summaryrefslogtreecommitdiff
path: root/chromium/v8/src/codegen/s390/macro-assembler-s390.h
blob: 13d7ac696b07cf0f9196b4b97a1260f473d51628 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif

#ifndef V8_CODEGEN_S390_MACRO_ASSEMBLER_S390_H_
#define V8_CODEGEN_S390_MACRO_ASSEMBLER_S390_H_

#include "src/codegen/bailout-reason.h"
#include "src/codegen/s390/assembler-s390.h"
#include "src/common/globals.h"
#include "src/objects/contexts.h"

namespace v8 {
namespace internal {

enum class StackLimitKind { kInterruptStackLimit, kRealStackLimit };

// ----------------------------------------------------------------------------
// Static helper functions

// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
  return MemOperand(object, offset - kHeapObjectTag);
}

// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
  return MemOperand(object, index, offset - kHeapObjectTag);
}

enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };

Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
                                   Register reg3 = no_reg,
                                   Register reg4 = no_reg,
                                   Register reg5 = no_reg,
                                   Register reg6 = no_reg);

class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
 public:
  using TurboAssemblerBase::TurboAssemblerBase;

  void AtomicCmpExchangeHelper(Register addr, Register output,
                               Register old_value, Register new_value,
                               int start, int end, int shift_amount, int offset,
                               Register temp0, Register temp1);
  void AtomicCmpExchangeU8(Register addr, Register output, Register old_value,
                           Register new_value, Register temp0, Register temp1);
  void AtomicCmpExchangeU16(Register addr, Register output, Register old_value,
                            Register new_value, Register temp0, Register temp1);
  void AtomicExchangeHelper(Register addr, Register value, Register output,
                            int start, int end, int shift_amount, int offset,
                            Register scratch);
  void AtomicExchangeU8(Register addr, Register value, Register output,
                        Register scratch);
  void AtomicExchangeU16(Register addr, Register value, Register output,
                         Register scratch);

  void DoubleMax(DoubleRegister result_reg, DoubleRegister left_reg,
                 DoubleRegister right_reg);
  void DoubleMin(DoubleRegister result_reg, DoubleRegister left_reg,
                 DoubleRegister right_reg);
  void FloatMax(DoubleRegister result_reg, DoubleRegister left_reg,
                DoubleRegister right_reg);
  void FloatMin(DoubleRegister result_reg, DoubleRegister left_reg,
                DoubleRegister right_reg);
  void CeilF32(DoubleRegister dst, DoubleRegister src);
  void CeilF64(DoubleRegister dst, DoubleRegister src);
  void FloorF32(DoubleRegister dst, DoubleRegister src);
  void FloorF64(DoubleRegister dst, DoubleRegister src);
  void TruncF32(DoubleRegister dst, DoubleRegister src);
  void TruncF64(DoubleRegister dst, DoubleRegister src);
  void NearestIntF32(DoubleRegister dst, DoubleRegister src);
  void NearestIntF64(DoubleRegister dst, DoubleRegister src);

  void LoadFromConstantsTable(Register destination,
                              int constant_index) override;
  void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
  void LoadRootRelative(Register destination, int32_t offset) override;

  // Jump, Call, and Ret pseudo instructions implementing inter-working.
  void Jump(Register target, Condition cond = al);
  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
  void Jump(const ExternalReference& reference) override;
  // Jump the register contains a smi.
  inline void JumpIfSmi(Register value, Label* smi_label) {
    TestIfSmi(value);
    beq(smi_label /*, cr0*/);  // branch if SMI
  }
  void JumpIfEqual(Register x, int32_t y, Label* dest);
  void JumpIfLessThan(Register x, int32_t y, Label* dest);

  void LoadMap(Register destination, Register object);

  void Call(Register target);
  void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
            Condition cond = al);
  void Ret() { b(r14); }
  void Ret(Condition cond) { b(cond, r14); }

  void CallForDeoptimization(Builtins::Name target, int deopt_id, Label* exit,
                             DeoptimizeKind kind, Label* ret,
                             Label* jump_deoptimization_entry_label);

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the sp register.
  void Drop(int count);
  void Drop(Register count, Register scratch = r0);

  void Ret(int drop) {
    Drop(drop);
    Ret();
  }

  void Call(Label* target);

  // Load the builtin given by the Smi in |builtin_index| into the same
  // register.
  void LoadEntryFromBuiltinIndex(Register builtin_index);
  void LoadCodeObjectEntry(Register destination, Register code_object) override;
  void CallCodeObject(Register code_object) override;
  void JumpCodeObject(Register code_object,
                      JumpMode jump_mode = JumpMode::kJump) override;

  void CallBuiltinByIndex(Register builtin_index) override;

  // Register move. May do nothing if the registers are identical.
  void Move(Register dst, Smi smi) { LoadSmiLiteral(dst, smi); }
  void Move(Register dst, Handle<HeapObject> source,
            RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
  void Move(Register dst, ExternalReference reference);
  void Move(Register dst, Register src, Condition cond = al);
  void Move(DoubleRegister dst, DoubleRegister src);

  void MoveChar(const MemOperand& opnd1, const MemOperand& opnd2,
                const Operand& length);

  void CompareLogicalChar(const MemOperand& opnd1, const MemOperand& opnd2,
                          const Operand& length);

  void ExclusiveOrChar(const MemOperand& opnd1, const MemOperand& opnd2,
                       const Operand& length);

  void RotateInsertSelectBits(Register dst, Register src,
                              const Operand& startBit, const Operand& endBit,
                              const Operand& shiftAmt, bool zeroBits);

  void BranchRelativeOnIdxHighP(Register dst, Register inc, Label* L);

  void SaveRegisters(RegList registers);
  void RestoreRegisters(RegList registers);

  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode);
  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode, Address wasm_target);
  void CallEphemeronKeyBarrier(Register object, Register address,
                               SaveFPRegsMode fp_mode);

  void MultiPush(RegList regs, Register location = sp);
  void MultiPop(RegList regs, Register location = sp);

  void MultiPushDoubles(RegList dregs, Register location = sp);
  void MultiPopDoubles(RegList dregs, Register location = sp);

  void MultiPushV128(RegList dregs, Register location = sp);
  void MultiPopV128(RegList dregs, Register location = sp);

  // Calculate how much stack space (in bytes) are required to store caller
  // registers excluding those specified in the arguments.
  int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
                                      Register exclusion1 = no_reg,
                                      Register exclusion2 = no_reg,
                                      Register exclusion3 = no_reg) const;

  // Push caller saved registers on the stack, and return the number of bytes
  // stack pointer is adjusted.
  int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                      Register exclusion2 = no_reg,
                      Register exclusion3 = no_reg);
  // Restore caller saved registers from the stack, and return the number of
  // bytes stack pointer is adjusted.
  int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                     Register exclusion2 = no_reg,
                     Register exclusion3 = no_reg);

  // Load an object from the root table.
  void LoadRoot(Register destination, RootIndex index) override {
    LoadRoot(destination, index, al);
  }
  void LoadRoot(Register destination, RootIndex index, Condition cond);
  //--------------------------------------------------------------------------
  // S390 Macro Assemblers for Instructions
  //--------------------------------------------------------------------------

  // Arithmetic Operations

  // Add (Register - Immediate)
  void AddS32(Register dst, const Operand& imm);
  void AddS64(Register dst, const Operand& imm);
  void AddS32(Register dst, Register src, const Operand& imm);
  void AddS64(Register dst, Register src, const Operand& imm);
  void AddS32(Register dst, Register src, int32_t imm);
  void AddS64(Register dst, Register src, int32_t imm);

  // Add (Register - Register)
  void AddS32(Register dst, Register src);
  void AddS64(Register dst, Register src);
  void AddS32(Register dst, Register src1, Register src2);
  void AddS64(Register dst, Register src1, Register src2);

  // Add (Register - Mem)
  void AddS32(Register dst, const MemOperand& opnd);
  void AddS64(Register dst, const MemOperand& opnd);

  // Add (Mem - Immediate)
  void AddS32(const MemOperand& opnd, const Operand& imm);
  void AddS64(const MemOperand& opnd, const Operand& imm);

  // Add Logical (Register - Register)
  void AddU32(Register dst, Register src1, Register src2);

  // Add Logical (Register - Immediate)
  void AddU32(Register dst, const Operand& imm);
  void AddU64(Register dst, const Operand& imm);

  // Add Logical (Register - Mem)
  void AddU32(Register dst, const MemOperand& opnd);
  void AddU64(Register dst, const MemOperand& opnd);

  // Subtract (Register - Immediate)
  void SubS32(Register dst, const Operand& imm);
  void SubS64(Register dst, const Operand& imm);
  void SubS32(Register dst, Register src, const Operand& imm);
  void SubS64(Register dst, Register src, const Operand& imm);
  void SubS32(Register dst, Register src, int32_t imm);
  void SubS64(Register dst, Register src, int32_t imm);

  // Subtract (Register - Register)
  void SubS32(Register dst, Register src);
  void SubS64(Register dst, Register src);
  void SubS32(Register dst, Register src1, Register src2);
  void SubS64(Register dst, Register src1, Register src2);

  // Subtract (Register - Mem)
  void SubS32(Register dst, const MemOperand& opnd);
  void SubS64(Register dst, const MemOperand& opnd);
  void LoadAndSub32(Register dst, Register src, const MemOperand& opnd);
  void LoadAndSub64(Register dst, Register src, const MemOperand& opnd);

  // Subtract Logical (Register - Mem)
  void SubU32(Register dst, const MemOperand& opnd);
  void SubU64(Register dst, const MemOperand& opnd);
  // Subtract Logical 32-bit
  void SubU32(Register dst, Register src1, Register src2);

  // Multiply
  void MulS64(Register dst, const Operand& opnd);
  void MulS64(Register dst, Register src);
  void MulS64(Register dst, const MemOperand& opnd);
  void MulS64(Register dst, Register src1, Register src2) {
    if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) {
      msgrkc(dst, src1, src2);
    } else {
      if (dst == src2) {
        MulS64(dst, src1);
      } else if (dst == src1) {
        MulS64(dst, src2);
      } else {
        mov(dst, src1);
        MulS64(dst, src2);
      }
    }
  }

  void MulS32(Register dst, const MemOperand& src1);
  void MulS32(Register dst, Register src1);
  void MulS32(Register dst, const Operand& src1);
  void MulS32(Register dst, Register src1, Register src2) {
    if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) {
      msrkc(dst, src1, src2);
    } else {
      if (dst == src2) {
        MulS32(dst, src1);
      } else if (dst == src1) {
        MulS32(dst, src2);
      } else {
        mov(dst, src1);
        MulS32(dst, src2);
      }
    }
  }

  void MulHighS32(Register dst, Register src1, const MemOperand& src2);
  void MulHighS32(Register dst, Register src1, Register src2);
  void MulHighS32(Register dst, Register src1, const Operand& src2);
  void MulHighU32(Register dst, Register src1, const MemOperand& src2);
  void MulHighU32(Register dst, Register src1, Register src2);
  void MulHighU32(Register dst, Register src1, const Operand& src2);
  void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
                                    const MemOperand& src2);
  void Mul32WithOverflowIfCCUnequal(Register dst, Register src1, Register src2);
  void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
                                    const Operand& src2);
  // Divide
  void DivS32(Register dst, Register src1, const MemOperand& src2);
  void DivS32(Register dst, Register src1, Register src2);
  void DivU32(Register dst, Register src1, const MemOperand& src2);
  void DivU32(Register dst, Register src1, Register src2);
  void DivS64(Register dst, Register src1, const MemOperand& src2);
  void DivS64(Register dst, Register src1, Register src2);
  void DivU64(Register dst, Register src1, const MemOperand& src2);
  void DivU64(Register dst, Register src1, Register src2);

  // Mod
  void ModS32(Register dst, Register src1, const MemOperand& src2);
  void ModS32(Register dst, Register src1, Register src2);
  void ModU32(Register dst, Register src1, const MemOperand& src2);
  void ModU32(Register dst, Register src1, Register src2);
  void ModS64(Register dst, Register src1, const MemOperand& src2);
  void ModS64(Register dst, Register src1, Register src2);
  void ModU64(Register dst, Register src1, const MemOperand& src2);
  void ModU64(Register dst, Register src1, Register src2);

  // Square root
  void Sqrt(DoubleRegister result, DoubleRegister input);
  void Sqrt(DoubleRegister result, const MemOperand& input);

  // Compare
  void CmpS32(Register src1, Register src2);
  void CmpS64(Register src1, Register src2);
  void CmpS32(Register dst, const Operand& opnd);
  void CmpS64(Register dst, const Operand& opnd);
  void CmpS32(Register dst, const MemOperand& opnd);
  void CmpS64(Register dst, const MemOperand& opnd);
  void CmpAndSwap(Register old_val, Register new_val, const MemOperand& opnd);
  void CmpAndSwap64(Register old_val, Register new_val, const MemOperand& opnd);
  // TODO(john.yan): remove this
  template <class T>
  void CmpP(Register src1, T src2) {
    CmpS64(src1, src2);
  }

  // Compare Logical
  void CmpU32(Register src1, Register src2);
  void CmpU64(Register src1, Register src2);
  void CmpU32(Register src1, const Operand& opnd);
  void CmpU64(Register src1, const Operand& opnd);
  void CmpU32(Register dst, const MemOperand& opnd);
  void CmpU64(Register dst, const MemOperand& opnd);

  // Load
  void LoadU64(Register dst, const MemOperand& mem, Register scratch = no_reg);
  void LoadS32(Register dst, const MemOperand& opnd, Register scratch = no_reg);
  void LoadS32(Register dst, Register src);
  void LoadU32(Register dst, const MemOperand& opnd, Register scratch = no_reg);
  void LoadU32(Register dst, Register src);
  void LoadU16(Register dst, const MemOperand& opnd);
  void LoadU16(Register dst, Register src);
  void LoadS16(Register dst, Register src);
  void LoadS16(Register dst, const MemOperand& mem, Register scratch = no_reg);
  void LoadS8(Register dst, const MemOperand& opnd);
  void LoadS8(Register dst, Register src);
  void LoadU8(Register dst, const MemOperand& opnd);
  void LoadU8(Register dst, Register src);
  void LoadV128(Simd128Register dst, const MemOperand& mem, Register scratch);
  void LoadF64(DoubleRegister dst, const MemOperand& opnd);
  void LoadF32(DoubleRegister dst, const MemOperand& opnd);
  // LE Load
  void LoadU64LE(Register dst, const MemOperand& mem,
                 Register scratch = no_reg);
  void LoadS32LE(Register dst, const MemOperand& opnd,
                 Register scratch = no_reg);
  void LoadU32LE(Register dst, const MemOperand& opnd,
                 Register scratch = no_reg);
  void LoadU16LE(Register dst, const MemOperand& opnd);
  void LoadS16LE(Register dst, const MemOperand& opnd);
  void LoadV128LE(DoubleRegister dst, const MemOperand& mem, Register scratch0,
                  Register scratch1);
  void LoadF64LE(DoubleRegister dst, const MemOperand& opnd, Register scratch);
  void LoadF32LE(DoubleRegister dst, const MemOperand& opnd, Register scratch);

  // Load And Test
  void LoadAndTest32(Register dst, Register src);
  void LoadAndTestP(Register dst, Register src);

  void LoadAndTest32(Register dst, const MemOperand& opnd);
  void LoadAndTestP(Register dst, const MemOperand& opnd);

  // Store
  void StoreU64(const MemOperand& mem, const Operand& opnd,
                Register scratch = no_reg);
  void StoreU64(Register src, const MemOperand& mem, Register scratch = no_reg);
  void StoreU32(Register src, const MemOperand& mem, Register scratch = no_reg);

  void StoreU16(Register src, const MemOperand& mem, Register scratch = r0);
  void StoreU8(Register src, const MemOperand& mem, Register scratch = r0);
  void StoreF64(DoubleRegister dst, const MemOperand& opnd);
  void StoreF32(DoubleRegister dst, const MemOperand& opnd);
  void StoreV128(Simd128Register src, const MemOperand& mem, Register scratch);

  // Store LE
  void StoreU64LE(Register src, const MemOperand& mem,
                  Register scratch = no_reg);
  void StoreU32LE(Register src, const MemOperand& mem,
                  Register scratch = no_reg);

  void StoreU16LE(Register src, const MemOperand& mem, Register scratch = r0);
  void StoreF64LE(DoubleRegister src, const MemOperand& opnd, Register scratch);
  void StoreF32LE(DoubleRegister src, const MemOperand& opnd, Register scratch);
  void StoreV128LE(Simd128Register src, const MemOperand& mem,
                   Register scratch1, Register scratch2);

  void AddF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
  void SubF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
  void MulF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
  void DivF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);

  void AddF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
  void SubF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
  void MulF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
  void DivF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);

  void AddFloat32(DoubleRegister dst, const MemOperand& opnd,
                  DoubleRegister scratch);
  void AddFloat64(DoubleRegister dst, const MemOperand& opnd,
                  DoubleRegister scratch);
  void SubFloat32(DoubleRegister dst, const MemOperand& opnd,
                  DoubleRegister scratch);
  void SubFloat64(DoubleRegister dst, const MemOperand& opnd,
                  DoubleRegister scratch);
  void MulFloat32(DoubleRegister dst, const MemOperand& opnd,
                  DoubleRegister scratch);
  void MulFloat64(DoubleRegister dst, const MemOperand& opnd,
                  DoubleRegister scratch);
  void DivFloat32(DoubleRegister dst, const MemOperand& opnd,
                  DoubleRegister scratch);
  void DivFloat64(DoubleRegister dst, const MemOperand& opnd,
                  DoubleRegister scratch);
  void LoadF32AsF64(DoubleRegister dst, const MemOperand& opnd,
                    DoubleRegister scratch);

  // Load On Condition
  void LoadOnConditionP(Condition cond, Register dst, Register src);

  void LoadPositiveP(Register result, Register input);
  void LoadPositive32(Register result, Register input);

  void Branch(Condition c, const Operand& opnd);
  void BranchOnCount(Register r1, Label* l);

  // Shifts
  void ShiftLeftU32(Register dst, Register src, Register val,
                    const Operand& val2 = Operand::Zero());
  void ShiftLeftU32(Register dst, Register src, const Operand& val);
  void ShiftLeftU64(Register dst, Register src, Register val,
                    const Operand& val2 = Operand::Zero());
  void ShiftLeftU64(Register dst, Register src, const Operand& val);
  void ShiftRightU32(Register dst, Register src, Register val,
                     const Operand& val2 = Operand::Zero());
  void ShiftRightU32(Register dst, Register src, const Operand& val);
  void ShiftRightU64(Register dst, Register src, Register val,
                     const Operand& val2 = Operand::Zero());
  void ShiftRightU64(Register dst, Register src, const Operand& val);
  void ShiftRightS32(Register dst, Register src, Register shift,
                     const Operand& val2 = Operand::Zero());
  void ShiftRightS32(Register dst, Register src, const Operand& val);
  void ShiftRightS64(Register dst, Register src, Register shift,
                     const Operand& val2 = Operand::Zero());
  void ShiftRightS64(Register dst, Register src, const Operand& val);

  void ClearRightImm(Register dst, Register src, const Operand& val);

  // Bitwise operations
  void And(Register dst, Register src);
  void AndP(Register dst, Register src);
  void And(Register dst, Register src1, Register src2);
  void AndP(Register dst, Register src1, Register src2);
  void And(Register dst, const MemOperand& opnd);
  void AndP(Register dst, const MemOperand& opnd);
  void And(Register dst, const Operand& opnd);
  void AndP(Register dst, const Operand& opnd);
  void And(Register dst, Register src, const Operand& opnd);
  void AndP(Register dst, Register src, const Operand& opnd);
  void Or(Register dst, Register src);
  void OrP(Register dst, Register src);
  void Or(Register dst, Register src1, Register src2);
  void OrP(Register dst, Register src1, Register src2);
  void Or(Register dst, const MemOperand& opnd);
  void OrP(Register dst, const MemOperand& opnd);
  void Or(Register dst, const Operand& opnd);
  void OrP(Register dst, const Operand& opnd);
  void Or(Register dst, Register src, const Operand& opnd);
  void OrP(Register dst, Register src, const Operand& opnd);
  void Xor(Register dst, Register src);
  void XorP(Register dst, Register src);
  void Xor(Register dst, Register src1, Register src2);
  void XorP(Register dst, Register src1, Register src2);
  void Xor(Register dst, const MemOperand& opnd);
  void XorP(Register dst, const MemOperand& opnd);
  void Xor(Register dst, const Operand& opnd);
  void XorP(Register dst, const Operand& opnd);
  void Xor(Register dst, Register src, const Operand& opnd);
  void XorP(Register dst, Register src, const Operand& opnd);
  void Popcnt32(Register dst, Register src);
  void Not32(Register dst, Register src = no_reg);
  void Not64(Register dst, Register src = no_reg);
  void NotP(Register dst, Register src = no_reg);

#ifdef V8_TARGET_ARCH_S390X
  void Popcnt64(Register dst, Register src);
#endif

  void mov(Register dst, const Operand& src);
  void mov(Register dst, Register src);

  void CleanUInt32(Register x) {
#ifdef V8_TARGET_ARCH_S390X
    llgfr(x, x);
#endif
  }

  void push(DoubleRegister src) {
    lay(sp, MemOperand(sp, -kSystemPointerSize));
    StoreF64(src, MemOperand(sp));
  }

  void push(Register src) {
    lay(sp, MemOperand(sp, -kSystemPointerSize));
    StoreU64(src, MemOperand(sp));
  }

  void pop(DoubleRegister dst) {
    LoadF64(dst, MemOperand(sp));
    la(sp, MemOperand(sp, kSystemPointerSize));
  }

  void pop(Register dst) {
    LoadU64(dst, MemOperand(sp));
    la(sp, MemOperand(sp, kSystemPointerSize));
  }

  void pop() { la(sp, MemOperand(sp, kSystemPointerSize)); }

  void Push(Register src) { push(src); }

  // Push a handle.
  void Push(Handle<HeapObject> handle);
  void Push(Smi smi);

  // Push two registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2) {
    lay(sp, MemOperand(sp, -kSystemPointerSize * 2));
    StoreU64(src1, MemOperand(sp, kSystemPointerSize));
    StoreU64(src2, MemOperand(sp, 0));
  }

  // Push three registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3) {
    lay(sp, MemOperand(sp, -kSystemPointerSize * 3));
    StoreU64(src1, MemOperand(sp, kSystemPointerSize * 2));
    StoreU64(src2, MemOperand(sp, kSystemPointerSize));
    StoreU64(src3, MemOperand(sp, 0));
  }

  // Push four registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4) {
    lay(sp, MemOperand(sp, -kSystemPointerSize * 4));
    StoreU64(src1, MemOperand(sp, kSystemPointerSize * 3));
    StoreU64(src2, MemOperand(sp, kSystemPointerSize * 2));
    StoreU64(src3, MemOperand(sp, kSystemPointerSize));
    StoreU64(src4, MemOperand(sp, 0));
  }

  // Push five registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4,
            Register src5) {
    DCHECK(src1 != src2);
    DCHECK(src1 != src3);
    DCHECK(src2 != src3);
    DCHECK(src1 != src4);
    DCHECK(src2 != src4);
    DCHECK(src3 != src4);
    DCHECK(src1 != src5);
    DCHECK(src2 != src5);
    DCHECK(src3 != src5);
    DCHECK(src4 != src5);

    lay(sp, MemOperand(sp, -kSystemPointerSize * 5));
    StoreU64(src1, MemOperand(sp, kSystemPointerSize * 4));
    StoreU64(src2, MemOperand(sp, kSystemPointerSize * 3));
    StoreU64(src3, MemOperand(sp, kSystemPointerSize * 2));
    StoreU64(src4, MemOperand(sp, kSystemPointerSize));
    StoreU64(src5, MemOperand(sp, 0));
  }

  enum PushArrayOrder { kNormal, kReverse };
  void PushArray(Register array, Register size, Register scratch,
                 Register scratch2, PushArrayOrder order = kNormal);

  void Pop(Register dst) { pop(dst); }

  // Pop two registers. Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2) {
    LoadU64(src2, MemOperand(sp, 0));
    LoadU64(src1, MemOperand(sp, kSystemPointerSize));
    la(sp, MemOperand(sp, 2 * kSystemPointerSize));
  }

  // Pop three registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3) {
    LoadU64(src3, MemOperand(sp, 0));
    LoadU64(src2, MemOperand(sp, kSystemPointerSize));
    LoadU64(src1, MemOperand(sp, 2 * kSystemPointerSize));
    la(sp, MemOperand(sp, 3 * kSystemPointerSize));
  }

  // Pop four registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3, Register src4) {
    LoadU64(src4, MemOperand(sp, 0));
    LoadU64(src3, MemOperand(sp, kSystemPointerSize));
    LoadU64(src2, MemOperand(sp, 2 * kSystemPointerSize));
    LoadU64(src1, MemOperand(sp, 3 * kSystemPointerSize));
    la(sp, MemOperand(sp, 4 * kSystemPointerSize));
  }

  // Pop five registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3, Register src4,
           Register src5) {
    LoadU64(src5, MemOperand(sp, 0));
    LoadU64(src4, MemOperand(sp, kSystemPointerSize));
    LoadU64(src3, MemOperand(sp, 2 * kSystemPointerSize));
    LoadU64(src2, MemOperand(sp, 3 * kSystemPointerSize));
    LoadU64(src1, MemOperand(sp, 4 * kSystemPointerSize));
    la(sp, MemOperand(sp, 5 * kSystemPointerSize));
  }

  // Push a fixed frame, consisting of lr, fp, constant pool.
  void PushCommonFrame(Register marker_reg = no_reg);

  // Push a standard frame, consisting of lr, fp, constant pool,
  // context and JS function
  void PushStandardFrame(Register function_reg);

  void PopCommonFrame(Register marker_reg = no_reg);

  // Restore caller's frame pointer and return address prior to being
  // overwritten by tail call stack preparation.
  void RestoreFrameStateForTailCall();

  void InitializeRootRegister() {
    ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
    mov(kRootRegister, Operand(isolate_root));
  }

  // If the value is a NaN, canonicalize the value else, do nothing.
  void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
  void CanonicalizeNaN(const DoubleRegister value) {
    CanonicalizeNaN(value, value);
  }

  // Converts the integer (untagged smi) in |src| to a double, storing
  // the result to |dst|
  void ConvertIntToDouble(DoubleRegister dst, Register src);

  // Converts the unsigned integer (untagged smi) in |src| to
  // a double, storing the result to |dst|
  void ConvertUnsignedIntToDouble(DoubleRegister dst, Register src);

  // Converts the integer (untagged smi) in |src| to
  // a float, storing the result in |dst|
  void ConvertIntToFloat(DoubleRegister dst, Register src);

  // Converts the unsigned integer (untagged smi) in |src| to
  // a float, storing the result in |dst|
  void ConvertUnsignedIntToFloat(DoubleRegister dst, Register src);

  void ConvertInt64ToFloat(DoubleRegister double_dst, Register src);
  void ConvertInt64ToDouble(DoubleRegister double_dst, Register src);
  void ConvertUnsignedInt64ToFloat(DoubleRegister double_dst, Register src);
  void ConvertUnsignedInt64ToDouble(DoubleRegister double_dst, Register src);

  void MovIntToFloat(DoubleRegister dst, Register src);
  void MovFloatToInt(Register dst, DoubleRegister src);
  void MovDoubleToInt64(Register dst, DoubleRegister src);
  void MovInt64ToDouble(DoubleRegister dst, Register src);
  // Converts the double_input to an integer.  Note that, upon return,
  // the contents of double_dst will also hold the fixed point representation.
  void ConvertFloat32ToInt64(const Register dst,
                             const DoubleRegister double_input,
                             FPRoundingMode rounding_mode = kRoundToZero);

  // Converts the double_input to an integer.  Note that, upon return,
  // the contents of double_dst will also hold the fixed point representation.
  void ConvertDoubleToInt64(const Register dst,
                            const DoubleRegister double_input,
                            FPRoundingMode rounding_mode = kRoundToZero);
  void ConvertDoubleToInt32(const Register dst,
                            const DoubleRegister double_input,
                            FPRoundingMode rounding_mode = kRoundToZero);

  void ConvertFloat32ToInt32(const Register result,
                             const DoubleRegister double_input,
                             FPRoundingMode rounding_mode);
  void ConvertFloat32ToUnsignedInt32(
      const Register result, const DoubleRegister double_input,
      FPRoundingMode rounding_mode = kRoundToZero);
  // Converts the double_input to an unsigned integer.  Note that, upon return,
  // the contents of double_dst will also hold the fixed point representation.
  void ConvertDoubleToUnsignedInt64(
      const Register dst, const DoubleRegister double_input,
      FPRoundingMode rounding_mode = kRoundToZero);
  void ConvertDoubleToUnsignedInt32(
      const Register dst, const DoubleRegister double_input,
      FPRoundingMode rounding_mode = kRoundToZero);
  void ConvertFloat32ToUnsignedInt64(
      const Register result, const DoubleRegister double_input,
      FPRoundingMode rounding_mode = kRoundToZero);

  // Generates function and stub prologue code.
  void StubPrologue(StackFrame::Type type, Register base = no_reg,
                    int prologue_offset = 0);
  void Prologue(Register base, int prologue_offset = 0);

  // Get the actual activation frame alignment for target environment.
  static int ActivationFrameAlignment();
  // ----------------------------------------------------------------
  // new S390 macro-assembler interfaces that are slightly higher level
  // than assembler-s390 and may generate variable length sequences

  // load an SMI value <value> to GPR <dst>
  void LoadSmiLiteral(Register dst, Smi smi);

  // load a literal double value <value> to FPR <result>
  template <class T>
  void LoadF64(DoubleRegister result, T value, Register scratch) {
    static_assert(sizeof(T) == kDoubleSize, "Expect input size to be 8");
    uint64_t int_val = bit_cast<uint64_t, T>(value);
    // Load the 64-bit value into a GPR, then transfer it to FPR via LDGR
    uint32_t hi_32 = int_val >> 32;
    uint32_t lo_32 = static_cast<uint32_t>(int_val);

    if (int_val == 0) {
      lzdr(result);
    } else if (lo_32 == 0) {
      llihf(scratch, Operand(hi_32));
      ldgr(result, scratch);
    } else {
      iihf(scratch, Operand(hi_32));
      iilf(scratch, Operand(lo_32));
      ldgr(result, scratch);
    }
  }

  template <class T>
  void LoadF32(DoubleRegister result, T value, Register scratch) {
    static_assert(sizeof(T) == kFloatSize, "Expect input size to be 4");
    uint32_t int_val = bit_cast<uint32_t, T>(value);
    LoadF64(result, static_cast<uint64_t>(int_val) << 32, scratch);
  }

  void CmpSmiLiteral(Register src1, Smi smi, Register scratch);

  // Set new rounding mode RN to FPSCR
  void SetRoundingMode(FPRoundingMode RN);

  // reset rounding mode to default (kRoundToNearest)
  void ResetRoundingMode();

  // These exist to provide portability between 32 and 64bit
  void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
  void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
  void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
  void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);

  void SwapP(Register src, Register dst, Register scratch);
  void SwapP(Register src, MemOperand dst, Register scratch);
  void SwapP(MemOperand src, MemOperand dst, Register scratch_0,
             Register scratch_1);
  void SwapFloat32(DoubleRegister src, DoubleRegister dst,
                   DoubleRegister scratch);
  void SwapFloat32(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
  void SwapFloat32(MemOperand src, MemOperand dst, DoubleRegister scratch);
  void SwapDouble(DoubleRegister src, DoubleRegister dst,
                  DoubleRegister scratch);
  void SwapDouble(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
  void SwapDouble(MemOperand src, MemOperand dst, DoubleRegister scratch);
  void SwapSimd128(Simd128Register src, Simd128Register dst,
                   Simd128Register scratch);
  void SwapSimd128(Simd128Register src, MemOperand dst,
                   Simd128Register scratch);
  void SwapSimd128(MemOperand src, MemOperand dst, Simd128Register scratch);

  // Cleanse pointer address on 31bit by zero out top  bit.
  // This is a NOP on 64-bit.
  void CleanseP(Register src) {
#if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
    nilh(src, Operand(0x7FFF));
#endif
  }

  void PrepareForTailCall(Register callee_args_count,
                          Register caller_args_count, Register scratch0,
                          Register scratch1);

  // ---------------------------------------------------------------------------
  // Runtime calls

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, non-register arguments must be stored in
  // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
  // are word sized. If double arguments are used, this function assumes that
  // all double arguments are stored before core registers; otherwise the
  // correct alignment of the double values is not guaranteed.
  // Some compilers/platforms require the stack to be aligned when calling
  // C++ code.
  // Needs a scratch register to do some arithmetic. This register will be
  // trashed.
  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
                            Register scratch);
  void PrepareCallCFunction(int num_reg_arguments, Register scratch);

  // There are two ways of passing double arguments on ARM, depending on
  // whether soft or hard floating point ABI is used. These functions
  // abstract parameter passing for the three different ways we call
  // C functions from generated code.
  void MovToFloatParameter(DoubleRegister src);
  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
  void MovToFloatResult(DoubleRegister src);

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);
  void CallCFunction(ExternalReference function, int num_reg_arguments,
                     int num_double_arguments);
  void CallCFunction(Register function, int num_reg_arguments,
                     int num_double_arguments);

  void MovFromFloatParameter(DoubleRegister dst);
  void MovFromFloatResult(DoubleRegister dst);

  void Trap() override;
  void DebugBreak() override;

  // Emit code for a truncating division by a constant. The dividend register is
  // unchanged and ip gets clobbered. Dividend and result must be different.
  void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
                         DoubleRegister double_input, StubCallMode stub_mode);
  void TryInlineTruncateDoubleToI(Register result, DoubleRegister double_input,
                                  Label* done);

  // ---------------------------------------------------------------------------
  // Debugging

  // Calls Abort(msg) if the condition cond is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cond, AbortReason reason, CRegister cr = cr7);

  // Like Assert(), but without condition.
  // Use --debug-code to enable.
  void AssertUnreachable(AbortReason reason);

  // Like Assert(), but always enabled.
  void Check(Condition cond, AbortReason reason, CRegister cr = cr7);

  // Print a message to stdout and abort execution.
  void Abort(AbortReason reason);

  // ---------------------------------------------------------------------------
  // Bit testing/extraction
  //
  // Bit numbering is such that the least significant bit is bit 0
  // (for consistency between 32/64-bit).

  // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
  // and place them into the least significant bits of dst.
  inline void ExtractBitRange(Register dst, Register src, int rangeStart,
                              int rangeEnd) {
    DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerSystemPointer);

    // Try to use RISBG if possible.
    if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
      int shiftAmount = (64 - rangeEnd) % 64;  // Convert to shift left.
      int endBit = 63;  // End is always LSB after shifting.
      int startBit = 63 - rangeStart + rangeEnd;
      RotateInsertSelectBits(dst, src, Operand(startBit), Operand(endBit),
                             Operand(shiftAmount), true);
    } else {
      if (rangeEnd > 0)  // Don't need to shift if rangeEnd is zero.
        ShiftRightU64(dst, src, Operand(rangeEnd));
      else if (dst != src)  // If we didn't shift, we might need to copy
        mov(dst, src);
      int width = rangeStart - rangeEnd + 1;
#if V8_TARGET_ARCH_S390X
      uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
      nihf(dst, Operand(mask >> 32));
      nilf(dst, Operand(mask & 0xFFFFFFFF));
      ltgr(dst, dst);
#else
      uint32_t mask = (1 << width) - 1;
      AndP(dst, Operand(mask));
#endif
    }
  }

  inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
    ExtractBitRange(dst, src, bitNumber, bitNumber);
  }

  // Extract consecutive bits (defined by mask) from src and place them
  // into the least significant bits of dst.
  inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
                             RCBit rc = LeaveRC) {
    int start = kBitsPerSystemPointer - 1;
    int end;
    uintptr_t bit = (1L << start);

    while (bit && (mask & bit) == 0) {
      start--;
      bit >>= 1;
    }
    end = start;
    bit >>= 1;

    while (bit && (mask & bit)) {
      end--;
      bit >>= 1;
    }

    // 1-bits in mask must be contiguous
    DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);

    ExtractBitRange(dst, src, start, end);
  }

  // Test single bit in value.
  inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
    ExtractBitRange(scratch, value, bitNumber, bitNumber);
  }

  // Test consecutive bit range in value.  Range is defined by
  // rangeStart - rangeEnd.
  inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
                           Register scratch = r0) {
    ExtractBitRange(scratch, value, rangeStart, rangeEnd);
  }

  // Test consecutive bit range in value.  Range is defined by mask.
  inline void TestBitMask(Register value, uintptr_t mask,
                          Register scratch = r0) {
    ExtractBitMask(scratch, value, mask, SetRC);
  }
  inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }

  inline void TestIfSmi(MemOperand value) {
    if (is_uint12(value.offset())) {
      tm(value, Operand(1));
    } else if (is_int20(value.offset())) {
      tmy(value, Operand(1));
    } else {
      LoadS8(r0, value);
      tmll(r0, Operand(1));
    }
  }

  inline void TestIfInt32(Register value) {
    // High bits must be identical to fit into an 32-bit integer
    cgfr(value, value);
  }
  void SmiUntag(Register reg) { SmiUntag(reg, reg); }

  void SmiUntag(Register dst, const MemOperand& src);
  void SmiUntag(Register dst, Register src) {
    if (SmiValuesAre31Bits()) {
      ShiftRightS32(dst, src, Operand(kSmiShift));
    } else {
      ShiftRightS64(dst, src, Operand(kSmiShift));
    }
    lgfr(dst, dst);
  }

  // Activation support.
  void EnterFrame(StackFrame::Type type,
                  bool load_constant_pool_pointer_reg = false);
  // Returns the pc offset at which the frame ends.
  int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);

  void AllocateStackSpace(int bytes) {
    DCHECK_GE(bytes, 0);
    if (bytes == 0) return;
    lay(sp, MemOperand(sp, -bytes));
  }

  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
                     Label* condition_met);

  void ResetSpeculationPoisonRegister();
  void ComputeCodeStartAddress(Register dst);
  void LoadPC(Register dst);

  // Control-flow integrity:

  // Define a function entrypoint. This doesn't emit any code for this
  // architecture, as control-flow integrity is not supported for it.
  void CodeEntry() {}
  // Define an exception handler.
  void ExceptionHandler() {}
  // Define an exception handler and bind a label.
  void BindExceptionHandler(Label* label) { bind(label); }

  // Generates an instruction sequence s.t. the return address points to the
  // instruction following the call.
  // The return address on the stack is used by frame iteration.
  void StoreReturnAddressAndCall(Register target);

  // ---------------------------------------------------------------------------
  // Pointer compression Support

  // Loads a field containing a HeapObject and decompresses it if pointer
  // compression is enabled.
  void LoadTaggedPointerField(const Register& destination,
                              const MemOperand& field_operand,
                              const Register& scratch = no_reg);

  // Loads a field containing any tagged value and decompresses it if necessary.
  void LoadAnyTaggedField(const Register& destination,
                          const MemOperand& field_operand,
                          const Register& scratch = no_reg);

  // Loads a field containing smi value and untags it.
  void SmiUntagField(Register dst, const MemOperand& src);

  // Compresses and stores tagged value to given on-heap location.
  void StoreTaggedField(const Register& value,
                        const MemOperand& dst_field_operand,
                        const Register& scratch = no_reg);

  void DecompressTaggedSigned(Register destination, MemOperand field_operand);
  void DecompressTaggedSigned(Register destination, Register src);
  void DecompressTaggedPointer(Register destination, MemOperand field_operand);
  void DecompressTaggedPointer(Register destination, Register source);
  void DecompressAnyTagged(Register destination, MemOperand field_operand);
  void DecompressAnyTagged(Register destination, Register source);

  // CountLeadingZeros will corrupt the scratch register pair (eg. r0:r1)
  void CountLeadingZerosU32(Register dst, Register src,
                            Register scratch_pair = r0);
  void CountLeadingZerosU64(Register dst, Register src,
                            Register scratch_pair = r0);
  void CountTrailingZerosU32(Register dst, Register src,
                             Register scratch_pair = r0);
  void CountTrailingZerosU64(Register dst, Register src,
                             Register scratch_pair = r0);

 private:
  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;

  void CallCFunctionHelper(Register function, int num_reg_arguments,
                           int num_double_arguments);

  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode, int builtin_index,
                           Address wasm_target);

  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
  int CalculateStackPassedWords(int num_reg_arguments,
                                int num_double_arguments);
};

// MacroAssembler implements a collection of frequently used macros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
 public:
  using TurboAssembler::TurboAssembler;

  // It assumes that the arguments are located below the stack pointer.
  // argc is the number of arguments not including the receiver.
  // TODO(victorgomes): Remove this function once we stick with the reversed
  // arguments order.
  void LoadReceiver(Register dest, Register argc) {
    LoadU64(dest, MemOperand(sp, 0));
  }

  void StoreReceiver(Register rec, Register argc, Register scratch) {
    StoreU64(rec, MemOperand(sp, 0));
  }

  void CallRuntime(const Runtime::Function* f, int num_arguments,
                   SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore);
  void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, SaveFPRegsMode::kSave);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid,
                   SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, save_doubles);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
                   SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
  }

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid);

  // ---------------------------------------------------------------------------
  // Support functions.

  // Compare object type for heap object.  heap_object contains a non-Smi
  // whose object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  // It leaves the map in the map register (unless the type_reg and map register
  // are the same register).  It leaves the heap object in the heap_object
  // register unless the heap_object register is the same register as one of the
  // other registers.
  // Type_reg can be no_reg. In that case ip is used.
  void CompareObjectType(Register heap_object, Register map, Register type_reg,
                         InstanceType type);

  // Compare instance type in a map.  map contains a valid map object whose
  // object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  void CompareInstanceType(Register map, Register type_reg, InstanceType type);

  // Compare instance type ranges for a map (lower_limit and higher_limit
  // inclusive).
  //
  // Always use unsigned comparisons: ls for a positive result.
  void CompareInstanceTypeRange(Register map, Register type_reg,
                                InstanceType lower_limit,
                                InstanceType higher_limit);

  // Compare the object in a register to a value from the root list.
  // Uses the ip register as scratch.
  void CompareRoot(Register obj, RootIndex index);
  void PushRoot(RootIndex index) {
    LoadRoot(r0, index);
    Push(r0);
  }

  template <class T>
  void CompareTagged(Register src1, T src2) {
    if (COMPRESS_POINTERS_BOOL) {
      CmpS32(src1, src2);
    } else {
      CmpS64(src1, src2);
    }
  }

  // Jump to a runtime routine.
  void JumpToExternalReference(const ExternalReference& builtin,
                               bool builtin_exit_frame = false);

  // Generates a trampoline to jump to the off-heap instruction stream.
  void JumpToInstructionStream(Address entry);

  // Compare the object in a register to a value and jump if they are equal.
  void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
    CompareRoot(with, index);
    beq(if_equal);
  }

  // Compare the object in a register to a value and jump if they are not equal.
  void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
    CompareRoot(with, index);
    bne(if_not_equal);
  }

  // Checks if value is in range [lower_limit, higher_limit] using a single
  // comparison.
  void JumpIfIsInRange(Register value, unsigned lower_limit,
                       unsigned higher_limit, Label* on_in_range);

  // ---------------------------------------------------------------------------
  // In-place weak references.
  void LoadWeakValue(Register out, Register in, Label* target_if_cleared);

  // ---------------------------------------------------------------------------
  // StatsCounter support

  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);
  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);

  // ---------------------------------------------------------------------------
  // Stack limit utilities

  MemOperand StackLimitAsMemOperand(StackLimitKind kind);
  void StackOverflowCheck(Register num_args, Register scratch,
                          Label* stack_overflow);

  // ---------------------------------------------------------------------------
  // JavaScript invokes

  // Set up call kind marking in ecx. The method takes ecx as an
  // explicit first parameter to make the code more readable at the
  // call sites.
  // void SetCallKind(Register dst, CallKind kind);

  // Removes current frame and its arguments from the stack preserving
  // the arguments and a return address pushed to the stack for the next call.
  // Both |callee_args_count| and |caller_args_count| do not include
  // receiver. |callee_args_count| is not modified. |caller_args_count|
  // is trashed.

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeFunctionCode(Register function, Register new_target,
                          Register expected_parameter_count,
                          Register actual_parameter_count, InvokeType type);

  // On function call, call into the debugger if necessary.
  void CheckDebugHook(Register fun, Register new_target,
                      Register expected_parameter_count,
                      Register actual_parameter_count);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunctionWithNewTarget(Register function, Register new_target,
                                   Register actual_parameter_count,
                                   InvokeType type);
  void InvokeFunction(Register function, Register expected_parameter_count,
                      Register actual_parameter_count, InvokeType type);

  // Exception handling

  // Push a new stack handler and link into stack handler chain.
  void PushStackHandler();

  // Unlink the stack handler on top of the stack from the stack handler chain.
  // Must preserve the result register.
  void PopStackHandler();

  // Enter exit frame.
  // stack_space - extra stack space, used for parameters before call to C.
  // At least one slot (for the return address) should be provided.
  void EnterExitFrame(bool save_doubles, int stack_space = 1,
                      StackFrame::Type frame_type = StackFrame::EXIT);

  // Leave the current exit frame. Expects the return value in r0.
  // Expect the number of values, pushed prior to the exit frame, to
  // remove in a register (or no_reg, if there is nothing to remove).
  void LeaveExitFrame(bool save_doubles, Register argument_count,
                      bool argument_count_is_length = false);

  // Load the global proxy from the current context.
  void LoadGlobalProxy(Register dst) {
    LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX);
  }

  void LoadNativeContextSlot(Register dst, int index);

  // ---------------------------------------------------------------------------
  // Smi utilities

  // Shift left by kSmiShift
  void SmiTag(Register reg) { SmiTag(reg, reg); }
  void SmiTag(Register dst, Register src) {
    ShiftLeftU64(dst, src, Operand(kSmiShift));
  }

  void SmiToPtrArrayOffset(Register dst, Register src) {
#if defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kSystemPointerSizeLog2);
    ShiftLeftU64(dst, src, Operand(kSystemPointerSizeLog2 - kSmiShift));
#else
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kSystemPointerSizeLog2);
    ShiftRightS64(dst, src, Operand(kSmiShift - kSystemPointerSizeLog2));
#endif
  }

  // Jump if either of the registers contain a non-smi.
  inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
    TestIfSmi(value);
    bne(not_smi_label /*, cr0*/);
  }

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object);
  void AssertSmi(Register object);

#if !defined(V8_COMPRESS_POINTERS) && !defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
  // Ensure it is permissible to read/write int value directly from
  // upper half of the smi.
  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
#endif
#if V8_TARGET_LITTLE_ENDIAN
#define SmiWordOffset(offset) (offset + kSystemPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif

  // Abort execution if argument is not a Constructor, enabled via --debug-code.
  void AssertConstructor(Register object, Register scratch);

  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
  void AssertFunction(Register object);

  // Abort execution if argument is not a JSBoundFunction,
  // enabled via --debug-code.
  void AssertBoundFunction(Register object);

  // Abort execution if argument is not a JSGeneratorObject (or subclass),
  // enabled via --debug-code.
  void AssertGeneratorObject(Register object);

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object, Register scratch);

  template <typename Field>
  void DecodeField(Register dst, Register src) {
    ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
  }

  template <typename Field>
  void DecodeField(Register reg) {
    DecodeField<Field>(reg, reg);
  }

  // ---------------------------------------------------------------------------
  // GC Support

  void IncrementalMarkingRecordWriteHelper(Register object, Register value,
                                           Register address);

  void CallJSEntry(Register target);
  static int CallSizeNotPredictableCodeSize(Address target,
                                            RelocInfo::Mode rmode,
                                            Condition cond = al);
  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.  value and scratch registers are clobbered by the operation.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
  void RecordWriteField(
      Register object, int offset, Register value, Register scratch,
      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
      SmiCheck smi_check = SmiCheck::kInline);

  // For a given |object| notify the garbage collector that the slot |address|
  // has been written.  |value| is the object being stored. The value and
  // address registers are clobbered by the operation.
  void RecordWrite(
      Register object, Register address, Register value,
      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
      SmiCheck smi_check = SmiCheck::kInline);

 private:
  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
  // Helper functions for generating invokes.
  void InvokePrologue(Register expected_parameter_count,
                      Register actual_parameter_count, Label* done,
                      InvokeType type);

  DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};

#define ACCESS_MASM(masm) masm->

}  // namespace internal
}  // namespace v8

#endif  // V8_CODEGEN_S390_MACRO_ASSEMBLER_S390_H_