summaryrefslogtreecommitdiff
path: root/chromium/ui/gfx/x/xproto_internal.h
blob: 6ba0604db48a8b5d8861c1a0f78a0cc9b99030bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// Copyright 2020 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef UI_GFX_X_XPROTO_INTERNAL_H_
#define UI_GFX_X_XPROTO_INTERNAL_H_

#ifndef IS_X11_IMPL
#error "This file should only be included by //ui/gfx/x:xprotos"
#endif

#include <bitset>
#include <type_traits>

#include "base/component_export.h"
#include "base/logging.h"
#include "base/memory/ref_counted_memory.h"
#include "base/optional.h"
#include "ui/gfx/x/connection.h"
#include "ui/gfx/x/xproto_types.h"

namespace x11 {

template <class Reply>
class Future;

template <typename T, typename Enable = void>
struct EnumBase {
  using type = T;
};

template <typename T>
struct EnumBase<T, typename std::enable_if_t<std::is_enum<T>::value>> {
  using type = typename std::underlying_type<T>::type;
};

template <typename T>
using EnumBaseType = typename EnumBase<T>::type;

template <typename T>
void ReadError(T* error, ReadBuffer* buf);

// Calls free() on the underlying data when the count drops to 0.
class COMPONENT_EXPORT(X11) MallocedRefCountedMemory
    : public base::RefCountedMemory {
 public:
  explicit MallocedRefCountedMemory(void* data);

  MallocedRefCountedMemory(const MallocedRefCountedMemory&) = delete;
  MallocedRefCountedMemory& operator=(const MallocedRefCountedMemory&) = delete;

  const uint8_t* front() const override;

  size_t size() const override;

 private:
  ~MallocedRefCountedMemory() override;

  uint8_t* const data_;
};

// Wraps another RefCountedMemory, giving a view into it.  Similar to
// base::StringPiece, the data is some contiguous subarray, but unlike
// StringPiece, a counted reference is kept on the underlying memory.
class COMPONENT_EXPORT(X11) OffsetRefCountedMemory
    : public base::RefCountedMemory {
 public:
  OffsetRefCountedMemory(scoped_refptr<base::RefCountedMemory> memory,
                         size_t offset,
                         size_t size);

  OffsetRefCountedMemory(const OffsetRefCountedMemory&) = delete;
  OffsetRefCountedMemory& operator=(const OffsetRefCountedMemory&) = delete;

  const uint8_t* front() const override;

  size_t size() const override;

 private:
  ~OffsetRefCountedMemory() override;

  scoped_refptr<base::RefCountedMemory> memory_;
  size_t offset_;
  size_t size_;
};

// Wraps a bare pointer and does not take any action when the reference count
// reaches 0.  This is used to wrap stack-alloctaed or persistent data so we can
// pass those to Read/ReadEvent/ReadReply which expect RefCountedMemory.
class COMPONENT_EXPORT(X11) UnretainedRefCountedMemory
    : public base::RefCountedMemory {
 public:
  explicit UnretainedRefCountedMemory(const void* data);

  UnretainedRefCountedMemory(const UnretainedRefCountedMemory&) = delete;
  UnretainedRefCountedMemory& operator=(const UnretainedRefCountedMemory&) =
      delete;

  const uint8_t* front() const override;

  size_t size() const override;

 private:
  ~UnretainedRefCountedMemory() override;

  const uint8_t* const data_;
};

template <typename T>
void Read(T* t, ReadBuffer* buf) {
  static_assert(std::is_trivially_copyable<T>::value, "");
  detail::VerifyAlignment(t, buf->offset);
  memcpy(t, buf->data->data() + buf->offset, sizeof(*t));
  buf->offset += sizeof(*t);
}

inline void Pad(WriteBuffer* buf, size_t amount) {
  uint8_t zero = 0;
  for (size_t i = 0; i < amount; i++)
    buf->Write(&zero);
}

inline void Pad(ReadBuffer* buf, size_t amount) {
  buf->offset += amount;
}

inline void Align(WriteBuffer* buf, size_t align) {
  Pad(buf, (align - (buf->offset() % align)) % align);
}

inline void Align(ReadBuffer* buf, size_t align) {
  Pad(buf, (align - (buf->offset % align)) % align);
}

base::Optional<unsigned int> SendRequestImpl(x11::Connection* connection,
                                             WriteBuffer* buf,
                                             bool is_void,
                                             bool reply_has_fds);

template <typename Reply>
Future<Reply> SendRequest(x11::Connection* connection,
                          WriteBuffer* buf,
                          bool reply_has_fds,
                          const char* request_name) {
  auto sequence = SendRequestImpl(connection, buf, std::is_void<Reply>::value,
                                  reply_has_fds);
  return {sequence ? connection : nullptr, sequence,
          sequence ? request_name : nullptr};
}

// Helper function for xcbproto popcount.  Given an integral type, returns the
// number of 1 bits present.
template <typename T>
size_t PopCount(T t) {
  return std::bitset<sizeof(T) * 8>(static_cast<EnumBaseType<T>>(t)).count();
}

// Helper function for xcbproto sumof.  Given a function |f| and a container
// |t|, maps the elements uisng |f| and reduces by summing the results.
template <typename F, typename T>
auto SumOf(F&& f, T& t) {
  decltype(f(t[0])) sum = 0;
  for (auto& v : t)
    sum += f(v);
  return sum;
}

// Helper function for xcbproto case.  Checks for equality between |t| and |s|.
template <typename T, typename S>
bool CaseEq(T t, S s) {
  return t == static_cast<decltype(t)>(s);
}

// Helper function for xcbproto bitcase expressions.  Checks if the bitmasks |t|
// and |s| have any intersection.
template <typename T, typename S>
bool CaseAnd(T t, S s) {
  return static_cast<EnumBaseType<T>>(t) & static_cast<EnumBaseType<T>>(s);
}

// Helper function for xcbproto & expressions.  Computes |t| & |s|.
template <typename T, typename S>
auto BitAnd(T t, S s) {
  return static_cast<EnumBaseType<T>>(t) & static_cast<EnumBaseType<T>>(s);
}

// Helper function for xcbproto ~ expressions.
template <typename T>
auto BitNot(T t) {
  return ~static_cast<EnumBaseType<T>>(t);
}

// Helper function for generating switch values.  |switch_var| is the value to
// modify.  |enum_val| is the value to set |switch_var| to if this is a regular
// case, or the bit to be set in |switch_var| if this is a bit case.  This
// function is a no-op when |condition| is false.
template <typename T>
auto SwitchVar(T enum_val, bool condition, bool is_bitcase, T* switch_var) {
  using EnumInt = EnumBaseType<T>;
  if (!condition)
    return;
  EnumInt switch_int = static_cast<EnumInt>(*switch_var);
  if (is_bitcase) {
    *switch_var = static_cast<T>(switch_int | static_cast<EnumInt>(enum_val));
  } else {
    DCHECK(!switch_int);
    *switch_var = enum_val;
  }
}

template <typename T>
std::unique_ptr<T> MakeExtension(Connection* connection,
                                 Future<QueryExtensionReply> future) {
  auto reply = future.Sync();
  return std::make_unique<T>(connection,
                             reply ? *reply.reply : QueryExtensionReply{});
}

}  // namespace x11

#endif  //  UI_GFX_X_XPROTO_INTERNAL_H_