InYoungGeneration());
  }
}

void SemiSpace::Reset() {
  DCHECK(first_page());
  DCHECK(last_page());
  current_page_ = first_page();
  current_capacity_ = Page::kPageSize;
}

void SemiSpace::RemovePage(Page* page) {
  if (current_page_ == page) {
    if (page->prev_page()) {
      current_page_ = page->prev_page();
    }
  }
  memory_chunk_list_.Remove(page);
  for (size_t i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
    ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
    DecrementExternalBackingStoreBytes(t, page->ExternalBackingStoreBytes(t));
  }
}

void SemiSpace::PrependPage(Page* page) {
  page->SetFlags(current_page()->GetFlags(),
                 static_cast<uintptr_t>(Page::kCopyAllFlags));
  page->set_owner(this);
  memory_chunk_list_.PushFront(page);
  current_capacity_ += Page::kPageSize;
  for (size_t i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
    ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
    IncrementExternalBackingStoreBytes(t, page->ExternalBackingStoreBytes(t));
  }
}

void SemiSpace::MovePageToTheEnd(Page* page) {
  DCHECK_EQ(page->owner(), this);
  memory_chunk_list_.Remove(page);
  memory_chunk_list_.PushBack(page);
  current_page_ = page;
}

void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
  // We won't be swapping semispaces without data in them.
  DCHECK(from->first_page());
  DCHECK(to->first_page());

  intptr_t saved_to_space_flags = to->current_page()->GetFlags();

  // We swap all properties but id_.
  std::swap(from->target_capacity_, to->target_capacity_);
  std::swap(from->maximum_capacity_, to->maximum_capacity_);
  std::swap(from->minimum_capacity_, to->minimum_capacity_);
  std::swap(from->age_mark_, to->age_mark_);
  std::swap(from->memory_chunk_list_, to->memory_chunk_list_);
  std::swap(from->current_page_, to->current_page_);
  std::swap(from->external_backing_store_bytes_,
            to->external_backing_store_bytes_);

  to->FixPagesFlags(saved_to_space_flags, Page::kCopyOnFlipFlagsMask);
  from->FixPagesFlags(0, 0);
}

void SemiSpace::set_age_mark(Address mark) {
  DCHECK_EQ(Page::FromAllocationAreaAddress(mark)->owner(), this);
  age_mark_ = mark;
  // Mark all pages up to the one containing mark.
  for (Page* p : PageRange(space_start(), mark)) {
    p->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
  }
}

std::unique_ptr<ObjectIterator> SemiSpace::GetObjectIterator(Heap* heap) {
  // Use the NewSpace::NewObjectIterator to iterate the ToSpace.
  UNREACHABLE();
}

#ifdef DEBUG
void SemiSpace::Print() {}
#endif

#ifdef VERIFY_HEAP
void SemiSpace::Verify() {
  bool is_from_space = (id_ == kFromSpace);
  size_t external_backing_store_bytes[kNumTypes];

  for (int i = 0; i < kNumTypes; i++) {
    external_backing_store_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
  }

  for (Page* page : *this) {
    CHECK_EQ(page->owner(), this);
    CHECK(page->InNewSpace());
    CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::FROM_PAGE
                                        : MemoryChunk::TO_PAGE));
    CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::TO_PAGE
                                         : MemoryChunk::FROM_PAGE));
    CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
    if (!is_from_space) {
      // The pointers-from-here-are-interesting flag isn't updated dynamically
      // on from-space pages, so it might be out of sync with the marking state.
      if (page->heap()->incremental_marking()->IsMarking()) {
        CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
      } else {
        CHECK(
            !page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
      }
    }
    for (int i = 0; i < kNumTypes; i++) {
      ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
      external_backing_store_bytes[t] += page->ExternalBackingStoreBytes(t);
    }

    CHECK_IMPLIES(page->list_node().prev(),
                  page->list_node().prev()->list_node().next() == page);
  }
  for (int i = 0; i < kNumTypes; i++) {
    ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
    CHECK_EQ(external_backing_store_bytes[t], ExternalBackingStoreBytes(t));
  }
}
#endif

#ifdef DEBUG
void SemiSpace::AssertValidRange(Address start, Address end) {
  // Addresses belong to same semi-space
  Page* page = Page::FromAllocationAreaAddress(start);
  Page* end_page = Page::FromAllocationAreaAddress(end);
  SemiSpace* space = reinterpret_cast<SemiSpace*>(page->owner());
  DCHECK_EQ(space, end_page->owner());
  // Start address is before end address, either on same page,
  // or end address is on a later page in the linked list of
  // semi-space pages.
  if (page == end_page) {
    DCHECK_LE(start, end);
  } else {
    while (page != end_page) {
      page = page->next_page();
    }
    DCHECK(page);
  }
}
#endif

// -----------------------------------------------------------------------------
// SemiSpaceObjectIterator implementation.

SemiSpaceObjectIterator::SemiSpaceObjectIterator(NewSpace* space) {
  Initialize(space->first_allocatable_address(), space->top());
}

void SemiSpaceObjectIterator::Initialize(Address start, Address end) {
  SemiSpace::AssertValidRange(start, end);
  current_ = start;
  limit_ = end;
}

size_t NewSpace::CommittedPhysicalMemory() {
  if (!base::OS::HasLazyCommits()) return CommittedMemory();
  BasicMemoryChunk::UpdateHighWaterMark(allocation_info_.top());
  size_t size = to_space_.CommittedPhysicalMemory();
  if (from_space_.IsCommitted()) {
    size += from_space_.CommittedPhysicalMemory();
  }
  return size;
}

// -----------------------------------------------------------------------------
// NewSpace implementation

NewSpace::NewSpace(Heap* heap, v8::PageAllocator* page_allocator,
                   size_t initial_semispace_capacity,
                   size_t max_semispace_capacity)
    : SpaceWithLinearArea(heap, NEW_SPACE, new NoFreeList()),
      to_space_(heap, kToSpace),
      from_space_(heap, kFromSpace) {
  DCHECK(initial_semispace_capacity <= max_semispace_capacity);

  to_space_.SetUp(initial_semispace_capacity, max_semispace_capacity);
  from_space_.SetUp(initial_semispace_capacity, max_semispace_capacity);
  if (!to_space_.Commit()) {
    V8::FatalProcessOutOfMemory(heap->isolate(), "New space setup");
  }
  DCHECK(!from_space_.IsCommitted());  // No need to use memory yet.
  ResetLinearAllocationArea();
}

void NewSpace::TearDown() {
  allocation_info_.Reset(kNullAddress, kNullAddress);

  to_space_.TearDown();
  from_space_.TearDown();
}

void NewSpace::ResetParkedAllocationBuffers() {
  parked_allocation_buffers_.clear();
}

void NewSpace::Flip() { SemiSpace::Swap(&from_space_, &to_space_); }

void NewSpace::Grow() {
  DCHECK(heap()->safepoint()->IsActive());
  // Double the semispace size but only up to maximum capacity.
  DCHECK(TotalCapacity() < MaximumCapacity());
  size_t new_capacity = std::min(
      MaximumCapacity(),
      static_cast<size_t>(FLAG_semi_space_growth_factor) * TotalCapacity());
  if (to_space_.GrowTo(new_capacity)) {
    // Only grow from space if we managed to grow to-space.
    if (!from_space_.GrowTo(new_capacity)) {
      // If we managed to grow to-space but couldn't grow from-space,
      // attempt to shrink to-space.
      to_space_.ShrinkTo(from_space_.target_capacity());
    }
  }
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}

void NewSpace::Shrink() {
  size_t new_capacity = std::max(InitialTotalCapacity(), 2 * Size());
  size_t rounded_new_capacity = ::RoundUp(new_capacity, Page::kPageSize);
  if (rounded_new_capacity < TotalCapacity()) {
    to_space_.ShrinkTo(rounded_new_capacity);
    // Only shrink from-space if we managed to shrink to-space.
    if (from_space_.IsCommitted()) from_space_.Reset();
    from_space_.ShrinkTo(rounded_new_capacity);
  }
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}

bool NewSpace::Rebalance() {
  // Order here is important to make use of the page pool.
  return to_space_.EnsureCurrentCapacity() &&
         from_space_.EnsureCurrentCapacity();
}

void NewSpace::UpdateLinearAllocationArea(Address known_top) {
  AdvanceAllocationObservers();

  Address new_top = known_top == 0 ? to_space_.page_low() : known_top;
  BasicMemoryChunk::UpdateHighWaterMark(allocation_info_.top());
  allocation_info_.Reset(new_top, to_space_.page_high());
  // The order of the following two stores is important.
  // See the corresponding loads in ConcurrentMarking::Run.
  original_limit_.store(limit(), std::memory_order_relaxed);
  original_top_.store(top(), std::memory_order_release);
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);

  UpdateInlineAllocationLimit(0);
}

void NewSpace::ResetLinearAllocationArea() {
  to_space_.Reset();
  UpdateLinearAllocationArea();
  // Clear all mark-bits in the to-space.
  IncrementalMarking::NonAtomicMarkingState* marking_state =
      heap()->incremental_marking()->non_atomic_marking_state();
  for (Page* p : to_space_) {
    marking_state->ClearLiveness(p);
    // Concurrent marking may have local live bytes for this page.
    heap()->concurrent_marking()->ClearMemoryChunkData(p);
  }
}

void NewSpace::UpdateInlineAllocationLimit(size_t min_size) {
  Address new_limit = ComputeLimit(top(), to_space_.page_high(), min_size);
  DCHECK_LE(top(), new_limit);
  DCHECK_LE(new_limit, to_space_.page_high());
  allocation_info_.set_limit(new_limit);
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);

#if DEBUG
  VerifyTop();
#endif
}

bool NewSpace::AddFreshPage() {
  Address top = allocation_info_.top();
  DCHECK(!OldSpace::IsAtPageStart(top));

  // Clear remainder of current page.
  Address limit = Page::FromAllocationAreaAddress(top)->area_end();
  int remaining_in_page = static_cast<int>(limit - top);
  heap()->CreateFillerObjectAt(top, remaining_in_page, ClearRecordedSlots::kNo);

  if (!to_space_.AdvancePage()) {
    // No more pages left to advance.
    return false;
  }

  // We park unused allocation buffer space of allocations happenting from the
  // mutator.
  if (FLAG_allocation_buffer_parking && heap()->gc_state() == Heap::NOT_IN_GC &&
      remaining_in_page >= kAllocationBufferParkingThreshold) {
    parked_allocation_buffers_.push_back(
        ParkedAllocationBuffer(remaining_in_page, top));
  }
  UpdateLinearAllocationArea();

  return true;
}

bool NewSpace::AddFreshPageSynchronized() {
  base::MutexGuard guard(&mutex_);
  return AddFreshPage();
}

bool NewSpace::AddParkedAllocationBuffer(int size_in_bytes,
                                         AllocationAlignment alignment) {
  int parked_size = 0;
  Address start = 0;
  for (auto it = parked_allocation_buffers_.begin();
       it != parked_allocation_buffers_.end();) {
    parked_size = it->first;
    start = it->second;
    int filler_size = Heap::GetFillToAlign(start, alignment);
    if (size_in_bytes + filler_size <= parked_size) {
      parked_allocation_buffers_.erase(it);
      Page* page = Page::FromAddress(start);
      // We move a page with a parked allocaiton to the end of the pages list
      // to maintain the invariant that the last page is the used one.
      to_space_.MovePageToTheEnd(page);
      UpdateLinearAllocationArea(start);
      return true;
    } else {
      it++;
    }
  }
  return false;
}

bool NewSpace::EnsureAllocation(int size_in_bytes,
                                AllocationAlignment alignment) {
  AdvanceAllocationObservers();

  Address old_top = allocation_info_.top();
  Address high = to_space_.page_high();
  int filler_size = Heap::GetFillToAlign(old_top, alignment);
  int aligned_size_in_bytes = size_in_bytes + filler_size;

  if (old_top + aligned_size_in_bytes <= high) {
    UpdateInlineAllocationLimit(aligned_size_in_bytes);
    return true;
  }

  // Not enough room in the page, try to allocate a new one.
  if (!AddFreshPage()) {
    // When we cannot grow NewSpace anymore we query for parked allocations.
    if (!FLAG_allocation_buffer_parking ||
        !AddParkedAllocationBuffer(size_in_bytes, alignment))
      return false;
  }

  old_top = allocation_info_.top();
  high = to_space_.page_high();
  filler_size = Heap::GetFillToAlign(old_top, alignment);
  aligned_size_in_bytes = size_in_bytes + filler_size;

  DCHECK(old_top + aligned_size_in_bytes <= high);
  UpdateInlineAllocationLimit(aligned_size_in_bytes);
  return true;
}

void NewSpace::MaybeFreeUnusedLab(LinearAllocationArea info) {
  if (info.limit() != kNullAddress && info.limit() == top()) {
    DCHECK_NE(info.top(), kNullAddress);
    allocation_info_.set_top(info.top());
    allocation_info_.MoveStartToTop();
    original_top_.store(info.top(), std::memory_order_release);
  }

#if DEBUG
  VerifyTop();
#endif
}

std::unique_ptr<ObjectIterator> NewSpace::GetObjectIterator(Heap* heap) {
  return std::unique_ptr<ObjectIterator>(new SemiSpaceObjectIterator(this));
}

AllocationResult NewSpace::AllocateRawSlow(int size_in_bytes,
                                           AllocationAlignment alignment,
                                           AllocationOrigin origin) {
#ifdef V8_HOST_ARCH_32_BIT
  return alignment != kWordAligned
             ? AllocateRawAligned(size_in_bytes, alignment, origin)
             : AllocateRawUnaligned(size_in_bytes, origin);
#else
#ifdef V8_COMPRESS_POINTERS
  // TODO(ishell, v8:8875): Consider using aligned allocations once the
  // allocation alignment inconsistency is fixed. For now we keep using
  // unaligned access since both x64 and arm64 architectures (where pointer
  // compression is supported) allow unaligned access to doubles and full words.
#endif  // V8_COMPRESS_POINTERS
  return AllocateRawUnaligned(size_in_bytes, origin);
#endif
}

AllocationResult NewSpace::AllocateRawUnaligned(int size_in_bytes,
                                                AllocationOrigin origin) {
  DCHECK(!FLAG_enable_third_party_heap);
  if (!EnsureAllocation(size_in_bytes, kWordAligned)) {
    return AllocationResult::Retry(NEW_SPACE);
  }

  DCHECK_EQ(allocation_info_.start(), allocation_info_.top());

  AllocationResult result = AllocateFastUnaligned(size_in_bytes, origin);
  DCHECK(!result.IsRetry());

  InvokeAllocationObservers(result.ToAddress(), size_in_bytes, size_in_bytes,
                            size_in_bytes);

  return result;
}

AllocationResult NewSpace::AllocateRawAligned(int size_in_bytes,
                                              AllocationAlignment alignment,
                                              AllocationOrigin origin) {
  DCHECK(!FLAG_enable_third_party_heap);
  if (!EnsureAllocation(size_in_bytes, alignment)) {
    return AllocationResult::Retry(NEW_SPACE);
  }

  DCHECK_EQ(allocation_info_.start(), allocation_info_.top());

  int aligned_size_in_bytes;

  AllocationResult result = AllocateFastAligned(
      size_in_bytes, &aligned_size_in_bytes, alignment, origin);
  DCHECK(!result.IsRetry());

  InvokeAllocationObservers(result.ToAddress(), size_in_bytes,
                            aligned_size_in_bytes, aligned_size_in_bytes);

  return result;
}

void NewSpace::VerifyTop() {
  // Ensure validity of LAB: start <= top <= limit
  DCHECK_LE(allocation_info_.start(), allocation_info_.top());
  DCHECK_LE(allocation_info_.top(), allocation_info_.limit());

  // Ensure that original_top_ always equals LAB start.
  DCHECK_EQ(original_top_, allocation_info_.start());

  // Ensure that limit() is <= original_limit_, original_limit_ always needs
  // to be end of curent to space page.
  DCHECK_LE(allocation_info_.limit(), original_limit_);
  DCHECK_EQ(original_limit_, to_space_.page_high());
}

#ifdef VERIFY_HEAP
// We do not use the SemiSpaceObjectIterator because verification doesn't assume
// that it works (it depends on the invariants we are checking).
void NewSpace::Verify(Isolate* isolate) {
  // The allocation pointer should be in the space or at the very end.
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);

  // There should be objects packed in from the low address up to the
  // allocation pointer.
  Address current = to_space_.first_page()->area_start();
  CHECK_EQ(current, to_space_.space_start());

  size_t external_space_bytes[kNumTypes];
  for (int i = 0; i < kNumTypes; i++) {
    external_space_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
  }

  while (current != top()) {
    if (!Page::IsAlignedToPageSize(current)) {
      // The allocation pointer should not be in the middle of an object.
      CHECK(!Page::FromAllocationAreaAddress(current)->ContainsLimit(top()) ||
            current < top());

      HeapObject object = HeapObject::FromAddress(current);

      // The first word should be a map, and we expect all map pointers to
      // be in map space or read-only space.
      Map map = object.map();
      CHECK(map.IsMap());
      CHECK(ReadOnlyHeap::Contains(map) || heap()->map_space()->Contains(map));

      // The object should not be code or a map.
      CHECK(!object.IsMap());
      CHECK(!object.IsAbstractCode());

      // The object itself should look OK.
      object.ObjectVerify(isolate);

      // All the interior pointers should be contained in the heap.
      VerifyPointersVisitor visitor(heap());
      int size = object.Size();
      object.IterateBody(map, size, &visitor);

      if (object.IsExternalString()) {
        ExternalString external_string = ExternalString::cast(object);
        size_t size = external_string.ExternalPayloadSize();
        external_space_bytes[ExternalBackingStoreType::kExternalString] += size;
      }

      current += size;
    } else {
      // At end of page, switch to next page.
      Page* page = Page::FromAllocationAreaAddress(current)->next_page();
      current = page->area_start();
    }
  }

  for (int i = 0; i < kNumTypes; i++) {
    if (i == ExternalBackingStoreType::kArrayBuffer) continue;
    ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
    CHECK_EQ(external_space_bytes[t], ExternalBackingStoreBytes(t));
  }

  if (!FLAG_concurrent_array_buffer_sweeping) {
    size_t bytes = heap()->array_buffer_sweeper()->young().BytesSlow();
    CHECK_EQ(bytes,
             ExternalBackingStoreBytes(ExternalBackingStoreType::kArrayBuffer));
  }

  // Check semi-spaces.
  CHECK_EQ(from_space_.id(), kFromSpace);
  CHECK_EQ(to_space_.id(), kToSpace);
  from_space_.Verify();
  to_space_.Verify();
}
#endif

}  // namespace internal
}  // namespace v8