summaryrefslogtreecommitdiff
path: root/chromium/tools/gn/functions.cc
blob: 272cd9430bc96d82fef310a8f8ef5600cd3e2725 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "tools/gn/functions.h"

#include <stddef.h>
#include <iostream>
#include <utility>

#include "base/environment.h"
#include "base/strings/string_util.h"
#include "tools/gn/config.h"
#include "tools/gn/config_values_generator.h"
#include "tools/gn/err.h"
#include "tools/gn/input_file.h"
#include "tools/gn/parse_node_value_adapter.h"
#include "tools/gn/parse_tree.h"
#include "tools/gn/pool.h"
#include "tools/gn/scheduler.h"
#include "tools/gn/scope.h"
#include "tools/gn/settings.h"
#include "tools/gn/template.h"
#include "tools/gn/token.h"
#include "tools/gn/value.h"
#include "tools/gn/value_extractors.h"
#include "tools/gn/variables.h"

namespace {

// Some functions take a {} following them, and some don't. For the ones that
// don't, this is used to verify that the given block node is null and will
// set the error accordingly if it's not. Returns true if the block is null.
bool VerifyNoBlockForFunctionCall(const FunctionCallNode* function,
                                  const BlockNode* block,
                                  Err* err) {
  if (!block)
    return true;

  *err = Err(block, "Unexpected '{'.",
      "This function call doesn't take a {} block following it, and you\n"
      "can't have a {} block that's not connected to something like an if\n"
      "statement or a target declaration.");
  err->AppendRange(function->function().range());
  return false;
}

// This key is set as a scope property on the scope of a declare_args() block,
// in order to prevent reading a variable defined earlier in the same call
// (see `gn help declare_args` for more).
const void *kInDeclareArgsKey = nullptr;

}  // namespace


bool EnsureNotReadingFromSameDeclareArgs(const ParseNode* node,
                                         const Scope* cur_scope,
                                         const Scope* val_scope,
                                         Err* err) {
  // If the value didn't come from a scope at all, we're safe.
  if (!val_scope)
    return true;

  const Scope* val_args_scope = nullptr;
  val_scope->GetProperty(&kInDeclareArgsKey, &val_args_scope);

  const Scope* cur_args_scope = nullptr;
  cur_scope->GetProperty(&kInDeclareArgsKey, &cur_args_scope);
  if (!val_args_scope || !cur_args_scope || (val_args_scope != cur_args_scope))
    return true;

  *err = Err(node,
      "Reading a variable defined in the same declare_args() call.\n"
      "\n"
      "If you need to set the value of one arg based on another, put\n"
      "them in two separate declare_args() calls, one after the other.\n");
  return false;
}

bool EnsureNotProcessingImport(const ParseNode* node,
                               const Scope* scope,
                               Err* err) {
  if (scope->IsProcessingImport()) {
    *err = Err(node, "Not valid from an import.",
        "Imports are for defining defaults, variables, and rules. The\n"
        "appropriate place for this kind of thing is really in a normal\n"
        "BUILD file.");
    return false;
  }
  return true;
}

bool EnsureNotProcessingBuildConfig(const ParseNode* node,
                                    const Scope* scope,
                                    Err* err) {
  if (scope->IsProcessingBuildConfig()) {
    *err = Err(node, "Not valid from the build config.",
        "You can't do this kind of thing from the build config script, "
        "silly!\nPut it in a regular BUILD file.");
    return false;
  }
  return true;
}

bool FillTargetBlockScope(const Scope* scope,
                          const FunctionCallNode* function,
                          const std::string& target_type,
                          const BlockNode* block,
                          const std::vector<Value>& args,
                          Scope* block_scope,
                          Err* err) {
  if (!block) {
    FillNeedsBlockError(function, err);
    return false;
  }

  // Copy the target defaults, if any, into the scope we're going to execute
  // the block in.
  const Scope* default_scope = scope->GetTargetDefaults(target_type);
  if (default_scope) {
    Scope::MergeOptions merge_options;
    merge_options.skip_private_vars = true;
    if (!default_scope->NonRecursiveMergeTo(block_scope, merge_options,
                                            function, "target defaults", err))
      return false;
  }

  // The name is the single argument to the target function.
  if (!EnsureSingleStringArg(function, args, err))
    return false;

  // Set the target name variable to the current target, and mark it used
  // because we don't want to issue an error if the script ignores it.
  const base::StringPiece target_name(variables::kTargetName);
  block_scope->SetValue(target_name, Value(function, args[0].string_value()),
                        function);
  block_scope->MarkUsed(target_name);
  return true;
}

void FillNeedsBlockError(const FunctionCallNode* function, Err* err) {
  *err = Err(function->function(), "This function call requires a block.",
      "The block's \"{\" must be on the same line as the function "
      "call's \")\".");
}

bool EnsureSingleStringArg(const FunctionCallNode* function,
                           const std::vector<Value>& args,
                           Err* err) {
  if (args.size() != 1) {
    *err = Err(function->function(), "Incorrect arguments.",
               "This function requires a single string argument.");
    return false;
  }
  return args[0].VerifyTypeIs(Value::STRING, err);
}

const Label& ToolchainLabelForScope(const Scope* scope) {
  return scope->settings()->toolchain_label();
}

Label MakeLabelForScope(const Scope* scope,
                        const FunctionCallNode* function,
                        const std::string& name) {
  const Label& toolchain_label = ToolchainLabelForScope(scope);
  return Label(scope->GetSourceDir(), name, toolchain_label.dir(),
               toolchain_label.name());
}

// static
const int NonNestableBlock::kKey = 0;

NonNestableBlock::NonNestableBlock(
    Scope* scope,
    const FunctionCallNode* function,
    const char* type_description)
    : scope_(scope),
      function_(function),
      type_description_(type_description),
      key_added_(false) {
}

NonNestableBlock::~NonNestableBlock() {
  if (key_added_)
    scope_->SetProperty(&kKey, nullptr);
}

bool NonNestableBlock::Enter(Err* err) {
  void* scope_value = scope_->GetProperty(&kKey, nullptr);
  if (scope_value) {
    // Existing block.
    const NonNestableBlock* existing =
        reinterpret_cast<const NonNestableBlock*>(scope_value);
    *err = Err(function_, "Can't nest these things.",
        std::string("You are trying to nest a ") + type_description_ +
        " inside a " + existing->type_description_ + ".");
    err->AppendSubErr(Err(existing->function_, "The enclosing block."));
    return false;
  }

  scope_->SetProperty(&kKey, this);
  key_added_ = true;
  return true;
}

namespace functions {

// assert ----------------------------------------------------------------------

const char kAssert[] = "assert";
const char kAssert_HelpShort[] =
    "assert: Assert an expression is true at generation time.";
const char kAssert_Help[] =
    R"(assert: Assert an expression is true at generation time.

  assert(<condition> [, <error string>])

  If the condition is false, the build will fail with an error. If the
  optional second argument is provided, that string will be printed
  with the error message.

Examples

  assert(is_win)
  assert(defined(sources), "Sources must be defined");
)";

Value RunAssert(Scope* scope,
                const FunctionCallNode* function,
                const std::vector<Value>& args,
                Err* err) {
  if (args.size() != 1 && args.size() != 2) {
    *err = Err(function->function(), "Wrong number of arguments.",
               "assert() takes one or two argument, "
               "were you expecting somethig else?");
  } else if (args[0].type() != Value::BOOLEAN) {
    *err = Err(function->function(), "Assertion value not a bool.");
  } else if (!args[0].boolean_value()) {
    if (args.size() == 2) {
      // Optional string message.
      if (args[1].type() != Value::STRING) {
        *err = Err(function->function(), "Assertion failed.",
            "<<<ERROR MESSAGE IS NOT A STRING>>>");
      } else {
        *err = Err(function->function(), "Assertion failed.",
            args[1].string_value());
      }
    } else {
      *err = Err(function->function(), "Assertion failed.");
    }

    if (args[0].origin()) {
      // If you do "assert(foo)" we'd ideally like to show you where foo was
      // set, and in this case the origin of the args will tell us that.
      // However, if you do "assert(foo && bar)" the source of the value will
      // be the assert like, which isn't so helpful.
      //
      // So we try to see if the args are from the same line or not. This will
      // break if you do "assert(\nfoo && bar)" and we may show the second line
      // as the source, oh well. The way around this is to check to see if the
      // origin node is inside our function call block.
      Location origin_location = args[0].origin()->GetRange().begin();
      if (origin_location.file() != function->function().location().file() ||
          origin_location.line_number() !=
              function->function().location().line_number()) {
        err->AppendSubErr(Err(args[0].origin()->GetRange(), "",
                              "This is where it was set."));
      }
    }
  }
  return Value();
}

// config ----------------------------------------------------------------------

const char kConfig[] = "config";
const char kConfig_HelpShort[] =
    "config: Defines a configuration object.";
const char kConfig_Help[] =
    R"(config: Defines a configuration object.

  Configuration objects can be applied to targets and specify sets of compiler
  flags, includes, defines, etc. They provide a way to conveniently group sets
  of this configuration information.

  A config is referenced by its label just like a target.

  The values in a config are additive only. If you want to remove a flag you
  need to remove the corresponding config that sets it. The final set of flags,
  defines, etc. for a target is generated in this order:

   1. The values specified directly on the target (rather than using a config.
   2. The configs specified in the target's "configs" list, in order.
   3. Public_configs from a breadth-first traversal of the dependency tree in
      the order that the targets appear in "deps".
   4. All dependent configs from a breadth-first traversal of the dependency
      tree in the order that the targets appear in "deps".

Variables valid in a config definition
)"

    CONFIG_VALUES_VARS_HELP

R"(  Nested configs: configs

Variables on a target used to apply configs

  all_dependent_configs, configs, public_configs

Example

  config("myconfig") {
    includes = [ "include/common" ]
    defines = [ "ENABLE_DOOM_MELON" ]
  }

  executable("mything") {
    configs = [ ":myconfig" ]
  }
)";

Value RunConfig(const FunctionCallNode* function,
                const std::vector<Value>& args,
                Scope* scope,
                Err* err) {
  NonNestableBlock non_nestable(scope, function, "config");
  if (!non_nestable.Enter(err))
    return Value();

  if (!EnsureSingleStringArg(function, args, err) ||
      !EnsureNotProcessingImport(function, scope, err))
    return Value();

  Label label(MakeLabelForScope(scope, function, args[0].string_value()));

  if (g_scheduler->verbose_logging())
    g_scheduler->Log("Defining config", label.GetUserVisibleName(true));

  // Create the new config.
  std::unique_ptr<Config> config(new Config(scope->settings(), label));
  config->set_defined_from(function);
  if (!Visibility::FillItemVisibility(config.get(), scope, err))
    return Value();

  // Fill the flags and such.
  const SourceDir& input_dir = scope->GetSourceDir();
  ConfigValuesGenerator gen(&config->own_values(), scope, input_dir, err);
  gen.Run();
  if (err->has_error())
    return Value();

  // Read sub-configs.
  const Value* configs_value = scope->GetValue(variables::kConfigs, true);
  if (configs_value) {
    ExtractListOfUniqueLabels(*configs_value, scope->GetSourceDir(),
                              ToolchainLabelForScope(scope),
                              &config->configs(), err);
  }
  if (err->has_error())
    return Value();

  // Save the generated item.
  Scope::ItemVector* collector = scope->GetItemCollector();
  if (!collector) {
    *err = Err(function, "Can't define a config in this context.");
    return Value();
  }
  collector->push_back(config.release());

  return Value();
}

// declare_args ----------------------------------------------------------------

const char kDeclareArgs[] = "declare_args";
const char kDeclareArgs_HelpShort[] =
    "declare_args: Declare build arguments.";
const char kDeclareArgs_Help[] =
    R"(declare_args: Declare build arguments.

  Introduces the given arguments into the current scope. If they are not
  specified on the command line or in a toolchain's arguments, the default
  values given in the declare_args block will be used. However, these defaults
  will not override command-line values.

  See also "gn help buildargs" for an overview.

  The precise behavior of declare args is:

   1. The declare_args() block executes. Any variable defined in the enclosing
      scope is available for reading, but any variable defined earlier in
      the current scope is not (since the overrides haven't been applied yet).

   2. At the end of executing the block, any variables set within that scope
      are saved globally as build arguments, with their current values being
      saved as the "default value" for that argument.

   3. User-defined overrides are applied. Anything set in "gn args" now
      overrides any default values. The resulting set of variables is promoted
      to be readable from the following code in the file.

  This has some ramifications that may not be obvious:

    - You should not perform difficult work inside a declare_args block since
      this only sets a default value that may be discarded. In particular,
      don't use the result of exec_script() to set the default value. If you
      want to have a script-defined default, set some default "undefined" value
      like [], "", or -1, and after the declare_args block, call exec_script if
      the value is unset by the user.

    - Because you cannot read the value of a variable defined in the same
      block, if you need to make the default value of one arg depend
      on the possibly-overridden value of another, write two separate
      declare_args() blocks:

        declare_args() {
          enable_foo = true
        }
        declare_args() {
          # Bar defaults to same user-overridden state as foo.
          enable_bar = enable_foo
        }

Example

  declare_args() {
    enable_teleporter = true
    enable_doom_melon = false
  }

  If you want to override the (default disabled) Doom Melon:
    gn --args="enable_doom_melon=true enable_teleporter=true"
  This also sets the teleporter, but it's already defaulted to on so it will
  have no effect.
)";

Value RunDeclareArgs(Scope* scope,
                     const FunctionCallNode* function,
                     const std::vector<Value>& args,
                     BlockNode* block,
                     Err* err) {
  NonNestableBlock non_nestable(scope, function, "declare_args");
  if (!non_nestable.Enter(err))
    return Value();

  Scope block_scope(scope);
  block_scope.SetProperty(&kInDeclareArgsKey, &block_scope);
  block->Execute(&block_scope, err);
  if (err->has_error())
    return Value();

  // Pass the values from our scope into the Args object for adding to the
  // scope with the proper values (taking into account the defaults given in
  // the block_scope, and arguments passed into the build).
  Scope::KeyValueMap values;
  block_scope.GetCurrentScopeValues(&values);
  scope->settings()->build_settings()->build_args().DeclareArgs(
      values, scope, err);
  return Value();
}

// defined ---------------------------------------------------------------------

const char kDefined[] = "defined";
const char kDefined_HelpShort[] =
    "defined: Returns whether an identifier is defined.";
const char kDefined_Help[] =
    R"(defined: Returns whether an identifier is defined.

  Returns true if the given argument is defined. This is most useful in
  templates to assert that the caller set things up properly.

  You can pass an identifier:
    defined(foo)
  which will return true or false depending on whether foo is defined in the
  current scope.

  You can also check a named scope:
    defined(foo.bar)
  which will return true or false depending on whether bar is defined in the
  named scope foo. It will throw an error if foo is not defined or is not a
  scope.

Example

  template("mytemplate") {
    # To help users call this template properly...
    assert(defined(invoker.sources), "Sources must be defined")

    # If we want to accept an optional "values" argument, we don't
    # want to dereference something that may not be defined.
    if (defined(invoker.values)) {
      values = invoker.values
    } else {
      values = "some default value"
    }
  }
)";

Value RunDefined(Scope* scope,
                 const FunctionCallNode* function,
                 const ListNode* args_list,
                 Err* err) {
  const auto& args_vector = args_list->contents();
  if (args_vector.size() != 1) {
    *err = Err(function, "Wrong number of arguments to defined().",
               "Expecting exactly one.");
    return Value();
  }

  const IdentifierNode* identifier = args_vector[0]->AsIdentifier();
  if (identifier) {
    // Passed an identifier "defined(foo)".
    if (scope->GetValue(identifier->value().value()))
      return Value(function, true);
    return Value(function, false);
  }

  const AccessorNode* accessor = args_vector[0]->AsAccessor();
  if (accessor) {
    // Passed an accessor "defined(foo.bar)".
    if (accessor->member()) {
      // The base of the accessor must be a scope if it's defined.
      const Value* base = scope->GetValue(accessor->base().value());
      if (!base) {
        *err = Err(accessor, "Undefined identifier");
        return Value();
      }
      if (!base->VerifyTypeIs(Value::SCOPE, err))
        return Value();

      // Check the member inside the scope to see if its defined.
      if (base->scope_value()->GetValue(accessor->member()->value().value()))
        return Value(function, true);
      return Value(function, false);
    }
  }

  // Argument is invalid.
  *err = Err(function, "Bad thing passed to defined().",
      "It should be of the form defined(foo) or defined(foo.bar).");
  return Value();
}

// getenv ----------------------------------------------------------------------

const char kGetEnv[] = "getenv";
const char kGetEnv_HelpShort[] =
    "getenv: Get an environment variable.";
const char kGetEnv_Help[] =
    R"(getenv: Get an environment variable.

  value = getenv(env_var_name)

  Returns the value of the given enironment variable. If the value is not
  found, it will try to look up the variable with the "opposite" case (based on
  the case of the first letter of the variable), but is otherwise
  case-sensitive.

  If the environment variable is not found, the empty string will be returned.
  Note: it might be nice to extend this if we had the concept of "none" in the
  language to indicate lookup failure.

Example

  home_dir = getenv("HOME")
)";

Value RunGetEnv(Scope* scope,
                const FunctionCallNode* function,
                const std::vector<Value>& args,
                Err* err) {
  if (!EnsureSingleStringArg(function, args, err))
    return Value();

  std::unique_ptr<base::Environment> env(base::Environment::Create());

  std::string result;
  if (!env->GetVar(args[0].string_value().c_str(), &result))
    return Value(function, "");  // Not found, return empty string.
  return Value(function, result);
}

// import ----------------------------------------------------------------------

const char kImport[] = "import";
const char kImport_HelpShort[] =
    "import: Import a file into the current scope.";
const char kImport_Help[] =
    R"(import: Import a file into the current scope.

  The import command loads the rules and variables resulting from executing the
  given file into the current scope.

  By convention, imported files are named with a .gni extension.

  An import is different than a C++ "include". The imported file is executed in
  a standalone environment from the caller of the import command. The results
  of this execution are cached for other files that import the same .gni file.

  Note that you can not import a BUILD.gn file that's otherwise used in the
  build. Files must either be imported or implicitly loaded as a result of deps
  rules, but not both.

  The imported file's scope will be merged with the scope at the point import
  was called. If there is a conflict (both the current scope and the imported
  file define some variable or rule with the same name but different value), a
  runtime error will be thrown. Therefore, it's good practice to minimize the
  stuff that an imported file defines.

  Variables and templates beginning with an underscore '_' are considered
  private and will not be imported. Imported files can use such variables for
  internal computation without affecting other files.

Examples

  import("//build/rules/idl_compilation_rule.gni")

  # Looks in the current directory.
  import("my_vars.gni")
)";

Value RunImport(Scope* scope,
                const FunctionCallNode* function,
                const std::vector<Value>& args,
                Err* err) {
  if (!EnsureSingleStringArg(function, args, err))
    return Value();

  const SourceDir& input_dir = scope->GetSourceDir();
  SourceFile import_file =
      input_dir.ResolveRelativeFile(args[0], err,
          scope->settings()->build_settings()->root_path_utf8());
  if (!err->has_error()) {
    scope->settings()->import_manager().DoImport(import_file, function,
                                                 scope, err);
  }
  return Value();
}

// set_sources_assignment_filter -----------------------------------------------

const char kSetSourcesAssignmentFilter[] = "set_sources_assignment_filter";
const char kSetSourcesAssignmentFilter_HelpShort[] =
    "set_sources_assignment_filter: Set a pattern to filter source files.";
const char kSetSourcesAssignmentFilter_Help[] =
    R"(set_sources_assignment_filter: Set a pattern to filter source files.

  The sources assignment filter is a list of patterns that remove files from
  the list implicitly whenever the "sources" variable is assigned to. This will
  do nothing for non-lists.

  This is intended to be used to globally filter out files with
  platform-specific naming schemes when they don't apply, for example you may
  want to filter out all "*_win.cc" files on non-Windows platforms.

  Typically this will be called once in the master build config script to set
  up the filter for the current platform. Subsequent calls will overwrite the
  previous values.

  If you want to bypass the filter and add a file even if it might be filtered
  out, call set_sources_assignment_filter([]) to clear the list of filters.
  This will apply until the current scope exits

How to use patterns

  File patterns are VERY limited regular expressions. They must match the
  entire input string to be counted as a match. In regular expression parlance,
  there is an implicit "^...$" surrounding your input. If you want to match a
  substring, you need to use wildcards at the beginning and end.

  There are only two special tokens understood by the pattern matcher.
  Everything else is a literal.

   - "*" Matches zero or more of any character. It does not depend on the
     preceding character (in regular expression parlance it is equivalent to
     ".*").

   - "\b" Matches a path boundary. This will match the beginning or end of a
     string, or a slash.

Pattern examples

  "*asdf*"
      Matches a string containing "asdf" anywhere.

  "asdf"
      Matches only the exact string "asdf".

  "*.cc"
      Matches strings ending in the literal ".cc".

  "\bwin/*"
      Matches "win/foo" and "foo/win/bar.cc" but not "iwin/foo".

Sources assignment example

  # Filter out all _win files.
  set_sources_assignment_filter([ "*_win.cc", "*_win.h" ])
  sources = [ "a.cc", "b_win.cc" ]
  print(sources)
  # Will print [ "a.cc" ]. b_win one was filtered out.
)";

Value RunSetSourcesAssignmentFilter(Scope* scope,
                                    const FunctionCallNode* function,
                                    const std::vector<Value>& args,
                                    Err* err) {
  if (args.size() != 1) {
    *err = Err(function, "set_sources_assignment_filter takes one argument.");
  } else {
    std::unique_ptr<PatternList> f(new PatternList);
    f->SetFromValue(args[0], err);
    if (!err->has_error())
      scope->set_sources_assignment_filter(std::move(f));
  }
  return Value();
}

// pool ------------------------------------------------------------------------

const char kPool[] = "pool";
const char kPool_HelpShort[] =
    "pool: Defines a pool object.";
const char kPool_Help[] =
    R"*(pool: Defines a pool object.

  Pool objects can be applied to a tool to limit the parallelism of the
  build. This object has a single property "depth" corresponding to
  the number of tasks that may run simultaneously.

  As the file containing the pool definition may be executed in the
  context of more than one toolchain it is recommended to specify an
  explicit toolchain when defining and referencing a pool.

  A pool is referenced by its label just like a target.

Variables

  depth*
  * = required

Example

  if (current_toolchain == default_toolchain) {
    pool("link_pool") {
      depth = 1
    }
  }

  toolchain("toolchain") {
    tool("link") {
      command = "..."
      pool = ":link_pool($default_toolchain)")
    }
  }
)*";

const char kDepth[] = "depth";

Value RunPool(const FunctionCallNode* function,
              const std::vector<Value>& args,
              Scope* scope,
              Err* err) {
  NonNestableBlock non_nestable(scope, function, "pool");
  if (!non_nestable.Enter(err))
    return Value();

  if (!EnsureSingleStringArg(function, args, err) ||
      !EnsureNotProcessingImport(function, scope, err))
    return Value();

  Label label(MakeLabelForScope(scope, function, args[0].string_value()));

  if (g_scheduler->verbose_logging())
    g_scheduler->Log("Defining pool", label.GetUserVisibleName(true));

  // Get the pool depth. It is an error to define a pool without a depth,
  // so check first for the presence of the value.
  const Value* depth = scope->GetValue(kDepth, true);
  if (!depth) {
    *err = Err(function, "Can't define a pool without depth.");
    return Value();
  }

  if (!depth->VerifyTypeIs(Value::INTEGER, err))
    return Value();

  if (depth->int_value() < 0) {
    *err = Err(function, "depth must be positive or nul.");
    return Value();
  }

  // Create the new pool.
  std::unique_ptr<Pool> pool(new Pool(scope->settings(), label));
  pool->set_depth(depth->int_value());

  // Save the generated item.
  Scope::ItemVector* collector = scope->GetItemCollector();
  if (!collector) {
    *err = Err(function, "Can't define a pool in this context.");
    return Value();
  }
  collector->push_back(pool.release());

  return Value();
}

// print -----------------------------------------------------------------------

const char kPrint[] = "print";
const char kPrint_HelpShort[] =
    "print: Prints to the console.";
const char kPrint_Help[] =
    R"(print: Prints to the console.

  Prints all arguments to the console separated by spaces. A newline is
  automatically appended to the end.

  This function is intended for debugging. Note that build files are run in
  parallel so you may get interleaved prints. A buildfile may also be executed
  more than once in parallel in the context of different toolchains so the
  prints from one file may be duplicated or
  interleaved with itself.

Examples

  print("Hello world")

  print(sources, deps)
)";

Value RunPrint(Scope* scope,
               const FunctionCallNode* function,
               const std::vector<Value>& args,
               Err* err) {
  std::string output;
  for (size_t i = 0; i < args.size(); i++) {
    if (i != 0)
      output.push_back(' ');
    output.append(args[i].ToString(false));
  }
  output.push_back('\n');

  const BuildSettings::PrintCallback& cb =
      scope->settings()->build_settings()->print_callback();
  if (cb.is_null())
    printf("%s", output.c_str());
  else
    cb.Run(output);

  return Value();
}

// split_list ------------------------------------------------------------------

const char kSplitList[] = "split_list";
const char kSplitList_HelpShort[] =
    "split_list: Splits a list into N different sub-lists.";
const char kSplitList_Help[] =
    R"(split_list: Splits a list into N different sub-lists.

  result = split_list(input, n)

  Given a list and a number N, splits the list into N sub-lists of
  approximately equal size. The return value is a list of the sub-lists. The
  result will always be a list of size N. If N is greater than the number of
  elements in the input, it will be padded with empty lists.

  The expected use is to divide source files into smaller uniform chunks.

Example

  The code:
    mylist = [1, 2, 3, 4, 5, 6]
    print(split_list(mylist, 3))

  Will print:
    [[1, 2], [3, 4], [5, 6]
)";
Value RunSplitList(Scope* scope,
                   const FunctionCallNode* function,
                   const ListNode* args_list,
                   Err* err) {
  const auto& args_vector = args_list->contents();
  if (args_vector.size() != 2) {
    *err = Err(function, "Wrong number of arguments to split_list().",
               "Expecting exactly two.");
    return Value();
  }

  ParseNodeValueAdapter list_adapter;
  if (!list_adapter.InitForType(scope, args_vector[0].get(), Value::LIST, err))
    return Value();
  const std::vector<Value>& input = list_adapter.get().list_value();

  ParseNodeValueAdapter count_adapter;
  if (!count_adapter.InitForType(scope, args_vector[1].get(), Value::INTEGER,
                                 err))
    return Value();
  int64_t count = count_adapter.get().int_value();
  if (count <= 0) {
    *err = Err(function, "Requested result size is not positive.");
    return Value();
  }

  Value result(function, Value::LIST);
  result.list_value().resize(count);

  // Every result list gets at least this many items in it.
  int64_t min_items_per_list = static_cast<int64_t>(input.size()) / count;

  // This many result lists get an extra item which is the remainder from above.
  int64_t extra_items = static_cast<int64_t>(input.size()) % count;

  // Allocate all lists that have a remainder assigned to them (max items).
  int64_t max_items_per_list = min_items_per_list + 1;
  auto last_item_end = input.begin();
  for (int64_t i = 0; i < extra_items; i++) {
    result.list_value()[i] = Value(function, Value::LIST);

    auto begin_add = last_item_end;
    last_item_end += max_items_per_list;
    result.list_value()[i].list_value().assign(begin_add, last_item_end);
  }

  // Allocate all smaller items that don't have a remainder.
  for (int64_t i = extra_items; i < count; i++) {
    result.list_value()[i] = Value(function, Value::LIST);

    auto begin_add = last_item_end;
    last_item_end += min_items_per_list;
    result.list_value()[i].list_value().assign(begin_add, last_item_end);
  }

  return result;
}

// -----------------------------------------------------------------------------

FunctionInfo::FunctionInfo()
    : self_evaluating_args_runner(nullptr),
      generic_block_runner(nullptr),
      executed_block_runner(nullptr),
      no_block_runner(nullptr),
      help_short(nullptr),
      help(nullptr),
      is_target(false) {
}

FunctionInfo::FunctionInfo(SelfEvaluatingArgsFunction seaf,
                           const char* in_help_short,
                           const char* in_help,
                           bool in_is_target)
    : self_evaluating_args_runner(seaf),
      generic_block_runner(nullptr),
      executed_block_runner(nullptr),
      no_block_runner(nullptr),
      help_short(in_help_short),
      help(in_help),
      is_target(in_is_target) {
}

FunctionInfo::FunctionInfo(GenericBlockFunction gbf,
                           const char* in_help_short,
                           const char* in_help,
                           bool in_is_target)
    : self_evaluating_args_runner(nullptr),
      generic_block_runner(gbf),
      executed_block_runner(nullptr),
      no_block_runner(nullptr),
      help_short(in_help_short),
      help(in_help),
      is_target(in_is_target) {
}

FunctionInfo::FunctionInfo(ExecutedBlockFunction ebf,
                           const char* in_help_short,
                           const char* in_help,
                           bool in_is_target)
    : self_evaluating_args_runner(nullptr),
      generic_block_runner(nullptr),
      executed_block_runner(ebf),
      no_block_runner(nullptr),
      help_short(in_help_short),
      help(in_help),
      is_target(in_is_target) {
}

FunctionInfo::FunctionInfo(NoBlockFunction nbf,
                           const char* in_help_short,
                           const char* in_help,
                           bool in_is_target)
    : self_evaluating_args_runner(nullptr),
      generic_block_runner(nullptr),
      executed_block_runner(nullptr),
      no_block_runner(nbf),
      help_short(in_help_short),
      help(in_help),
      is_target(in_is_target) {
}

// Setup the function map via a static initializer. We use this because it
// avoids race conditions without having to do some global setup function or
// locking-heavy singleton checks at runtime. In practice, we always need this
// before we can do anything interesting, so it's OK to wait for the
// initializer.
struct FunctionInfoInitializer {
  FunctionInfoMap map;

  FunctionInfoInitializer() {
    #define INSERT_FUNCTION(command, is_target) \
        map[k##command] = FunctionInfo(&Run##command, \
                                       k##command##_HelpShort, \
                                       k##command##_Help, \
                                       is_target);

    INSERT_FUNCTION(Action, true)
    INSERT_FUNCTION(ActionForEach, true)
    INSERT_FUNCTION(BundleData, true)
    INSERT_FUNCTION(CreateBundle, true)
    INSERT_FUNCTION(Copy, true)
    INSERT_FUNCTION(Executable, true)
    INSERT_FUNCTION(Group, true)
    INSERT_FUNCTION(LoadableModule, true)
    INSERT_FUNCTION(SharedLibrary, true)
    INSERT_FUNCTION(SourceSet, true)
    INSERT_FUNCTION(StaticLibrary, true)
    INSERT_FUNCTION(Target, true)

    INSERT_FUNCTION(Assert, false)
    INSERT_FUNCTION(Config, false)
    INSERT_FUNCTION(DeclareArgs, false)
    INSERT_FUNCTION(Defined, false)
    INSERT_FUNCTION(ExecScript, false)
    INSERT_FUNCTION(ForEach, false)
    INSERT_FUNCTION(ForwardVariablesFrom, false)
    INSERT_FUNCTION(GetEnv, false)
    INSERT_FUNCTION(GetLabelInfo, false)
    INSERT_FUNCTION(GetPathInfo, false)
    INSERT_FUNCTION(GetTargetOutputs, false)
    INSERT_FUNCTION(Import, false)
    INSERT_FUNCTION(Pool, false)
    INSERT_FUNCTION(Print, false)
    INSERT_FUNCTION(ProcessFileTemplate, false)
    INSERT_FUNCTION(ReadFile, false)
    INSERT_FUNCTION(RebasePath, false)
    INSERT_FUNCTION(SetDefaults, false)
    INSERT_FUNCTION(SetDefaultToolchain, false)
    INSERT_FUNCTION(SetSourcesAssignmentFilter, false)
    INSERT_FUNCTION(SplitList, false)
    INSERT_FUNCTION(Template, false)
    INSERT_FUNCTION(Tool, false)
    INSERT_FUNCTION(Toolchain, false)
    INSERT_FUNCTION(WriteFile, false)

    #undef INSERT_FUNCTION
  }
};
const FunctionInfoInitializer function_info;

const FunctionInfoMap& GetFunctions() {
  return function_info.map;
}

Value RunFunction(Scope* scope,
                  const FunctionCallNode* function,
                  const ListNode* args_list,
                  BlockNode* block,
                  Err* err) {
  const Token& name = function->function();

  const FunctionInfoMap& function_map = GetFunctions();
  FunctionInfoMap::const_iterator found_function =
      function_map.find(name.value());
  if (found_function == function_map.end()) {
    // No built-in function matching this, check for a template.
    std::string template_name = function->function().value().as_string();
    const Template* templ = scope->GetTemplate(template_name);
    if (templ) {
      Value args = args_list->Execute(scope, err);
      if (err->has_error())
        return Value();
      return templ->Invoke(scope, function, template_name, args.list_value(),
                           block, err);
    }

    *err = Err(name, "Unknown function.");
    return Value();
  }

  if (found_function->second.self_evaluating_args_runner) {
    // Self evaluating args functions are special weird built-ins like foreach.
    // Rather than force them all to check that they have a block or no block
    // and risk bugs for new additions, check a whitelist here.
    if (found_function->second.self_evaluating_args_runner != &RunForEach) {
      if (!VerifyNoBlockForFunctionCall(function, block, err))
        return Value();
    }
    return found_function->second.self_evaluating_args_runner(
        scope, function, args_list, err);
  }

  // All other function types take a pre-executed set of args.
  Value args = args_list->Execute(scope, err);
  if (err->has_error())
    return Value();

  if (found_function->second.generic_block_runner) {
    if (!block) {
      FillNeedsBlockError(function, err);
      return Value();
    }
    return found_function->second.generic_block_runner(
        scope, function, args.list_value(), block, err);
  }

  if (found_function->second.executed_block_runner) {
    if (!block) {
      FillNeedsBlockError(function, err);
      return Value();
    }

    Scope block_scope(scope);
    block->Execute(&block_scope, err);
    if (err->has_error())
      return Value();

    Value result = found_function->second.executed_block_runner(
        function, args.list_value(), &block_scope, err);
    if (err->has_error())
      return Value();

    if (!block_scope.CheckForUnusedVars(err))
      return Value();
    return result;
  }

  // Otherwise it's a no-block function.
  if (!VerifyNoBlockForFunctionCall(function, block, err))
    return Value();
  return found_function->second.no_block_runner(scope, function,
                                                args.list_value(), err);
}

}  // namespace functions