summaryrefslogtreecommitdiff
path: root/chromium/v8/src/frames.cc
blob: f33dba8ba2991d215dc1293adb8881b4c92f1519 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/frames.h"

#include <memory>
#include <sstream>

#include "src/base/bits.h"
#include "src/deoptimizer.h"
#include "src/frames-inl.h"
#include "src/ic/ic-stats.h"
#include "src/register-configuration.h"
#include "src/safepoint-table.h"
#include "src/string-stream.h"
#include "src/visitors.h"
#include "src/vm-state-inl.h"
#include "src/wasm/wasm-objects-inl.h"

namespace v8 {
namespace internal {

ReturnAddressLocationResolver
    StackFrame::return_address_location_resolver_ = NULL;


// Iterator that supports traversing the stack handlers of a
// particular frame. Needs to know the top of the handler chain.
class StackHandlerIterator BASE_EMBEDDED {
 public:
  StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
      : limit_(frame->fp()), handler_(handler) {
    // Make sure the handler has already been unwound to this frame.
    DCHECK(frame->sp() <= handler->address());
  }

  StackHandler* handler() const { return handler_; }

  bool done() {
    return handler_ == NULL || handler_->address() > limit_;
  }
  void Advance() {
    DCHECK(!done());
    handler_ = handler_->next();
  }

 private:
  const Address limit_;
  StackHandler* handler_;
};


// -------------------------------------------------------------------------


#define INITIALIZE_SINGLETON(type, field) field##_(this),
StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate,
                                               bool can_access_heap_objects)
    : isolate_(isolate),
      STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
      frame_(NULL), handler_(NULL),
      can_access_heap_objects_(can_access_heap_objects) {
}
#undef INITIALIZE_SINGLETON

StackFrameIterator::StackFrameIterator(Isolate* isolate)
    : StackFrameIterator(isolate, isolate->thread_local_top()) {}

StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t)
    : StackFrameIteratorBase(isolate, true) {
  Reset(t);
}

void StackFrameIterator::Advance() {
  DCHECK(!done());
  // Compute the state of the calling frame before restoring
  // callee-saved registers and unwinding handlers. This allows the
  // frame code that computes the caller state to access the top
  // handler and the value of any callee-saved register if needed.
  StackFrame::State state;
  StackFrame::Type type = frame_->GetCallerState(&state);

  // Unwind handlers corresponding to the current frame.
  StackHandlerIterator it(frame_, handler_);
  while (!it.done()) it.Advance();
  handler_ = it.handler();

  // Advance to the calling frame.
  frame_ = SingletonFor(type, &state);

  // When we're done iterating over the stack frames, the handler
  // chain must have been completely unwound.
  DCHECK(!done() || handler_ == NULL);
}


void StackFrameIterator::Reset(ThreadLocalTop* top) {
  StackFrame::State state;
  StackFrame::Type type = ExitFrame::GetStateForFramePointer(
      Isolate::c_entry_fp(top), &state);
  handler_ = StackHandler::FromAddress(Isolate::handler(top));
  frame_ = SingletonFor(type, &state);
}


StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type,
                                             StackFrame::State* state) {
  StackFrame* result = SingletonFor(type);
  DCHECK((!result) == (type == StackFrame::NONE));
  if (result) result->state_ = *state;
  return result;
}


StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) {
#define FRAME_TYPE_CASE(type, field) \
  case StackFrame::type:             \
    return &field##_;

  switch (type) {
    case StackFrame::NONE: return NULL;
    STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
    default: break;
  }
  return NULL;

#undef FRAME_TYPE_CASE
}

// -------------------------------------------------------------------------

void JavaScriptFrameIterator::Advance() {
  do {
    iterator_.Advance();
  } while (!iterator_.done() && !iterator_.frame()->is_java_script());
}

// -------------------------------------------------------------------------

StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate)
    : iterator_(isolate) {
  if (!done() && !IsValidFrame(iterator_.frame())) Advance();
}

StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate,
                                                 StackFrame::Id id)
    : StackTraceFrameIterator(isolate) {
  while (!done() && frame()->id() != id) Advance();
}

void StackTraceFrameIterator::Advance() {
  do {
    iterator_.Advance();
  } while (!done() && !IsValidFrame(iterator_.frame()));
}

bool StackTraceFrameIterator::IsValidFrame(StackFrame* frame) const {
  if (frame->is_java_script()) {
    JavaScriptFrame* jsFrame = static_cast<JavaScriptFrame*>(frame);
    if (!jsFrame->function()->IsJSFunction()) return false;
    return jsFrame->function()->shared()->IsSubjectToDebugging();
  }
  // apart from javascript, only wasm is valid
  return frame->is_wasm();
}

// -------------------------------------------------------------------------

namespace {

bool IsInterpreterFramePc(Isolate* isolate, Address pc) {
  Code* interpreter_entry_trampoline =
      isolate->builtins()->builtin(Builtins::kInterpreterEntryTrampoline);
  Code* interpreter_bytecode_advance =
      isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeAdvance);
  Code* interpreter_bytecode_dispatch =
      isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeDispatch);

  return (pc >= interpreter_entry_trampoline->instruction_start() &&
          pc < interpreter_entry_trampoline->instruction_end()) ||
         (pc >= interpreter_bytecode_advance->instruction_start() &&
          pc < interpreter_bytecode_advance->instruction_end()) ||
         (pc >= interpreter_bytecode_dispatch->instruction_start() &&
          pc < interpreter_bytecode_dispatch->instruction_end());
}

DISABLE_ASAN Address ReadMemoryAt(Address address) {
  return Memory::Address_at(address);
}

}  // namespace

SafeStackFrameIterator::SafeStackFrameIterator(
    Isolate* isolate,
    Address fp, Address sp, Address js_entry_sp)
    : StackFrameIteratorBase(isolate, false),
      low_bound_(sp),
      high_bound_(js_entry_sp),
      top_frame_type_(StackFrame::NONE),
      external_callback_scope_(isolate->external_callback_scope()) {
  StackFrame::State state;
  StackFrame::Type type;
  ThreadLocalTop* top = isolate->thread_local_top();
  bool advance_frame = true;
  if (IsValidTop(top)) {
    type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state);
    top_frame_type_ = type;
  } else if (IsValidStackAddress(fp)) {
    DCHECK(fp != NULL);
    state.fp = fp;
    state.sp = sp;
    state.pc_address = StackFrame::ResolveReturnAddressLocation(
        reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp)));

    // If the top of stack is a return address to the interpreter trampoline,
    // then we are likely in a bytecode handler with elided frame. In that
    // case, set the PC properly and make sure we do not drop the frame.
    if (IsValidStackAddress(sp)) {
      MSAN_MEMORY_IS_INITIALIZED(sp, kPointerSize);
      Address tos = ReadMemoryAt(reinterpret_cast<Address>(sp));
      if (IsInterpreterFramePc(isolate, tos)) {
        state.pc_address = reinterpret_cast<Address*>(sp);
        advance_frame = false;
      }
    }

    // StackFrame::ComputeType will read both kContextOffset and kMarkerOffset,
    // we check only that kMarkerOffset is within the stack bounds and do
    // compile time check that kContextOffset slot is pushed on the stack before
    // kMarkerOffset.
    STATIC_ASSERT(StandardFrameConstants::kFunctionOffset <
                  StandardFrameConstants::kContextOffset);
    Address frame_marker = fp + StandardFrameConstants::kFunctionOffset;
    if (IsValidStackAddress(frame_marker)) {
      type = StackFrame::ComputeType(this, &state);
      top_frame_type_ = type;
      // We only keep the top frame if we believe it to be interpreted frame.
      if (type != StackFrame::INTERPRETED) {
        advance_frame = true;
      }
    } else {
      // Mark the frame as OPTIMIZED if we cannot determine its type.
      // The frame anyways will be skipped.
      type = StackFrame::OPTIMIZED;
      // Top frame is incomplete so we cannot reliably determine its type.
      top_frame_type_ = StackFrame::NONE;
    }
  } else {
    return;
  }
  frame_ = SingletonFor(type, &state);
  if (advance_frame && frame_) Advance();
}


bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const {
  Address c_entry_fp = Isolate::c_entry_fp(top);
  if (!IsValidExitFrame(c_entry_fp)) return false;
  // There should be at least one JS_ENTRY stack handler.
  Address handler = Isolate::handler(top);
  if (handler == NULL) return false;
  // Check that there are no js frames on top of the native frames.
  return c_entry_fp < handler;
}


void SafeStackFrameIterator::AdvanceOneFrame() {
  DCHECK(!done());
  StackFrame* last_frame = frame_;
  Address last_sp = last_frame->sp(), last_fp = last_frame->fp();
  // Before advancing to the next stack frame, perform pointer validity tests.
  if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) {
    frame_ = NULL;
    return;
  }

  // Advance to the previous frame.
  StackFrame::State state;
  StackFrame::Type type = frame_->GetCallerState(&state);
  frame_ = SingletonFor(type, &state);
  if (!frame_) return;

  // Check that we have actually moved to the previous frame in the stack.
  if (frame_->sp() < last_sp || frame_->fp() < last_fp) {
    frame_ = NULL;
  }
}


bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const {
  return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp());
}


bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) {
  StackFrame::State state;
  if (frame->is_entry() || frame->is_construct_entry()) {
    // See EntryFrame::GetCallerState. It computes the caller FP address
    // and calls ExitFrame::GetStateForFramePointer on it. We need to be
    // sure that caller FP address is valid.
    Address caller_fp = Memory::Address_at(
        frame->fp() + EntryFrameConstants::kCallerFPOffset);
    if (!IsValidExitFrame(caller_fp)) return false;
  } else if (frame->is_arguments_adaptor()) {
    // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that
    // the number of arguments is stored on stack as Smi. We need to check
    // that it really an Smi.
    Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->
        GetExpression(0);
    if (!number_of_args->IsSmi()) {
      return false;
    }
  }
  frame->ComputeCallerState(&state);
  return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) &&
      SingletonFor(frame->GetCallerState(&state)) != NULL;
}


bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const {
  if (!IsValidStackAddress(fp)) return false;
  Address sp = ExitFrame::ComputeStackPointer(fp);
  if (!IsValidStackAddress(sp)) return false;
  StackFrame::State state;
  ExitFrame::FillState(fp, sp, &state);
  MSAN_MEMORY_IS_INITIALIZED(state.pc_address, sizeof(state.pc_address));
  return *state.pc_address != nullptr;
}


void SafeStackFrameIterator::Advance() {
  while (true) {
    AdvanceOneFrame();
    if (done()) break;
    ExternalCallbackScope* last_callback_scope = NULL;
    while (external_callback_scope_ != NULL &&
           external_callback_scope_->scope_address() < frame_->fp()) {
      // As long as the setup of a frame is not atomic, we may happen to be
      // in an interval where an ExternalCallbackScope is already created,
      // but the frame is not yet entered. So we are actually observing
      // the previous frame.
      // Skip all the ExternalCallbackScope's that are below the current fp.
      last_callback_scope = external_callback_scope_;
      external_callback_scope_ = external_callback_scope_->previous();
    }
    if (frame_->is_java_script()) break;
    if (frame_->is_exit() || frame_->is_builtin_exit()) {
      // Some of the EXIT frames may have ExternalCallbackScope allocated on
      // top of them. In that case the scope corresponds to the first EXIT
      // frame beneath it. There may be other EXIT frames on top of the
      // ExternalCallbackScope, just skip them as we cannot collect any useful
      // information about them.
      if (last_callback_scope) {
        frame_->state_.pc_address =
            last_callback_scope->callback_entrypoint_address();
      }
      break;
    }
  }
}


// -------------------------------------------------------------------------

namespace {
Code* GetContainingCode(Isolate* isolate, Address pc) {
  return isolate->inner_pointer_to_code_cache()->GetCacheEntry(pc)->code;
}
}  // namespace

Code* StackFrame::LookupCode() const {
  Code* result = GetContainingCode(isolate(), pc());
  DCHECK_GE(pc(), result->instruction_start());
  DCHECK_LT(pc(), result->instruction_end());
  return result;
}

#ifdef DEBUG
static bool GcSafeCodeContains(HeapObject* object, Address addr);
#endif

void StackFrame::IteratePc(RootVisitor* v, Address* pc_address,
                           Address* constant_pool_address, Code* holder) {
  Address pc = *pc_address;
  DCHECK(GcSafeCodeContains(holder, pc));
  unsigned pc_offset = static_cast<unsigned>(pc - holder->instruction_start());
  Object* code = holder;
  v->VisitRootPointer(Root::kTop, &code);
  if (code == holder) return;
  holder = reinterpret_cast<Code*>(code);
  pc = holder->instruction_start() + pc_offset;
  *pc_address = pc;
  if (FLAG_enable_embedded_constant_pool && constant_pool_address) {
    *constant_pool_address = holder->constant_pool();
  }
}


void StackFrame::SetReturnAddressLocationResolver(
    ReturnAddressLocationResolver resolver) {
  DCHECK(return_address_location_resolver_ == NULL);
  return_address_location_resolver_ = resolver;
}

StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator,
                                         State* state) {
  DCHECK(state->fp != NULL);

  MSAN_MEMORY_IS_INITIALIZED(
      state->fp + CommonFrameConstants::kContextOrFrameTypeOffset,
      kPointerSize);
  intptr_t marker = Memory::intptr_at(
      state->fp + CommonFrameConstants::kContextOrFrameTypeOffset);
  if (!iterator->can_access_heap_objects_) {
    // TODO(titzer): "can_access_heap_objects" is kind of bogus. It really
    // means that we are being called from the profiler, which can interrupt
    // the VM with a signal at any arbitrary instruction, with essentially
    // anything on the stack. So basically none of these checks are 100%
    // reliable.
    MSAN_MEMORY_IS_INITIALIZED(
        state->fp + StandardFrameConstants::kFunctionOffset, kPointerSize);
    Object* maybe_function =
        Memory::Object_at(state->fp + StandardFrameConstants::kFunctionOffset);
    if (!StackFrame::IsTypeMarker(marker)) {
      if (maybe_function->IsSmi()) {
        return NONE;
      } else if (IsInterpreterFramePc(iterator->isolate(),
                                      *(state->pc_address))) {
        return INTERPRETED;
      } else {
        return OPTIMIZED;
      }
    }
  } else {
    // Look up the code object to figure out the type of the stack frame.
    Code* code_obj =
        GetContainingCode(iterator->isolate(), *(state->pc_address));
    if (code_obj != nullptr) {
      switch (code_obj->kind()) {
        case Code::BUILTIN:
          if (StackFrame::IsTypeMarker(marker)) break;
          if (code_obj->is_interpreter_trampoline_builtin()) {
            return INTERPRETED;
          }
          if (code_obj->is_turbofanned()) {
            // TODO(bmeurer): We treat frames for BUILTIN Code objects as
            // OptimizedFrame for now (all the builtins with JavaScript
            // linkage are actually generated with TurboFan currently, so
            // this is sound).
            return OPTIMIZED;
          }
          return BUILTIN;
        case Code::OPTIMIZED_FUNCTION:
          return OPTIMIZED;
        case Code::WASM_FUNCTION:
          return WASM_COMPILED;
        case Code::WASM_TO_JS_FUNCTION:
          return WASM_TO_JS;
        case Code::JS_TO_WASM_FUNCTION:
          return JS_TO_WASM;
        case Code::WASM_INTERPRETER_ENTRY:
          return WASM_INTERPRETER_ENTRY;
        case Code::C_WASM_ENTRY:
          return C_WASM_ENTRY;
        default:
          // All other types should have an explicit marker
          break;
      }
    } else {
      return NONE;
    }
  }

  DCHECK(StackFrame::IsTypeMarker(marker));
  StackFrame::Type candidate = StackFrame::MarkerToType(marker);
  switch (candidate) {
    case ENTRY:
    case CONSTRUCT_ENTRY:
    case EXIT:
    case BUILTIN_CONTINUATION:
    case JAVA_SCRIPT_BUILTIN_CONTINUATION:
    case BUILTIN_EXIT:
    case STUB:
    case INTERNAL:
    case CONSTRUCT:
    case ARGUMENTS_ADAPTOR:
    case WASM_TO_JS:
    case WASM_COMPILED:
      return candidate;
    case JS_TO_WASM:
    case OPTIMIZED:
    case INTERPRETED:
    default:
      // Unoptimized and optimized JavaScript frames, including
      // interpreted frames, should never have a StackFrame::Type
      // marker. If we find one, we're likely being called from the
      // profiler in a bogus stack frame.
      return NONE;
  }
}


#ifdef DEBUG
bool StackFrame::can_access_heap_objects() const {
  return iterator_->can_access_heap_objects_;
}
#endif


StackFrame::Type StackFrame::GetCallerState(State* state) const {
  ComputeCallerState(state);
  return ComputeType(iterator_, state);
}


Address StackFrame::UnpaddedFP() const {
  return fp();
}


Code* EntryFrame::unchecked_code() const {
  return isolate()->heap()->js_entry_code();
}


void EntryFrame::ComputeCallerState(State* state) const {
  GetCallerState(state);
}


StackFrame::Type EntryFrame::GetCallerState(State* state) const {
  const int offset = EntryFrameConstants::kCallerFPOffset;
  Address fp = Memory::Address_at(this->fp() + offset);
  return ExitFrame::GetStateForFramePointer(fp, state);
}

Code* ConstructEntryFrame::unchecked_code() const {
  return isolate()->heap()->js_construct_entry_code();
}


Object*& ExitFrame::code_slot() const {
  const int offset = ExitFrameConstants::kCodeOffset;
  return Memory::Object_at(fp() + offset);
}

Code* ExitFrame::unchecked_code() const {
  return reinterpret_cast<Code*>(code_slot());
}


void ExitFrame::ComputeCallerState(State* state) const {
  // Set up the caller state.
  state->sp = caller_sp();
  state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset);
  state->pc_address = ResolveReturnAddressLocation(
      reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset));
  state->callee_pc_address = nullptr;
  if (FLAG_enable_embedded_constant_pool) {
    state->constant_pool_address = reinterpret_cast<Address*>(
        fp() + ExitFrameConstants::kConstantPoolOffset);
  }
}


void ExitFrame::Iterate(RootVisitor* v) const {
  // The arguments are traversed as part of the expression stack of
  // the calling frame.
  IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
  v->VisitRootPointer(Root::kTop, &code_slot());
}


Address ExitFrame::GetCallerStackPointer() const {
  return fp() + ExitFrameConstants::kCallerSPOffset;
}


StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) {
  if (fp == 0) return NONE;
  Address sp = ComputeStackPointer(fp);
  FillState(fp, sp, state);
  DCHECK_NOT_NULL(*state->pc_address);

  return ComputeFrameType(fp);
}

StackFrame::Type ExitFrame::ComputeFrameType(Address fp) {
  // Distinguish between between regular and builtin exit frames.
  // Default to EXIT in all hairy cases (e.g., when called from profiler).
  const int offset = ExitFrameConstants::kFrameTypeOffset;
  Object* marker = Memory::Object_at(fp + offset);

  if (!marker->IsSmi()) {
    return EXIT;
  }

  intptr_t marker_int = bit_cast<intptr_t>(marker);

  StackFrame::Type frame_type = static_cast<StackFrame::Type>(marker_int >> 1);
  if (frame_type == EXIT || frame_type == BUILTIN_EXIT) {
    return frame_type;
  }

  return EXIT;
}

Address ExitFrame::ComputeStackPointer(Address fp) {
  MSAN_MEMORY_IS_INITIALIZED(fp + ExitFrameConstants::kSPOffset, kPointerSize);
  return Memory::Address_at(fp + ExitFrameConstants::kSPOffset);
}

void ExitFrame::FillState(Address fp, Address sp, State* state) {
  state->sp = sp;
  state->fp = fp;
  state->pc_address = ResolveReturnAddressLocation(
      reinterpret_cast<Address*>(sp - 1 * kPCOnStackSize));
  state->callee_pc_address = nullptr;
  // The constant pool recorded in the exit frame is not associated
  // with the pc in this state (the return address into a C entry
  // stub).  ComputeCallerState will retrieve the constant pool
  // together with the associated caller pc.
  state->constant_pool_address = nullptr;
}

JSFunction* BuiltinExitFrame::function() const {
  return JSFunction::cast(target_slot_object());
}

Object* BuiltinExitFrame::receiver() const { return receiver_slot_object(); }

bool BuiltinExitFrame::IsConstructor() const {
  return !new_target_slot_object()->IsUndefined(isolate());
}

Object* BuiltinExitFrame::GetParameter(int i) const {
  DCHECK(i >= 0 && i < ComputeParametersCount());
  int offset = BuiltinExitFrameConstants::kArgcOffset + (i + 1) * kPointerSize;
  return Memory::Object_at(fp() + offset);
}

int BuiltinExitFrame::ComputeParametersCount() const {
  Object* argc_slot = argc_slot_object();
  DCHECK(argc_slot->IsSmi());
  // Argc also counts the receiver, target, new target, and argc itself as args,
  // therefore the real argument count is argc - 4.
  int argc = Smi::ToInt(argc_slot) - 4;
  DCHECK(argc >= 0);
  return argc;
}

namespace {
void PrintIndex(StringStream* accumulator, StackFrame::PrintMode mode,
                int index) {
  accumulator->Add((mode == StackFrame::OVERVIEW) ? "%5d: " : "[%d]: ", index);
}
}  // namespace

void BuiltinExitFrame::Print(StringStream* accumulator, PrintMode mode,
                             int index) const {
  DisallowHeapAllocation no_gc;
  Object* receiver = this->receiver();
  JSFunction* function = this->function();

  accumulator->PrintSecurityTokenIfChanged(function);
  PrintIndex(accumulator, mode, index);
  accumulator->Add("builtin exit frame: ");
  Code* code = NULL;
  if (IsConstructor()) accumulator->Add("new ");
  accumulator->PrintFunction(function, receiver, &code);

  accumulator->Add("(this=%o", receiver);

  // Print the parameters.
  int parameters_count = ComputeParametersCount();
  for (int i = 0; i < parameters_count; i++) {
    accumulator->Add(",%o", GetParameter(i));
  }

  accumulator->Add(")\n\n");
}

Address StandardFrame::GetExpressionAddress(int n) const {
  const int offset = StandardFrameConstants::kExpressionsOffset;
  return fp() + offset - n * kPointerSize;
}

Address InterpretedFrame::GetExpressionAddress(int n) const {
  const int offset = InterpreterFrameConstants::kExpressionsOffset;
  return fp() + offset - n * kPointerSize;
}

Script* StandardFrame::script() const {
  // This should only be called on frames which override this method.
  DCHECK(false);
  return nullptr;
}

Object* StandardFrame::receiver() const {
  return isolate()->heap()->undefined_value();
}

Object* StandardFrame::context() const {
  return isolate()->heap()->undefined_value();
}

int StandardFrame::position() const {
  AbstractCode* code = AbstractCode::cast(LookupCode());
  int code_offset = static_cast<int>(pc() - code->instruction_start());
  return code->SourcePosition(code_offset);
}

int StandardFrame::ComputeExpressionsCount() const {
  Address base = GetExpressionAddress(0);
  Address limit = sp() - kPointerSize;
  DCHECK(base >= limit);  // stack grows downwards
  // Include register-allocated locals in number of expressions.
  return static_cast<int>((base - limit) / kPointerSize);
}

Object* StandardFrame::GetParameter(int index) const {
  // StandardFrame does not define any parameters.
  UNREACHABLE();
}

int StandardFrame::ComputeParametersCount() const { return 0; }

void StandardFrame::ComputeCallerState(State* state) const {
  state->sp = caller_sp();
  state->fp = caller_fp();
  state->pc_address = ResolveReturnAddressLocation(
      reinterpret_cast<Address*>(ComputePCAddress(fp())));
  state->callee_pc_address = pc_address();
  state->constant_pool_address =
      reinterpret_cast<Address*>(ComputeConstantPoolAddress(fp()));
}


bool StandardFrame::IsConstructor() const { return false; }

void StandardFrame::Summarize(std::vector<FrameSummary>* functions) const {
  // This should only be called on frames which override this method.
  UNREACHABLE();
}

void StandardFrame::IterateCompiledFrame(RootVisitor* v) const {
  // Make sure that we're not doing "safe" stack frame iteration. We cannot
  // possibly find pointers in optimized frames in that state.
  DCHECK(can_access_heap_objects());

  // Find the code and compute the safepoint information.
  Address inner_pointer = pc();
  InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry =
      isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer);
  if (!entry->safepoint_entry.is_valid()) {
    entry->safepoint_entry = entry->code->GetSafepointEntry(inner_pointer);
    DCHECK(entry->safepoint_entry.is_valid());
  } else {
    DCHECK(entry->safepoint_entry.Equals(
        entry->code->GetSafepointEntry(inner_pointer)));
  }

  Code* code = entry->code;
  SafepointEntry safepoint_entry = entry->safepoint_entry;
  unsigned stack_slots = code->stack_slots();
  unsigned slot_space = stack_slots * kPointerSize;

  // Determine the fixed header and spill slot area size.
  int frame_header_size = StandardFrameConstants::kFixedFrameSizeFromFp;
  intptr_t marker =
      Memory::intptr_at(fp() + CommonFrameConstants::kContextOrFrameTypeOffset);
  if (StackFrame::IsTypeMarker(marker)) {
    StackFrame::Type candidate = StackFrame::MarkerToType(marker);
    switch (candidate) {
      case ENTRY:
      case CONSTRUCT_ENTRY:
      case EXIT:
      case BUILTIN_CONTINUATION:
      case JAVA_SCRIPT_BUILTIN_CONTINUATION:
      case BUILTIN_EXIT:
      case ARGUMENTS_ADAPTOR:
      case STUB:
      case INTERNAL:
      case CONSTRUCT:
      case JS_TO_WASM:
      case WASM_TO_JS:
      case WASM_COMPILED:
      case WASM_INTERPRETER_ENTRY:
      case C_WASM_ENTRY:
        frame_header_size = TypedFrameConstants::kFixedFrameSizeFromFp;
        break;
      case OPTIMIZED:
      case INTERPRETED:
      case BUILTIN:
        // These frame types have a context, but they are actually stored
        // in the place on the stack that one finds the frame type.
        UNREACHABLE();
        break;
      case NONE:
      case NUMBER_OF_TYPES:
      case MANUAL:
        UNREACHABLE();
        break;
    }
  }
  slot_space -=
      (frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp);

  Object** frame_header_base = &Memory::Object_at(fp() - frame_header_size);
  Object** frame_header_limit =
      &Memory::Object_at(fp() - StandardFrameConstants::kCPSlotSize);
  Object** parameters_base = &Memory::Object_at(sp());
  Object** parameters_limit = frame_header_base - slot_space / kPointerSize;

  // Visit the parameters that may be on top of the saved registers.
  if (safepoint_entry.argument_count() > 0) {
    v->VisitRootPointers(Root::kTop, parameters_base,
                         parameters_base + safepoint_entry.argument_count());
    parameters_base += safepoint_entry.argument_count();
  }

  // Skip saved double registers.
  if (safepoint_entry.has_doubles()) {
    // Number of doubles not known at snapshot time.
    DCHECK(!isolate()->serializer_enabled());
    parameters_base +=
        RegisterConfiguration::Default()->num_allocatable_double_registers() *
        kDoubleSize / kPointerSize;
  }

  // Visit the registers that contain pointers if any.
  if (safepoint_entry.HasRegisters()) {
    for (int i = kNumSafepointRegisters - 1; i >=0; i--) {
      if (safepoint_entry.HasRegisterAt(i)) {
        int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i);
        v->VisitRootPointer(Root::kTop, parameters_base + reg_stack_index);
      }
    }
    // Skip the words containing the register values.
    parameters_base += kNumSafepointRegisters;
  }

  // We're done dealing with the register bits.
  uint8_t* safepoint_bits = safepoint_entry.bits();
  safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2;

  // Visit the rest of the parameters if they are tagged.
  if (code->has_tagged_params()) {
    v->VisitRootPointers(Root::kTop, parameters_base, parameters_limit);
  }

  // Visit pointer spill slots and locals.
  for (unsigned index = 0; index < stack_slots; index++) {
    int byte_index = index >> kBitsPerByteLog2;
    int bit_index = index & (kBitsPerByte - 1);
    if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) {
      v->VisitRootPointer(Root::kTop, parameters_limit + index);
    }
  }

  // Visit the return address in the callee and incoming arguments.
  IteratePc(v, pc_address(), constant_pool_address(), code);

  if (!is_wasm() && !is_wasm_to_js()) {
    // If this frame has JavaScript ABI, visit the context (in stub and JS
    // frames) and the function (in JS frames).
    v->VisitRootPointers(Root::kTop, frame_header_base, frame_header_limit);
  }
}

void StubFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); }

Code* StubFrame::unchecked_code() const {
  return isolate()->FindCodeObject(pc());
}


Address StubFrame::GetCallerStackPointer() const {
  return fp() + ExitFrameConstants::kCallerSPOffset;
}


int StubFrame::GetNumberOfIncomingArguments() const {
  return 0;
}

int StubFrame::LookupExceptionHandlerInTable(int* stack_slots) {
  Code* code = LookupCode();
  DCHECK(code->is_turbofanned());
  DCHECK_EQ(code->kind(), Code::BUILTIN);
  HandlerTable* table = HandlerTable::cast(code->handler_table());
  int pc_offset = static_cast<int>(pc() - code->entry());
  *stack_slots = code->stack_slots();
  return table->LookupReturn(pc_offset);
}

void OptimizedFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); }

void JavaScriptFrame::SetParameterValue(int index, Object* value) const {
  Memory::Object_at(GetParameterSlot(index)) = value;
}


bool JavaScriptFrame::IsConstructor() const {
  Address fp = caller_fp();
  if (has_adapted_arguments()) {
    // Skip the arguments adaptor frame and look at the real caller.
    fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
  }
  return IsConstructFrame(fp);
}


bool JavaScriptFrame::HasInlinedFrames() const {
  std::vector<SharedFunctionInfo*> functions;
  GetFunctions(&functions);
  return functions.size() > 1;
}


int JavaScriptFrame::GetArgumentsLength() const {
  // If there is an arguments adaptor frame get the arguments length from it.
  if (has_adapted_arguments()) {
    return ArgumentsAdaptorFrame::GetLength(caller_fp());
  } else {
    return GetNumberOfIncomingArguments();
  }
}


Code* JavaScriptFrame::unchecked_code() const {
  return function()->code();
}


int JavaScriptFrame::GetNumberOfIncomingArguments() const {
  DCHECK(can_access_heap_objects() &&
         isolate()->heap()->gc_state() == Heap::NOT_IN_GC);

  return function()->shared()->internal_formal_parameter_count();
}


Address JavaScriptFrame::GetCallerStackPointer() const {
  return fp() + StandardFrameConstants::kCallerSPOffset;
}

void JavaScriptFrame::GetFunctions(
    std::vector<SharedFunctionInfo*>* functions) const {
  DCHECK(functions->empty());
  functions->push_back(function()->shared());
}

void JavaScriptFrame::GetFunctions(
    std::vector<Handle<SharedFunctionInfo>>* functions) const {
  DCHECK(functions->empty());
  std::vector<SharedFunctionInfo*> raw_functions;
  GetFunctions(&raw_functions);
  for (const auto& raw_function : raw_functions) {
    functions->push_back(Handle<SharedFunctionInfo>(raw_function));
  }
}

void JavaScriptFrame::Summarize(std::vector<FrameSummary>* functions) const {
  DCHECK(functions->empty());
  Code* code = LookupCode();
  int offset = static_cast<int>(pc() - code->instruction_start());
  AbstractCode* abstract_code = AbstractCode::cast(code);
  FrameSummary::JavaScriptFrameSummary summary(isolate(), receiver(),
                                               function(), abstract_code,
                                               offset, IsConstructor());
  functions->push_back(summary);
}

JSFunction* JavaScriptFrame::function() const {
  return JSFunction::cast(function_slot_object());
}

Object* JavaScriptFrame::receiver() const { return GetParameter(-1); }

Object* JavaScriptFrame::context() const {
  const int offset = StandardFrameConstants::kContextOffset;
  Object* maybe_result = Memory::Object_at(fp() + offset);
  DCHECK(!maybe_result->IsSmi());
  return maybe_result;
}

Script* JavaScriptFrame::script() const {
  return Script::cast(function()->shared()->script());
}

int JavaScriptFrame::LookupExceptionHandlerInTable(
    int* stack_depth, HandlerTable::CatchPrediction* prediction) {
  DCHECK_EQ(0, LookupCode()->handler_table()->length());
  DCHECK(!LookupCode()->is_optimized_code());
  return -1;
}

void JavaScriptFrame::PrintFunctionAndOffset(JSFunction* function,
                                             AbstractCode* code,
                                             int code_offset, FILE* file,
                                             bool print_line_number) {
  PrintF(file, "%s", function->IsOptimized() ? "*" : "~");
  function->PrintName(file);
  PrintF(file, "+%d", code_offset);
  if (print_line_number) {
    SharedFunctionInfo* shared = function->shared();
    int source_pos = code->SourcePosition(code_offset);
    Object* maybe_script = shared->script();
    if (maybe_script->IsScript()) {
      Script* script = Script::cast(maybe_script);
      int line = script->GetLineNumber(source_pos) + 1;
      Object* script_name_raw = script->name();
      if (script_name_raw->IsString()) {
        String* script_name = String::cast(script->name());
        std::unique_ptr<char[]> c_script_name =
            script_name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
        PrintF(file, " at %s:%d", c_script_name.get(), line);
      } else {
        PrintF(file, " at <unknown>:%d", line);
      }
    } else {
      PrintF(file, " at <unknown>:<unknown>");
    }
  }
}

void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args,
                               bool print_line_number) {
  // constructor calls
  DisallowHeapAllocation no_allocation;
  JavaScriptFrameIterator it(isolate);
  while (!it.done()) {
    if (it.frame()->is_java_script()) {
      JavaScriptFrame* frame = it.frame();
      if (frame->IsConstructor()) PrintF(file, "new ");
      JSFunction* function = frame->function();
      int code_offset = 0;
      if (frame->is_interpreted()) {
        InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame);
        code_offset = iframe->GetBytecodeOffset();
      } else {
        Code* code = frame->unchecked_code();
        code_offset = static_cast<int>(frame->pc() - code->instruction_start());
      }
      PrintFunctionAndOffset(function, function->abstract_code(), code_offset,
                             file, print_line_number);
      if (print_args) {
        // function arguments
        // (we are intentionally only printing the actually
        // supplied parameters, not all parameters required)
        PrintF(file, "(this=");
        frame->receiver()->ShortPrint(file);
        const int length = frame->ComputeParametersCount();
        for (int i = 0; i < length; i++) {
          PrintF(file, ", ");
          frame->GetParameter(i)->ShortPrint(file);
        }
        PrintF(file, ")");
      }
      break;
    }
    it.Advance();
  }
}

void JavaScriptFrame::CollectFunctionAndOffsetForICStats(JSFunction* function,
                                                         AbstractCode* code,
                                                         int code_offset) {
  auto ic_stats = ICStats::instance();
  ICInfo& ic_info = ic_stats->Current();
  SharedFunctionInfo* shared = function->shared();

  ic_info.function_name = ic_stats->GetOrCacheFunctionName(function);
  ic_info.script_offset = code_offset;

  int source_pos = code->SourcePosition(code_offset);
  Object* maybe_script = shared->script();
  if (maybe_script->IsScript()) {
    Script* script = Script::cast(maybe_script);
    ic_info.line_num = script->GetLineNumber(source_pos) + 1;
    ic_info.script_name = ic_stats->GetOrCacheScriptName(script);
  }
}

void JavaScriptFrame::CollectTopFrameForICStats(Isolate* isolate) {
  // constructor calls
  DisallowHeapAllocation no_allocation;
  JavaScriptFrameIterator it(isolate);
  ICInfo& ic_info = ICStats::instance()->Current();
  while (!it.done()) {
    if (it.frame()->is_java_script()) {
      JavaScriptFrame* frame = it.frame();
      if (frame->IsConstructor()) ic_info.is_constructor = true;
      JSFunction* function = frame->function();
      int code_offset = 0;
      if (frame->is_interpreted()) {
        InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame);
        code_offset = iframe->GetBytecodeOffset();
      } else {
        Code* code = frame->unchecked_code();
        code_offset = static_cast<int>(frame->pc() - code->instruction_start());
      }
      CollectFunctionAndOffsetForICStats(function, function->abstract_code(),
                                         code_offset);
      return;
    }
    it.Advance();
  }
}

Object* JavaScriptFrame::GetParameter(int index) const {
  return Memory::Object_at(GetParameterSlot(index));
}

int JavaScriptFrame::ComputeParametersCount() const {
  return GetNumberOfIncomingArguments();
}

int JavaScriptBuiltinContinuationFrame::ComputeParametersCount() const {
  Object* argc_object =
      Memory::Object_at(fp() + BuiltinContinuationFrameConstants::kArgCOffset);
  return Smi::ToInt(argc_object);
}

namespace {

bool IsNonDeoptimizingAsmCode(Code* code, JSFunction* function) {
  return code->is_turbofanned() && !function->shared()->HasBytecodeArray();
}

}  // namespace

FrameSummary::JavaScriptFrameSummary::JavaScriptFrameSummary(
    Isolate* isolate, Object* receiver, JSFunction* function,
    AbstractCode* abstract_code, int code_offset, bool is_constructor)
    : FrameSummaryBase(isolate, FrameSummary::JAVA_SCRIPT),
      receiver_(receiver, isolate),
      function_(function, isolate),
      abstract_code_(abstract_code, isolate),
      code_offset_(code_offset),
      is_constructor_(is_constructor) {
  DCHECK(abstract_code->IsBytecodeArray() ||
         Code::cast(abstract_code)->kind() != Code::OPTIMIZED_FUNCTION ||
         IsNonDeoptimizingAsmCode(Code::cast(abstract_code), function));
}

bool FrameSummary::JavaScriptFrameSummary::is_subject_to_debugging() const {
  return function()->shared()->IsSubjectToDebugging();
}

int FrameSummary::JavaScriptFrameSummary::SourcePosition() const {
  return abstract_code()->SourcePosition(code_offset());
}

int FrameSummary::JavaScriptFrameSummary::SourceStatementPosition() const {
  return abstract_code()->SourceStatementPosition(code_offset());
}

Handle<Object> FrameSummary::JavaScriptFrameSummary::script() const {
  return handle(function_->shared()->script(), isolate());
}

Handle<String> FrameSummary::JavaScriptFrameSummary::FunctionName() const {
  return JSFunction::GetDebugName(function_);
}

Handle<Context> FrameSummary::JavaScriptFrameSummary::native_context() const {
  return handle(function_->context()->native_context(), isolate());
}

FrameSummary::WasmFrameSummary::WasmFrameSummary(
    Isolate* isolate, FrameSummary::Kind kind,
    Handle<WasmInstanceObject> instance, bool at_to_number_conversion)
    : FrameSummaryBase(isolate, kind),
      wasm_instance_(instance),
      at_to_number_conversion_(at_to_number_conversion) {}

Handle<Object> FrameSummary::WasmFrameSummary::receiver() const {
  return wasm_instance_->GetIsolate()->global_proxy();
}

#define WASM_SUMMARY_DISPATCH(type, name)                                      \
  type FrameSummary::WasmFrameSummary::name() const {                          \
    DCHECK(kind() == Kind::WASM_COMPILED || kind() == Kind::WASM_INTERPRETED); \
    return kind() == Kind::WASM_COMPILED                                       \
               ? static_cast<const WasmCompiledFrameSummary*>(this)->name()    \
               : static_cast<const WasmInterpretedFrameSummary*>(this)         \
                     ->name();                                                 \
  }

WASM_SUMMARY_DISPATCH(uint32_t, function_index)
WASM_SUMMARY_DISPATCH(int, byte_offset)

#undef WASM_SUMMARY_DISPATCH

int FrameSummary::WasmFrameSummary::SourcePosition() const {
  Handle<WasmCompiledModule> compiled_module(wasm_instance()->compiled_module(),
                                             isolate());
  return WasmCompiledModule::GetSourcePosition(compiled_module,
                                               function_index(), byte_offset(),
                                               at_to_number_conversion());
}

Handle<Script> FrameSummary::WasmFrameSummary::script() const {
  return handle(wasm_instance()->compiled_module()->script());
}

Handle<String> FrameSummary::WasmFrameSummary::FunctionName() const {
  Handle<WasmCompiledModule> compiled_module(
      wasm_instance()->compiled_module());
  return WasmCompiledModule::GetFunctionName(compiled_module->GetIsolate(),
                                             compiled_module, function_index());
}

Handle<Context> FrameSummary::WasmFrameSummary::native_context() const {
  return wasm_instance()->compiled_module()->native_context();
}

FrameSummary::WasmCompiledFrameSummary::WasmCompiledFrameSummary(
    Isolate* isolate, Handle<WasmInstanceObject> instance, Handle<Code> code,
    int code_offset, bool at_to_number_conversion)
    : WasmFrameSummary(isolate, WASM_COMPILED, instance,
                       at_to_number_conversion),
      code_(code),
      code_offset_(code_offset) {}

uint32_t FrameSummary::WasmCompiledFrameSummary::function_index() const {
  FixedArray* deopt_data = code()->deoptimization_data();
  DCHECK_EQ(2, deopt_data->length());
  DCHECK(deopt_data->get(1)->IsSmi());
  int val = Smi::ToInt(deopt_data->get(1));
  DCHECK_LE(0, val);
  return static_cast<uint32_t>(val);
}

int FrameSummary::WasmCompiledFrameSummary::byte_offset() const {
  return AbstractCode::cast(*code())->SourcePosition(code_offset());
}

FrameSummary::WasmInterpretedFrameSummary::WasmInterpretedFrameSummary(
    Isolate* isolate, Handle<WasmInstanceObject> instance,
    uint32_t function_index, int byte_offset)
    : WasmFrameSummary(isolate, WASM_INTERPRETED, instance, false),
      function_index_(function_index),
      byte_offset_(byte_offset) {}

FrameSummary::~FrameSummary() {
#define FRAME_SUMMARY_DESTR(kind, type, field, desc) \
  case kind:                                         \
    field.~type();                                   \
    break;
  switch (base_.kind()) {
    FRAME_SUMMARY_VARIANTS(FRAME_SUMMARY_DESTR)
    default:
      UNREACHABLE();
  }
#undef FRAME_SUMMARY_DESTR
}

FrameSummary FrameSummary::GetTop(const StandardFrame* frame) {
  std::vector<FrameSummary> frames;
  frames.reserve(FLAG_max_inlining_levels + 1);
  frame->Summarize(&frames);
  DCHECK_LT(0, frames.size());
  return frames.back();
}

FrameSummary FrameSummary::GetBottom(const StandardFrame* frame) {
  return Get(frame, 0);
}

FrameSummary FrameSummary::GetSingle(const StandardFrame* frame) {
  std::vector<FrameSummary> frames;
  frame->Summarize(&frames);
  DCHECK_EQ(1, frames.size());
  return frames.front();
}

FrameSummary FrameSummary::Get(const StandardFrame* frame, int index) {
  DCHECK_LE(0, index);
  std::vector<FrameSummary> frames;
  frames.reserve(FLAG_max_inlining_levels + 1);
  frame->Summarize(&frames);
  DCHECK_GT(frames.size(), index);
  return frames[index];
}

#define FRAME_SUMMARY_DISPATCH(ret, name)        \
  ret FrameSummary::name() const {               \
    switch (base_.kind()) {                      \
      case JAVA_SCRIPT:                          \
        return java_script_summary_.name();      \
      case WASM_COMPILED:                        \
        return wasm_compiled_summary_.name();    \
      case WASM_INTERPRETED:                     \
        return wasm_interpreted_summary_.name(); \
      default:                                   \
        UNREACHABLE();                           \
        return ret{};                            \
    }                                            \
  }

FRAME_SUMMARY_DISPATCH(Handle<Object>, receiver)
FRAME_SUMMARY_DISPATCH(int, code_offset)
FRAME_SUMMARY_DISPATCH(bool, is_constructor)
FRAME_SUMMARY_DISPATCH(bool, is_subject_to_debugging)
FRAME_SUMMARY_DISPATCH(Handle<Object>, script)
FRAME_SUMMARY_DISPATCH(int, SourcePosition)
FRAME_SUMMARY_DISPATCH(int, SourceStatementPosition)
FRAME_SUMMARY_DISPATCH(Handle<String>, FunctionName)
FRAME_SUMMARY_DISPATCH(Handle<Context>, native_context)

#undef FRAME_SUMMARY_DISPATCH

void OptimizedFrame::Summarize(std::vector<FrameSummary>* frames) const {
  DCHECK(frames->empty());
  DCHECK(is_optimized());

  // Delegate to JS frame in absence of turbofan deoptimization.
  // TODO(turbofan): Revisit once we support deoptimization across the board.
  Code* code = LookupCode();
  if (code->kind() == Code::BUILTIN ||
      IsNonDeoptimizingAsmCode(code, function())) {
    return JavaScriptFrame::Summarize(frames);
  }

  int deopt_index = Safepoint::kNoDeoptimizationIndex;
  DeoptimizationInputData* const data = GetDeoptimizationData(&deopt_index);
  if (deopt_index == Safepoint::kNoDeoptimizationIndex) {
    CHECK_NULL(data);
    FATAL("Missing deoptimization information for OptimizedFrame::Summarize.");
  }

  // Prepare iteration over translation. Note that the below iteration might
  // materialize objects without storing them back to the Isolate, this will
  // lead to objects being re-materialized again for each summary.
  TranslatedState translated(this);
  translated.Prepare(fp());

  // We create the summary in reverse order because the frames
  // in the deoptimization translation are ordered bottom-to-top.
  bool is_constructor = IsConstructor();
  for (auto it = translated.begin(); it != translated.end(); it++) {
    if (it->kind() == TranslatedFrame::kInterpretedFunction ||
        it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation) {
      Handle<SharedFunctionInfo> shared_info = it->shared_info();

      // The translation commands are ordered and the function is always
      // at the first position, and the receiver is next.
      TranslatedFrame::iterator translated_values = it->begin();

      // Get or materialize the correct function in the optimized frame.
      Handle<JSFunction> function =
          Handle<JSFunction>::cast(translated_values->GetValue());
      translated_values++;

      // Get or materialize the correct receiver in the optimized frame.
      Handle<Object> receiver = translated_values->GetValue();
      translated_values++;

      // Determine the underlying code object and the position within it from
      // the translation corresponding to the frame type in question.
      Handle<AbstractCode> abstract_code;
      unsigned code_offset;
      if (it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation) {
        code_offset = 0;
        abstract_code =
            handle(AbstractCode::cast(isolate()->builtins()->builtin(
                       Builtins::GetBuiltinFromBailoutId(it->node_id()))),
                   isolate());
      } else {
        DCHECK_EQ(it->kind(), TranslatedFrame::kInterpretedFunction);
        code_offset = it->node_id().ToInt();  // Points to current bytecode.
        abstract_code = handle(shared_info->abstract_code(), isolate());
      }

      // Append full summary of the encountered JS frame.
      FrameSummary::JavaScriptFrameSummary summary(isolate(), *receiver,
                                                   *function, *abstract_code,
                                                   code_offset, is_constructor);
      frames->push_back(summary);
      is_constructor = false;
    } else if (it->kind() == TranslatedFrame::kConstructStub) {
      // The next encountered JS frame will be marked as a constructor call.
      DCHECK(!is_constructor);
      is_constructor = true;
    }
  }
}


int OptimizedFrame::LookupExceptionHandlerInTable(
    int* stack_slots, HandlerTable::CatchPrediction* prediction) {
  // We cannot perform exception prediction on optimized code. Instead, we need
  // to use FrameSummary to find the corresponding code offset in unoptimized
  // code to perform prediction there.
  DCHECK_NULL(prediction);
  Code* code = LookupCode();
  HandlerTable* table = HandlerTable::cast(code->handler_table());
  int pc_offset = static_cast<int>(pc() - code->entry());
  if (stack_slots) *stack_slots = code->stack_slots();

  // When the return pc has been replaced by a trampoline there won't be
  // a handler for this trampoline. Thus we need to use the return pc that
  // _used to be_ on the stack to get the right ExceptionHandler.
  if (code->kind() == Code::OPTIMIZED_FUNCTION &&
      code->marked_for_deoptimization()) {
    SafepointTable safepoints(code);
    pc_offset = safepoints.find_return_pc(pc_offset);
  }
  return table->LookupReturn(pc_offset);
}


DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData(
    int* deopt_index) const {
  DCHECK(is_optimized());

  JSFunction* opt_function = function();
  Code* code = opt_function->code();

  // The code object may have been replaced by lazy deoptimization. Fall
  // back to a slow search in this case to find the original optimized
  // code object.
  if (!code->contains(pc())) {
    code = isolate()->inner_pointer_to_code_cache()->
        GcSafeFindCodeForInnerPointer(pc());
  }
  DCHECK(code != NULL);
  DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);

  SafepointEntry safepoint_entry = code->GetSafepointEntry(pc());
  *deopt_index = safepoint_entry.deoptimization_index();
  if (*deopt_index != Safepoint::kNoDeoptimizationIndex) {
    return DeoptimizationInputData::cast(code->deoptimization_data());
  }
  return nullptr;
}

Object* OptimizedFrame::receiver() const {
  Code* code = LookupCode();
  if (code->kind() == Code::BUILTIN) {
    Address argc_ptr = fp() + OptimizedBuiltinFrameConstants::kArgCOffset;
    intptr_t argc = *reinterpret_cast<intptr_t*>(argc_ptr);
    intptr_t args_size =
        (StandardFrameConstants::kFixedSlotCountAboveFp + argc) * kPointerSize;
    Address receiver_ptr = fp() + args_size;
    return *reinterpret_cast<Object**>(receiver_ptr);
  } else {
    return JavaScriptFrame::receiver();
  }
}

void OptimizedFrame::GetFunctions(
    std::vector<SharedFunctionInfo*>* functions) const {
  DCHECK(functions->empty());
  DCHECK(is_optimized());

  // Delegate to JS frame in absence of turbofan deoptimization.
  // TODO(turbofan): Revisit once we support deoptimization across the board.
  Code* code = LookupCode();
  if (code->kind() == Code::BUILTIN ||
      IsNonDeoptimizingAsmCode(code, function())) {
    return JavaScriptFrame::GetFunctions(functions);
  }

  DisallowHeapAllocation no_gc;
  int deopt_index = Safepoint::kNoDeoptimizationIndex;
  DeoptimizationInputData* const data = GetDeoptimizationData(&deopt_index);
  DCHECK_NOT_NULL(data);
  DCHECK_NE(Safepoint::kNoDeoptimizationIndex, deopt_index);
  FixedArray* const literal_array = data->LiteralArray();

  TranslationIterator it(data->TranslationByteArray(),
                         data->TranslationIndex(deopt_index)->value());
  Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
  DCHECK_EQ(Translation::BEGIN, opcode);
  it.Next();  // Skip frame count.
  int jsframe_count = it.Next();

  // We insert the frames in reverse order because the frames
  // in the deoptimization translation are ordered bottom-to-top.
  while (jsframe_count != 0) {
    opcode = static_cast<Translation::Opcode>(it.Next());
    if (opcode == Translation::INTERPRETED_FRAME ||
        opcode == Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME) {
      it.Next();  // Skip bailout id.
      jsframe_count--;

      // The second operand of the frame points to the function.
      Object* shared = literal_array->get(it.Next());
      functions->push_back(SharedFunctionInfo::cast(shared));

      // Skip over remaining operands to advance to the next opcode.
      it.Skip(Translation::NumberOfOperandsFor(opcode) - 2);
    } else {
      // Skip over operands to advance to the next opcode.
      it.Skip(Translation::NumberOfOperandsFor(opcode));
    }
  }
}


int OptimizedFrame::StackSlotOffsetRelativeToFp(int slot_index) {
  return StandardFrameConstants::kCallerSPOffset -
         ((slot_index + 1) * kPointerSize);
}


Object* OptimizedFrame::StackSlotAt(int index) const {
  return Memory::Object_at(fp() + StackSlotOffsetRelativeToFp(index));
}

int InterpretedFrame::position() const {
  AbstractCode* code = AbstractCode::cast(GetBytecodeArray());
  int code_offset = GetBytecodeOffset();
  return code->SourcePosition(code_offset);
}

int InterpretedFrame::LookupExceptionHandlerInTable(
    int* context_register, HandlerTable::CatchPrediction* prediction) {
  BytecodeArray* bytecode = function()->shared()->bytecode_array();
  HandlerTable* table = HandlerTable::cast(bytecode->handler_table());
  return table->LookupRange(GetBytecodeOffset(), context_register, prediction);
}

int InterpretedFrame::GetBytecodeOffset() const {
  const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
  DCHECK_EQ(
      InterpreterFrameConstants::kBytecodeOffsetFromFp,
      InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
  int raw_offset = Smi::ToInt(GetExpression(index));
  return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
}

int InterpretedFrame::GetBytecodeOffset(Address fp) {
  const int offset = InterpreterFrameConstants::kExpressionsOffset;
  const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
  DCHECK_EQ(
      InterpreterFrameConstants::kBytecodeOffsetFromFp,
      InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
  Address expression_offset = fp + offset - index * kPointerSize;
  int raw_offset = Smi::ToInt(Memory::Object_at(expression_offset));
  return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
}

void InterpretedFrame::PatchBytecodeOffset(int new_offset) {
  const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
  DCHECK_EQ(
      InterpreterFrameConstants::kBytecodeOffsetFromFp,
      InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
  int raw_offset = new_offset + BytecodeArray::kHeaderSize - kHeapObjectTag;
  SetExpression(index, Smi::FromInt(raw_offset));
}

BytecodeArray* InterpretedFrame::GetBytecodeArray() const {
  const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex;
  DCHECK_EQ(
      InterpreterFrameConstants::kBytecodeArrayFromFp,
      InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
  return BytecodeArray::cast(GetExpression(index));
}

void InterpretedFrame::PatchBytecodeArray(BytecodeArray* bytecode_array) {
  const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex;
  DCHECK_EQ(
      InterpreterFrameConstants::kBytecodeArrayFromFp,
      InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
  SetExpression(index, bytecode_array);
}

Object* InterpretedFrame::ReadInterpreterRegister(int register_index) const {
  const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex;
  DCHECK_EQ(
      InterpreterFrameConstants::kRegisterFileFromFp,
      InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
  return GetExpression(index + register_index);
}

void InterpretedFrame::WriteInterpreterRegister(int register_index,
                                                Object* value) {
  const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex;
  DCHECK_EQ(
      InterpreterFrameConstants::kRegisterFileFromFp,
      InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
  return SetExpression(index + register_index, value);
}

void InterpretedFrame::Summarize(std::vector<FrameSummary>* functions) const {
  DCHECK(functions->empty());
  AbstractCode* abstract_code =
      AbstractCode::cast(function()->shared()->bytecode_array());
  FrameSummary::JavaScriptFrameSummary summary(
      isolate(), receiver(), function(), abstract_code, GetBytecodeOffset(),
      IsConstructor());
  functions->push_back(summary);
}

int ArgumentsAdaptorFrame::GetNumberOfIncomingArguments() const {
  return Smi::ToInt(GetExpression(0));
}

int ArgumentsAdaptorFrame::GetLength(Address fp) {
  const int offset = ArgumentsAdaptorFrameConstants::kLengthOffset;
  return Smi::ToInt(Memory::Object_at(fp + offset));
}

Code* ArgumentsAdaptorFrame::unchecked_code() const {
  return isolate()->builtins()->builtin(
      Builtins::kArgumentsAdaptorTrampoline);
}

int BuiltinFrame::GetNumberOfIncomingArguments() const {
  return Smi::ToInt(GetExpression(0));
}

void BuiltinFrame::PrintFrameKind(StringStream* accumulator) const {
  accumulator->Add("builtin frame: ");
}

Address InternalFrame::GetCallerStackPointer() const {
  // Internal frames have no arguments. The stack pointer of the
  // caller is at a fixed offset from the frame pointer.
  return fp() + StandardFrameConstants::kCallerSPOffset;
}

Code* InternalFrame::unchecked_code() const {
  const int offset = InternalFrameConstants::kCodeOffset;
  Object* code = Memory::Object_at(fp() + offset);
  DCHECK(code != NULL);
  return reinterpret_cast<Code*>(code);
}


void WasmCompiledFrame::Print(StringStream* accumulator, PrintMode mode,
                              int index) const {
  PrintIndex(accumulator, mode, index);
  accumulator->Add("WASM [");
  Script* script = this->script();
  accumulator->PrintName(script->name());
  int pc = static_cast<int>(this->pc() - LookupCode()->instruction_start());
  Object* instance = this->wasm_instance();
  Vector<const uint8_t> raw_func_name =
      WasmInstanceObject::cast(instance)->compiled_module()->GetRawFunctionName(
          this->function_index());
  const int kMaxPrintedFunctionName = 64;
  char func_name[kMaxPrintedFunctionName + 1];
  int func_name_len = std::min(kMaxPrintedFunctionName, raw_func_name.length());
  memcpy(func_name, raw_func_name.start(), func_name_len);
  func_name[func_name_len] = '\0';
  accumulator->Add("], function #%u ('%s'), pc=%p, pos=%d\n",
                   this->function_index(), func_name, pc, this->position());
  if (mode != OVERVIEW) accumulator->Add("\n");
}

Code* WasmCompiledFrame::unchecked_code() const {
  return isolate()->FindCodeObject(pc());
}

void WasmCompiledFrame::Iterate(RootVisitor* v) const {
  IterateCompiledFrame(v);
}

Address WasmCompiledFrame::GetCallerStackPointer() const {
  return fp() + ExitFrameConstants::kCallerSPOffset;
}

WasmInstanceObject* WasmCompiledFrame::wasm_instance() const {
  WasmInstanceObject* obj = WasmInstanceObject::GetOwningInstance(LookupCode());
  // This is a live stack frame; it must have a live instance.
  DCHECK_NOT_NULL(obj);
  return obj;
}

uint32_t WasmCompiledFrame::function_index() const {
  return FrameSummary::GetSingle(this).AsWasmCompiled().function_index();
}

Script* WasmCompiledFrame::script() const {
  return wasm_instance()->compiled_module()->script();
}

int WasmCompiledFrame::position() const {
  return FrameSummary::GetSingle(this).SourcePosition();
}

void WasmCompiledFrame::Summarize(std::vector<FrameSummary>* functions) const {
  DCHECK(functions->empty());
  Handle<Code> code(LookupCode(), isolate());
  int offset = static_cast<int>(pc() - code->instruction_start());
  Handle<WasmInstanceObject> instance(wasm_instance(), isolate());
  FrameSummary::WasmCompiledFrameSummary summary(
      isolate(), instance, code, offset, at_to_number_conversion());
  functions->push_back(summary);
}

bool WasmCompiledFrame::at_to_number_conversion() const {
  // Check whether our callee is a WASM_TO_JS frame, and this frame is at the
  // ToNumber conversion call.
  Address callee_pc = reinterpret_cast<Address>(this->callee_pc());
  Code* code = callee_pc ? isolate()->FindCodeObject(callee_pc) : nullptr;
  if (!code || code->kind() != Code::WASM_TO_JS_FUNCTION) return false;
  int offset = static_cast<int>(callee_pc - code->instruction_start());
  int pos = AbstractCode::cast(code)->SourcePosition(offset);
  DCHECK(pos == 0 || pos == 1);
  // The imported call has position 0, ToNumber has position 1.
  return !!pos;
}

int WasmCompiledFrame::LookupExceptionHandlerInTable(int* stack_slots) {
  DCHECK_NOT_NULL(stack_slots);
  Code* code = LookupCode();
  HandlerTable* table = HandlerTable::cast(code->handler_table());
  int pc_offset = static_cast<int>(pc() - code->entry());
  *stack_slots = code->stack_slots();
  return table->LookupReturn(pc_offset);
}

void WasmInterpreterEntryFrame::Iterate(RootVisitor* v) const {
  IterateCompiledFrame(v);
}

void WasmInterpreterEntryFrame::Print(StringStream* accumulator, PrintMode mode,
                                      int index) const {
  PrintIndex(accumulator, mode, index);
  accumulator->Add("WASM INTERPRETER ENTRY [");
  Script* script = this->script();
  accumulator->PrintName(script->name());
  accumulator->Add("]");
  if (mode != OVERVIEW) accumulator->Add("\n");
}

void WasmInterpreterEntryFrame::Summarize(
    std::vector<FrameSummary>* functions) const {
  Handle<WasmInstanceObject> instance(wasm_instance(), isolate());
  std::vector<std::pair<uint32_t, int>> interpreted_stack =
      instance->debug_info()->GetInterpretedStack(fp());

  for (auto& e : interpreted_stack) {
    FrameSummary::WasmInterpretedFrameSummary summary(isolate(), instance,
                                                      e.first, e.second);
    functions->push_back(summary);
  }
}

Code* WasmInterpreterEntryFrame::unchecked_code() const {
  return isolate()->FindCodeObject(pc());
}

WasmInstanceObject* WasmInterpreterEntryFrame::wasm_instance() const {
  WasmInstanceObject* ret = WasmInstanceObject::GetOwningInstance(LookupCode());
  // This is a live stack frame, there must be a live wasm instance available.
  DCHECK_NOT_NULL(ret);
  return ret;
}

Script* WasmInterpreterEntryFrame::script() const {
  return wasm_instance()->compiled_module()->script();
}

int WasmInterpreterEntryFrame::position() const {
  return FrameSummary::GetBottom(this).AsWasmInterpreted().SourcePosition();
}

Object* WasmInterpreterEntryFrame::context() const {
  return wasm_instance()->compiled_module()->ptr_to_native_context();
}

Address WasmInterpreterEntryFrame::GetCallerStackPointer() const {
  return fp() + ExitFrameConstants::kCallerSPOffset;
}

namespace {


void PrintFunctionSource(StringStream* accumulator, SharedFunctionInfo* shared,
                         Code* code) {
  if (FLAG_max_stack_trace_source_length != 0 && code != NULL) {
    std::ostringstream os;
    os << "--------- s o u r c e   c o d e ---------\n"
       << SourceCodeOf(shared, FLAG_max_stack_trace_source_length)
       << "\n-----------------------------------------\n";
    accumulator->Add(os.str().c_str());
  }
}


}  // namespace


void JavaScriptFrame::Print(StringStream* accumulator,
                            PrintMode mode,
                            int index) const {
  DisallowHeapAllocation no_gc;
  Object* receiver = this->receiver();
  JSFunction* function = this->function();

  accumulator->PrintSecurityTokenIfChanged(function);
  PrintIndex(accumulator, mode, index);
  PrintFrameKind(accumulator);
  Code* code = NULL;
  if (IsConstructor()) accumulator->Add("new ");
  accumulator->PrintFunction(function, receiver, &code);

  // Get scope information for nicer output, if possible. If code is NULL, or
  // doesn't contain scope info, scope_info will return 0 for the number of
  // parameters, stack local variables, context local variables, stack slots,
  // or context slots.
  SharedFunctionInfo* shared = function->shared();
  ScopeInfo* scope_info = shared->scope_info();
  Object* script_obj = shared->script();
  if (script_obj->IsScript()) {
    Script* script = Script::cast(script_obj);
    accumulator->Add(" [");
    accumulator->PrintName(script->name());

    Address pc = this->pc();
    if (is_interpreted()) {
      const InterpretedFrame* iframe =
          reinterpret_cast<const InterpretedFrame*>(this);
      BytecodeArray* bytecodes = iframe->GetBytecodeArray();
      int offset = iframe->GetBytecodeOffset();
      int source_pos = AbstractCode::cast(bytecodes)->SourcePosition(offset);
      int line = script->GetLineNumber(source_pos) + 1;
      accumulator->Add(":%d] [bytecode=%p offset=%d]", line, bytecodes, offset);
    } else {
      int function_start_pos = shared->start_position();
      int line = script->GetLineNumber(function_start_pos) + 1;
      accumulator->Add(":~%d] [pc=%p]", line, pc);
    }
  }

  accumulator->Add("(this=%o", receiver);

  // Print the parameters.
  int parameters_count = ComputeParametersCount();
  for (int i = 0; i < parameters_count; i++) {
    accumulator->Add(",");
    // If we have a name for the parameter we print it. Nameless
    // parameters are either because we have more actual parameters
    // than formal parameters or because we have no scope information.
    if (i < scope_info->ParameterCount()) {
      accumulator->PrintName(scope_info->ParameterName(i));
      accumulator->Add("=");
    }
    accumulator->Add("%o", GetParameter(i));
  }

  accumulator->Add(")");
  if (mode == OVERVIEW) {
    accumulator->Add("\n");
    return;
  }
  if (is_optimized()) {
    accumulator->Add(" {\n// optimized frame\n");
    PrintFunctionSource(accumulator, shared, code);
    accumulator->Add("}\n");
    return;
  }
  accumulator->Add(" {\n");

  // Compute the number of locals and expression stack elements.
  int stack_locals_count = scope_info->StackLocalCount();
  int heap_locals_count = scope_info->ContextLocalCount();
  int expressions_count = ComputeExpressionsCount();

  // Print stack-allocated local variables.
  if (stack_locals_count > 0) {
    accumulator->Add("  // stack-allocated locals\n");
  }
  for (int i = 0; i < stack_locals_count; i++) {
    accumulator->Add("  var ");
    accumulator->PrintName(scope_info->StackLocalName(i));
    accumulator->Add(" = ");
    if (i < expressions_count) {
      accumulator->Add("%o", GetExpression(i));
    } else {
      accumulator->Add("// no expression found - inconsistent frame?");
    }
    accumulator->Add("\n");
  }

  // Try to get hold of the context of this frame.
  Context* context = NULL;
  if (this->context() != NULL && this->context()->IsContext()) {
    context = Context::cast(this->context());
  }
  while (context->IsWithContext()) {
    context = context->previous();
    DCHECK(context != NULL);
  }

  // Print heap-allocated local variables.
  if (heap_locals_count > 0) {
    accumulator->Add("  // heap-allocated locals\n");
  }
  for (int i = 0; i < heap_locals_count; i++) {
    accumulator->Add("  var ");
    accumulator->PrintName(scope_info->ContextLocalName(i));
    accumulator->Add(" = ");
    if (context != NULL) {
      int index = Context::MIN_CONTEXT_SLOTS + i;
      if (index < context->length()) {
        accumulator->Add("%o", context->get(index));
      } else {
        accumulator->Add(
            "// warning: missing context slot - inconsistent frame?");
      }
    } else {
      accumulator->Add("// warning: no context found - inconsistent frame?");
    }
    accumulator->Add("\n");
  }

  // Print the expression stack.
  int expressions_start = stack_locals_count;
  if (expressions_start < expressions_count) {
    accumulator->Add("  // expression stack (top to bottom)\n");
  }
  for (int i = expressions_count - 1; i >= expressions_start; i--) {
    accumulator->Add("  [%02d] : %o\n", i, GetExpression(i));
  }

  PrintFunctionSource(accumulator, shared, code);

  accumulator->Add("}\n\n");
}


void ArgumentsAdaptorFrame::Print(StringStream* accumulator,
                                  PrintMode mode,
                                  int index) const {
  int actual = ComputeParametersCount();
  int expected = -1;
  JSFunction* function = this->function();
  expected = function->shared()->internal_formal_parameter_count();

  PrintIndex(accumulator, mode, index);
  accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
  if (mode == OVERVIEW) {
    accumulator->Add("\n");
    return;
  }
  accumulator->Add(" {\n");

  // Print actual arguments.
  if (actual > 0) accumulator->Add("  // actual arguments\n");
  for (int i = 0; i < actual; i++) {
    accumulator->Add("  [%02d] : %o", i, GetParameter(i));
    if (expected != -1 && i >= expected) {
      accumulator->Add("  // not passed to callee");
    }
    accumulator->Add("\n");
  }

  accumulator->Add("}\n\n");
}

void EntryFrame::Iterate(RootVisitor* v) const {
  IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
}

void StandardFrame::IterateExpressions(RootVisitor* v) const {
  const int offset = StandardFrameConstants::kLastObjectOffset;
  Object** base = &Memory::Object_at(sp());
  Object** limit = &Memory::Object_at(fp() + offset) + 1;
  v->VisitRootPointers(Root::kTop, base, limit);
}

void JavaScriptFrame::Iterate(RootVisitor* v) const {
  IterateExpressions(v);
  IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
}

void InternalFrame::Iterate(RootVisitor* v) const {
  Code* code = LookupCode();
  IteratePc(v, pc_address(), constant_pool_address(), code);
  // Internal frames typically do not receive any arguments, hence their stack
  // only contains tagged pointers.
  // We are misusing the has_tagged_params flag here to tell us whether
  // the full stack frame contains only tagged pointers or only raw values.
  // This is used for the WasmCompileLazy builtin, where we actually pass
  // untagged arguments and also store untagged values on the stack.
  if (code->has_tagged_params()) IterateExpressions(v);
}

// -------------------------------------------------------------------------

static Map* GcSafeMapOfCodeSpaceObject(HeapObject* object) {
  MapWord map_word = object->map_word();
  return map_word.IsForwardingAddress() ?
      map_word.ToForwardingAddress()->map() : map_word.ToMap();
}


static int GcSafeSizeOfCodeSpaceObject(HeapObject* object) {
  return object->SizeFromMap(GcSafeMapOfCodeSpaceObject(object));
}


#ifdef DEBUG
static bool GcSafeCodeContains(HeapObject* code, Address addr) {
  Map* map = GcSafeMapOfCodeSpaceObject(code);
  DCHECK(map == code->GetHeap()->code_map());
  Address start = code->address();
  Address end = code->address() + code->SizeFromMap(map);
  return start <= addr && addr < end;
}
#endif


Code* InnerPointerToCodeCache::GcSafeCastToCode(HeapObject* object,
                                                Address inner_pointer) {
  Code* code = reinterpret_cast<Code*>(object);
  DCHECK(code != NULL && GcSafeCodeContains(code, inner_pointer));
  return code;
}


Code* InnerPointerToCodeCache::GcSafeFindCodeForInnerPointer(
    Address inner_pointer) {
  Heap* heap = isolate_->heap();

  // Check if the inner pointer points into a large object chunk.
  LargePage* large_page = heap->lo_space()->FindPage(inner_pointer);
  if (large_page != NULL) {
    return GcSafeCastToCode(large_page->GetObject(), inner_pointer);
  }

  if (!heap->code_space()->Contains(inner_pointer)) {
    return nullptr;
  }

  // Iterate through the page until we reach the end or find an object starting
  // after the inner pointer.
  Page* page = Page::FromAddress(inner_pointer);

  DCHECK_EQ(page->owner(), heap->code_space());
  heap->mark_compact_collector()->sweeper().SweepOrWaitUntilSweepingCompleted(
      page);

  Address addr = page->skip_list()->StartFor(inner_pointer);

  Address top = heap->code_space()->top();
  Address limit = heap->code_space()->limit();

  while (true) {
    if (addr == top && addr != limit) {
      addr = limit;
      continue;
    }

    HeapObject* obj = HeapObject::FromAddress(addr);
    int obj_size = GcSafeSizeOfCodeSpaceObject(obj);
    Address next_addr = addr + obj_size;
    if (next_addr > inner_pointer) return GcSafeCastToCode(obj, inner_pointer);
    addr = next_addr;
  }
}


InnerPointerToCodeCache::InnerPointerToCodeCacheEntry*
    InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) {
  isolate_->counters()->pc_to_code()->Increment();
  DCHECK(base::bits::IsPowerOfTwo(kInnerPointerToCodeCacheSize));
  uint32_t hash = ComputeIntegerHash(ObjectAddressForHashing(inner_pointer));
  uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1);
  InnerPointerToCodeCacheEntry* entry = cache(index);
  if (entry->inner_pointer == inner_pointer) {
    isolate_->counters()->pc_to_code_cached()->Increment();
    DCHECK(entry->code == GcSafeFindCodeForInnerPointer(inner_pointer));
  } else {
    // Because this code may be interrupted by a profiling signal that
    // also queries the cache, we cannot update inner_pointer before the code
    // has been set. Otherwise, we risk trying to use a cache entry before
    // the code has been computed.
    entry->code = GcSafeFindCodeForInnerPointer(inner_pointer);
    entry->safepoint_entry.Reset();
    entry->inner_pointer = inner_pointer;
  }
  return entry;
}


// -------------------------------------------------------------------------


#define DEFINE_WRAPPER(type, field)                              \
class field##_Wrapper : public ZoneObject {                      \
 public:  /* NOLINT */                                           \
  field##_Wrapper(const field& original) : frame_(original) {    \
  }                                                              \
  field frame_;                                                  \
};
STACK_FRAME_TYPE_LIST(DEFINE_WRAPPER)
#undef DEFINE_WRAPPER

static StackFrame* AllocateFrameCopy(StackFrame* frame, Zone* zone) {
#define FRAME_TYPE_CASE(type, field) \
  case StackFrame::type: { \
    field##_Wrapper* wrapper = \
        new(zone) field##_Wrapper(*(reinterpret_cast<field*>(frame))); \
    return &wrapper->frame_; \
  }

  switch (frame->type()) {
    STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
    default: UNREACHABLE();
  }
#undef FRAME_TYPE_CASE
  return NULL;
}


Vector<StackFrame*> CreateStackMap(Isolate* isolate, Zone* zone) {
  ZoneList<StackFrame*> list(10, zone);
  for (StackFrameIterator it(isolate); !it.done(); it.Advance()) {
    StackFrame* frame = AllocateFrameCopy(it.frame(), zone);
    list.Add(frame, zone);
  }
  return list.ToVector();
}


}  // namespace internal
}  // namespace v8