summaryrefslogtreecommitdiff
path: root/chromium/third_party/webrtc/modules/pacing/paced_sender_unittest.cc
blob: e111bace9c040185f9628a5b513d7a7170d58ea3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <list>
#include <memory>
#include <string>

#include "modules/pacing/paced_sender.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"

using testing::_;
using testing::Field;
using testing::Return;

namespace {
constexpr unsigned kFirstClusterBps = 900000;
constexpr unsigned kSecondClusterBps = 1800000;

// The error stems from truncating the time interval of probe packets to integer
// values. This results in probing slightly higher than the target bitrate.
// For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets.
constexpr int kBitrateProbingError = 150000;
}  // namespace

namespace webrtc {
namespace test {

static const int kTargetBitrateBps = 800000;

class MockPacedSenderCallback : public PacedSender::PacketSender {
 public:
  MOCK_METHOD5(TimeToSendPacket,
               bool(uint32_t ssrc,
                    uint16_t sequence_number,
                    int64_t capture_time_ms,
                    bool retransmission,
                    const PacedPacketInfo& pacing_info));
  MOCK_METHOD2(TimeToSendPadding,
               size_t(size_t bytes, const PacedPacketInfo& pacing_info));
};

class PacedSenderPadding : public PacedSender::PacketSender {
 public:
  PacedSenderPadding() : padding_sent_(0) {}

  bool TimeToSendPacket(uint32_t ssrc,
                        uint16_t sequence_number,
                        int64_t capture_time_ms,
                        bool retransmission,
                        const PacedPacketInfo& pacing_info) override {
    return true;
  }

  size_t TimeToSendPadding(size_t bytes,
                           const PacedPacketInfo& pacing_info) override {
    const size_t kPaddingPacketSize = 224;
    size_t num_packets = (bytes + kPaddingPacketSize - 1) / kPaddingPacketSize;
    padding_sent_ += kPaddingPacketSize * num_packets;
    return kPaddingPacketSize * num_packets;
  }

  size_t padding_sent() { return padding_sent_; }

 private:
  size_t padding_sent_;
};

class PacedSenderProbing : public PacedSender::PacketSender {
 public:
  PacedSenderProbing() : packets_sent_(0), padding_sent_(0) {}

  bool TimeToSendPacket(uint32_t ssrc,
                        uint16_t sequence_number,
                        int64_t capture_time_ms,
                        bool retransmission,
                        const PacedPacketInfo& pacing_info) override {
    packets_sent_++;
    return true;
  }

  size_t TimeToSendPadding(size_t bytes,
                           const PacedPacketInfo& pacing_info) override {
    padding_sent_ += bytes;
    return padding_sent_;
  }

  int packets_sent() const { return packets_sent_; }

  int padding_sent() const { return padding_sent_; }

 private:
  int packets_sent_;
  int padding_sent_;
};

class PacedSenderTest : public testing::TestWithParam<std::string> {
 protected:
  PacedSenderTest() : clock_(123456), field_trial_(GetParam()) {
    srand(0);
    // Need to initialize PacedSender after we initialize clock.
    send_bucket_.reset(new PacedSender(&clock_, &callback_, nullptr));
    send_bucket_->CreateProbeCluster(kFirstClusterBps);
    send_bucket_->CreateProbeCluster(kSecondClusterBps);
    // Default to bitrate probing disabled for testing purposes. Probing tests
    // have to enable probing, either by creating a new PacedSender instance or
    // by calling SetProbingEnabled(true).
    send_bucket_->SetProbingEnabled(false);
    send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);

    clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
  }

  void SendAndExpectPacket(PacedSender::Priority priority,
                           uint32_t ssrc,
                           uint16_t sequence_number,
                           int64_t capture_time_ms,
                           size_t size,
                           bool retransmission) {
    send_bucket_->InsertPacket(priority, ssrc, sequence_number, capture_time_ms,
                               size, retransmission);
    EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
                                            capture_time_ms, retransmission, _))
        .Times(1)
        .WillRepeatedly(Return(true));
  }
  SimulatedClock clock_;
  MockPacedSenderCallback callback_;
  std::unique_ptr<PacedSender> send_bucket_;
  test::ScopedFieldTrials field_trial_;
};

INSTANTIATE_TEST_CASE_P(RoundRobin,
                        PacedSenderTest,
                        ::testing::Values("WebRTC-RoundRobinPacing/Disabled/",
                                          "WebRTC-RoundRobinPacing/Enabled/"));

TEST_P(PacedSenderTest, FirstSentPacketTimeIsSet) {
  uint16_t sequence_number = 1234;
  const uint32_t kSsrc = 12345;
  const size_t kSizeBytes = 250;
  const size_t kPacketToSend = 3;
  const int64_t kStartMs = clock_.TimeInMilliseconds();

  // No packet sent.
  EXPECT_EQ(-1, send_bucket_->FirstSentPacketTimeMs());

  for (size_t i = 0; i < kPacketToSend; ++i) {
    SendAndExpectPacket(PacedSender::kNormalPriority, kSsrc, sequence_number++,
                        clock_.TimeInMilliseconds(), kSizeBytes, false);
    send_bucket_->Process();
    clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
  }
  EXPECT_EQ(kStartMs, send_bucket_->FirstSentPacketTimeMs());
}

TEST_P(PacedSenderTest, QueuePacket) {
  uint32_t ssrc = 12345;
  uint16_t sequence_number = 1234;
  // Due to the multiplicative factor we can send 5 packets during a send
  // interval. (network capacity * multiplier / (8 bits per byte *
  // (packet size * #send intervals per second)
  const size_t packets_to_send =
      kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
  for (size_t i = 0; i < packets_to_send; ++i) {
    SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
                        clock_.TimeInMilliseconds(), 250, false);
  }

  int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
  send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                             sequence_number, queued_packet_timestamp, 250,
                             false);
  EXPECT_EQ(packets_to_send + 1, send_bucket_->QueueSizePackets());
  send_bucket_->Process();
  EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
  EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
  clock_.AdvanceTimeMilliseconds(4);
  EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(1);
  EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
  EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
  EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number++,
                                          queued_packet_timestamp, false, _))
      .Times(1)
      .WillRepeatedly(Return(true));
  send_bucket_->Process();
  sequence_number++;
  EXPECT_EQ(0u, send_bucket_->QueueSizePackets());

  // We can send packets_to_send -1 packets of size 250 during the current
  // interval since one packet has already been sent.
  for (size_t i = 0; i < packets_to_send - 1; ++i) {
    SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
                        clock_.TimeInMilliseconds(), 250, false);
  }
  send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                             sequence_number++, clock_.TimeInMilliseconds(),
                             250, false);
  EXPECT_EQ(packets_to_send, send_bucket_->QueueSizePackets());
  send_bucket_->Process();
  EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
}

TEST_P(PacedSenderTest, PaceQueuedPackets) {
  uint32_t ssrc = 12345;
  uint16_t sequence_number = 1234;

  // Due to the multiplicative factor we can send 5 packets during a send
  // interval. (network capacity * multiplier / (8 bits per byte *
  // (packet size * #send intervals per second)
  const size_t packets_to_send_per_interval =
      kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
  for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
    SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
                        clock_.TimeInMilliseconds(), 250, false);
  }

  for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
    send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                               sequence_number++, clock_.TimeInMilliseconds(),
                               250, false);
  }
  EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10,
            send_bucket_->QueueSizePackets());
  send_bucket_->Process();
  EXPECT_EQ(packets_to_send_per_interval * 10,
            send_bucket_->QueueSizePackets());
  EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
  for (int k = 0; k < 10; ++k) {
    EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
    clock_.AdvanceTimeMilliseconds(5);
    EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false, _))
        .Times(packets_to_send_per_interval)
        .WillRepeatedly(Return(true));
    EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
    send_bucket_->Process();
  }
  EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
  EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(5);
  EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
  EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
  send_bucket_->Process();

  for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
    SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
                        clock_.TimeInMilliseconds(), 250, false);
  }
  send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                             sequence_number, clock_.TimeInMilliseconds(), 250,
                             false);
  send_bucket_->Process();
  EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
}

TEST_P(PacedSenderTest, RepeatedRetransmissionsAllowed) {
  // Send one packet, then two retransmissions of that packet.
  for (size_t i = 0; i < 3; i++) {
    constexpr uint32_t ssrc = 333;
    constexpr uint16_t sequence_number = 444;
    constexpr size_t bytes = 250;
    bool is_retransmission = (i != 0);  // Original followed by retransmissions.
    SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number,
                        clock_.TimeInMilliseconds(), bytes, is_retransmission);
    clock_.AdvanceTimeMilliseconds(5);
  }
  send_bucket_->Process();
}

TEST_P(PacedSenderTest, CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
  uint32_t ssrc = 12345;
  uint16_t sequence_number = 1234;

  SendAndExpectPacket(PacedSender::kNormalPriority,
                      ssrc,
                      sequence_number,
                      clock_.TimeInMilliseconds(),
                      250,
                      false);

  // Expect packet on second ssrc to be queued and sent as well.
  SendAndExpectPacket(PacedSender::kNormalPriority,
                      ssrc + 1,
                      sequence_number,
                      clock_.TimeInMilliseconds(),
                      250,
                      false);

  clock_.AdvanceTimeMilliseconds(1000);
  send_bucket_->Process();
}

TEST_P(PacedSenderTest, Padding) {
  uint32_t ssrc = 12345;
  uint16_t sequence_number = 1234;

  send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
  send_bucket_->SetSendBitrateLimits(kTargetBitrateBps, kTargetBitrateBps);

  // Due to the multiplicative factor we can send 5 packets during a send
  // interval. (network capacity * multiplier / (8 bits per byte *
  // (packet size * #send intervals per second)
  const size_t packets_to_send_per_interval =
      kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
  for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
    SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
                        clock_.TimeInMilliseconds(), 250, false);
  }
  // No padding is expected since we have sent too much already.
  EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
  EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
  send_bucket_->Process();
  EXPECT_EQ(0u, send_bucket_->QueueSizePackets());

  // 5 milliseconds later should not send padding since we filled the buffers
  // initially.
  EXPECT_CALL(callback_, TimeToSendPadding(250, _)).Times(0);
  EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(5);
  EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
  send_bucket_->Process();

  // 5 milliseconds later we have enough budget to send some padding.
  EXPECT_CALL(callback_, TimeToSendPadding(250, _))
      .Times(1)
      .WillOnce(Return(250));
  EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(5);
  EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
  send_bucket_->Process();
}

TEST_P(PacedSenderTest, NoPaddingBeforeNormalPacket) {
  send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
  send_bucket_->SetSendBitrateLimits(kTargetBitrateBps, kTargetBitrateBps);

  EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
  send_bucket_->Process();
  clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());

  send_bucket_->Process();
  clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());

  uint32_t ssrc = 12345;
  uint16_t sequence_number = 1234;
  int64_t capture_time_ms = 56789;

  SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
                      capture_time_ms, 250, false);
  EXPECT_CALL(callback_, TimeToSendPadding(250, _))
      .Times(1)
      .WillOnce(Return(250));
  send_bucket_->Process();
}

TEST_P(PacedSenderTest, VerifyPaddingUpToBitrate) {
  uint32_t ssrc = 12345;
  uint16_t sequence_number = 1234;
  int64_t capture_time_ms = 56789;
  const int kTimeStep = 5;
  const int64_t kBitrateWindow = 100;
  send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
  send_bucket_->SetSendBitrateLimits(kTargetBitrateBps, kTargetBitrateBps);

  int64_t start_time = clock_.TimeInMilliseconds();
  while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
    SendAndExpectPacket(PacedSender::kNormalPriority,
                        ssrc,
                        sequence_number++,
                        capture_time_ms,
                        250,
                        false);
    EXPECT_CALL(callback_, TimeToSendPadding(250, _))
        .Times(1)
        .WillOnce(Return(250));
    send_bucket_->Process();
    clock_.AdvanceTimeMilliseconds(kTimeStep);
  }
}

TEST_P(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) {
  uint32_t ssrc = 12345;
  uint16_t sequence_number = 1234;
  int64_t capture_time_ms = 56789;
  const int kTimeStep = 5;
  const int64_t kBitrateWindow = 10000;
  PacedSenderPadding callback;
  send_bucket_.reset(new PacedSender(&clock_, &callback, nullptr));
  send_bucket_->SetProbingEnabled(false);
  send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);

  send_bucket_->SetSendBitrateLimits(
      0 /*allocated_bitrate_bps*/,
      kTargetBitrateBps * 2 /* max_padding_bitrate_bps */);

  int64_t start_time = clock_.TimeInMilliseconds();
  size_t media_bytes = 0;
  while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
    int rand_value = rand();  // NOLINT (rand_r instead of rand)
    size_t media_payload = rand_value % 100 + 200;  // [200, 300] bytes.
    send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                               sequence_number++, capture_time_ms,
                               media_payload, false);
    media_bytes += media_payload;
    clock_.AdvanceTimeMilliseconds(kTimeStep);
    send_bucket_->Process();
  }
  EXPECT_NEAR(kTargetBitrateBps / 1000,
              static_cast<int>(8 * (media_bytes + callback.padding_sent()) /
                               kBitrateWindow),
              1);
}

TEST_P(PacedSenderTest, Priority) {
  uint32_t ssrc_low_priority = 12345;
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;
  int64_t capture_time_ms = 56789;
  int64_t capture_time_ms_low_priority = 1234567;

  // Due to the multiplicative factor we can send 5 packets during a send
  // interval. (network capacity * multiplier / (8 bits per byte *
  // (packet size * #send intervals per second)
  const size_t packets_to_send_per_interval =
      kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
  for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
    SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
                        clock_.TimeInMilliseconds(), 250, false);
  }
  send_bucket_->Process();
  EXPECT_EQ(0u, send_bucket_->QueueSizePackets());

  // Expect normal and low priority to be queued and high to pass through.
  send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority,
                             sequence_number++, capture_time_ms_low_priority,
                             250, false);

  for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
    send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                               sequence_number++, capture_time_ms, 250, false);
  }
  send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc,
                             sequence_number++, capture_time_ms, 250, false);

  // Expect all high and normal priority to be sent out first.
  EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
  EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false, _))
      .Times(packets_to_send_per_interval + 1)
      .WillRepeatedly(Return(true));

  EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(5);
  EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
  send_bucket_->Process();
  EXPECT_EQ(1u, send_bucket_->QueueSizePackets());

  EXPECT_CALL(callback_,
              TimeToSendPacket(ssrc_low_priority, _,
                               capture_time_ms_low_priority, false, _))
      .Times(1)
      .WillRepeatedly(Return(true));

  EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(5);
  EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
  send_bucket_->Process();
}

TEST_P(PacedSenderTest, RetransmissionPriority) {
  uint32_t ssrc = 12345;
  uint16_t sequence_number = 1234;
  int64_t capture_time_ms = 45678;
  int64_t capture_time_ms_retransmission = 56789;

  // Due to the multiplicative factor we can send 5 packets during a send
  // interval. (network capacity * multiplier / (8 bits per byte *
  // (packet size * #send intervals per second)
  const size_t packets_to_send_per_interval =
      kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
  send_bucket_->Process();
  EXPECT_EQ(0u, send_bucket_->QueueSizePackets());

  // Alternate retransmissions and normal packets.
  for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
    send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                               sequence_number++,
                               capture_time_ms_retransmission, 250, true);
    send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                               sequence_number++, capture_time_ms, 250, false);
  }
  EXPECT_EQ(2 * packets_to_send_per_interval, send_bucket_->QueueSizePackets());

  // Expect all retransmissions to be sent out first despite having a later
  // capture time.
  EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
  EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, false, _)).Times(0);
  EXPECT_CALL(callback_, TimeToSendPacket(
                             ssrc, _, capture_time_ms_retransmission, true, _))
      .Times(packets_to_send_per_interval)
      .WillRepeatedly(Return(true));

  EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(5);
  EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
  send_bucket_->Process();
  EXPECT_EQ(packets_to_send_per_interval, send_bucket_->QueueSizePackets());

  // Expect the remaining (non-retransmission) packets to be sent.
  EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
  EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, true, _)).Times(0);
  EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false, _))
      .Times(packets_to_send_per_interval)
      .WillRepeatedly(Return(true));

  EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(5);
  EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
  send_bucket_->Process();

  EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
}

TEST_P(PacedSenderTest, HighPrioDoesntAffectBudget) {
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;
  int64_t capture_time_ms = 56789;

  // As high prio packets doesn't affect the budget, we should be able to send
  // a high number of them at once.
  for (int i = 0; i < 25; ++i) {
    SendAndExpectPacket(PacedSender::kHighPriority, ssrc, sequence_number++,
                        capture_time_ms, 250, false);
  }
  send_bucket_->Process();
  // Low prio packets does affect the budget.
  // Due to the multiplicative factor we can send 5 packets during a send
  // interval. (network capacity * multiplier / (8 bits per byte *
  // (packet size * #send intervals per second)
  const size_t packets_to_send_per_interval =
      kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
  for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
    SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++,
                        clock_.TimeInMilliseconds(), 250, false);
  }
  send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc, sequence_number,
                             capture_time_ms, 250, false);
  EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(5);
  send_bucket_->Process();
  EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
  EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number++,
                                          capture_time_ms, false, _))
      .Times(1)
      .WillRepeatedly(Return(true));
  EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(5);
  send_bucket_->Process();
  EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
}

TEST_P(PacedSenderTest, Pause) {
  uint32_t ssrc_low_priority = 12345;
  uint32_t ssrc = 12346;
  uint32_t ssrc_high_priority = 12347;
  uint16_t sequence_number = 1234;
  int64_t capture_time_ms = clock_.TimeInMilliseconds();

  EXPECT_EQ(0, send_bucket_->QueueInMs());

  // Due to the multiplicative factor we can send 5 packets during a send
  // interval. (network capacity * multiplier / (8 bits per byte *
  // (packet size * #send intervals per second)
  const size_t packets_to_send_per_interval =
      kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
  for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
    SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
                        clock_.TimeInMilliseconds(), 250, false);
  }

  send_bucket_->Process();

  send_bucket_->Pause();

  for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
    send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority,
                               sequence_number++, capture_time_ms, 250, false);
    send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                               sequence_number++, capture_time_ms, 250, false);
    send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc_high_priority,
                               sequence_number++, capture_time_ms, 250, false);
  }
  clock_.AdvanceTimeMilliseconds(10000);
  int64_t second_capture_time_ms = clock_.TimeInMilliseconds();
  for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
    send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority,
                               sequence_number++, second_capture_time_ms, 250,
                               false);
    send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                               sequence_number++, second_capture_time_ms, 250,
                               false);
    send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc_high_priority,
                               sequence_number++, second_capture_time_ms, 250,
                               false);
  }

  // Expect everything to be queued.
  EXPECT_EQ(second_capture_time_ms - capture_time_ms,
            send_bucket_->QueueInMs());

  EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
  EXPECT_CALL(callback_, TimeToSendPadding(1, _)).Times(1);
  send_bucket_->Process();

  int64_t expected_time_until_send = 500;
  EXPECT_CALL(callback_, TimeToSendPadding(1, _)).Times(1);
  while (expected_time_until_send >= 0) {
    // TimeUntilNextProcess must not return 0 when paused.  If it does,
    // we risk running a busy loop, so ideally it should return a large value.
    EXPECT_EQ(expected_time_until_send, send_bucket_->TimeUntilNextProcess());
    if (expected_time_until_send == 0)
      send_bucket_->Process();
    clock_.AdvanceTimeMilliseconds(5);
    expected_time_until_send -= 5;
  }

  // Expect high prio packets to come out first followed by normal
  // prio packets and low prio packets (all in capture order).
  {
    ::testing::InSequence sequence;
    EXPECT_CALL(callback_,
                TimeToSendPacket(ssrc_high_priority, _, capture_time_ms, _, _))
        .Times(packets_to_send_per_interval)
        .WillRepeatedly(Return(true));
    EXPECT_CALL(callback_, TimeToSendPacket(ssrc_high_priority, _,
                                            second_capture_time_ms, _, _))
        .Times(packets_to_send_per_interval)
        .WillRepeatedly(Return(true));

    for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
      EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, _, _))
          .Times(1)
          .WillRepeatedly(Return(true));
    }
    for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
      EXPECT_CALL(callback_,
                  TimeToSendPacket(ssrc, _, second_capture_time_ms, _, _))
          .Times(1)
          .WillRepeatedly(Return(true));
    }
    for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
      EXPECT_CALL(callback_,
                  TimeToSendPacket(ssrc_low_priority, _, capture_time_ms, _, _))
          .Times(1)
          .WillRepeatedly(Return(true));
    }
    for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
      EXPECT_CALL(callback_, TimeToSendPacket(ssrc_low_priority, _,
                                              second_capture_time_ms, _, _))
          .Times(1)
          .WillRepeatedly(Return(true));
    }
  }
  send_bucket_->Resume();

  for (size_t i = 0; i < 4; i++) {
    EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
    send_bucket_->Process();
    EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
    clock_.AdvanceTimeMilliseconds(5);
  }

  EXPECT_EQ(0, send_bucket_->QueueInMs());
}

TEST_P(PacedSenderTest, ResendPacket) {
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;
  int64_t capture_time_ms = clock_.TimeInMilliseconds();
  EXPECT_EQ(0, send_bucket_->QueueInMs());

  send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                             sequence_number, capture_time_ms, 250, false);
  clock_.AdvanceTimeMilliseconds(1);
  send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                             sequence_number + 1, capture_time_ms + 1, 250,
                             false);
  clock_.AdvanceTimeMilliseconds(9999);
  EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
            send_bucket_->QueueInMs());
  // Fails to send first packet so only one call.
  EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
                                          capture_time_ms, false, _))
      .Times(1)
      .WillOnce(Return(false));
  clock_.AdvanceTimeMilliseconds(10000);
  send_bucket_->Process();

  // Queue remains unchanged.
  EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
            send_bucket_->QueueInMs());

  // Fails to send second packet.
  EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
                                          capture_time_ms, false, _))
      .Times(1)
      .WillOnce(Return(true));
  EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1,
                                          capture_time_ms + 1, false, _))
      .Times(1)
      .WillOnce(Return(false));
  clock_.AdvanceTimeMilliseconds(10000);
  send_bucket_->Process();

  // Queue is reduced by 1 packet.
  EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms - 1,
            send_bucket_->QueueInMs());

  // Send second packet and queue becomes empty.
  EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1,
                                          capture_time_ms + 1, false, _))
      .Times(1)
      .WillOnce(Return(true));
  clock_.AdvanceTimeMilliseconds(10000);
  send_bucket_->Process();
  EXPECT_EQ(0, send_bucket_->QueueInMs());
}

TEST_P(PacedSenderTest, ExpectedQueueTimeMs) {
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;
  const size_t kNumPackets = 60;
  const size_t kPacketSize = 1200;
  const int32_t kMaxBitrate = PacedSender::kDefaultPaceMultiplier * 30000;
  EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());

  send_bucket_->SetEstimatedBitrate(30000);
  for (size_t i = 0; i < kNumPackets; ++i) {
    SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
                        clock_.TimeInMilliseconds(), kPacketSize, false);
  }

  // Queue in ms = 1000 * (bytes in queue) *8 / (bits per second)
  int64_t queue_in_ms =
      static_cast<int64_t>(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate);
  EXPECT_EQ(queue_in_ms, send_bucket_->ExpectedQueueTimeMs());

  int64_t time_start = clock_.TimeInMilliseconds();
  while (send_bucket_->QueueSizePackets() > 0) {
    int time_until_process = send_bucket_->TimeUntilNextProcess();
    if (time_until_process <= 0) {
      send_bucket_->Process();
    } else {
      clock_.AdvanceTimeMilliseconds(time_until_process);
    }
  }
  int64_t duration = clock_.TimeInMilliseconds() - time_start;

  EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());

  // Allow for aliasing, duration should be within one pack of max time limit.
  EXPECT_NEAR(duration, PacedSender::kMaxQueueLengthMs,
              static_cast<int64_t>(1000 * kPacketSize * 8 / kMaxBitrate));
}

TEST_P(PacedSenderTest, QueueTimeGrowsOverTime) {
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;
  EXPECT_EQ(0, send_bucket_->QueueInMs());

  send_bucket_->SetEstimatedBitrate(30000);
  SendAndExpectPacket(PacedSender::kNormalPriority,
                      ssrc,
                      sequence_number,
                      clock_.TimeInMilliseconds(),
                      1200,
                      false);

  clock_.AdvanceTimeMilliseconds(500);
  EXPECT_EQ(500, send_bucket_->QueueInMs());
  send_bucket_->Process();
  EXPECT_EQ(0, send_bucket_->QueueInMs());
}

TEST_P(PacedSenderTest, ProbingWithInsertedPackets) {
  const size_t kPacketSize = 1200;
  const int kInitialBitrateBps = 300000;
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;

  PacedSenderProbing packet_sender;
  send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr));
  send_bucket_->CreateProbeCluster(kFirstClusterBps);
  send_bucket_->CreateProbeCluster(kSecondClusterBps);
  send_bucket_->SetEstimatedBitrate(kInitialBitrateBps);

  for (int i = 0; i < 10; ++i) {
    send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                               sequence_number++, clock_.TimeInMilliseconds(),
                               kPacketSize, false);
  }

  int64_t start = clock_.TimeInMilliseconds();
  while (packet_sender.packets_sent() < 5) {
    int time_until_process = send_bucket_->TimeUntilNextProcess();
    clock_.AdvanceTimeMilliseconds(time_until_process);
    send_bucket_->Process();
  }
  int packets_sent = packet_sender.packets_sent();
  // Validate first cluster bitrate. Note that we have to account for number
  // of intervals and hence (packets_sent - 1) on the first cluster.
  EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
                  (clock_.TimeInMilliseconds() - start),
              kFirstClusterBps, kBitrateProbingError);
  EXPECT_EQ(0, packet_sender.padding_sent());

  clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
  start = clock_.TimeInMilliseconds();
  while (packet_sender.packets_sent() < 10) {
    int time_until_process = send_bucket_->TimeUntilNextProcess();
    clock_.AdvanceTimeMilliseconds(time_until_process);
    send_bucket_->Process();
  }
  packets_sent = packet_sender.packets_sent() - packets_sent;
  // Validate second cluster bitrate.
  EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
                  (clock_.TimeInMilliseconds() - start),
              kSecondClusterBps, kBitrateProbingError);
}

TEST_P(PacedSenderTest, ProbingWithPaddingSupport) {
  const size_t kPacketSize = 1200;
  const int kInitialBitrateBps = 300000;
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;

  PacedSenderProbing packet_sender;
  send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr));
  send_bucket_->CreateProbeCluster(kFirstClusterBps);
  send_bucket_->SetEstimatedBitrate(kInitialBitrateBps);

  for (int i = 0; i < 3; ++i) {
    send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                               sequence_number++, clock_.TimeInMilliseconds(),
                               kPacketSize, false);
  }

  int64_t start = clock_.TimeInMilliseconds();
  int process_count = 0;
  while (process_count < 5) {
    int time_until_process = send_bucket_->TimeUntilNextProcess();
    clock_.AdvanceTimeMilliseconds(time_until_process);
    send_bucket_->Process();
    ++process_count;
  }
  int packets_sent = packet_sender.packets_sent();
  int padding_sent = packet_sender.padding_sent();
  EXPECT_GT(packets_sent, 0);
  EXPECT_GT(padding_sent, 0);
  // Note that the number of intervals here for kPacketSize is
  // packets_sent due to padding in the same cluster.
  EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) /
                  (clock_.TimeInMilliseconds() - start),
              kFirstClusterBps, kBitrateProbingError);
}

TEST_P(PacedSenderTest, PriorityInversion) {
  // In this test capture timestamps are used to order packets, capture
  // timestamps are not used in PacketQueue2.
  if (webrtc::field_trial::IsEnabled("WebRTC-RoundRobinPacing"))
    return;
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;
  const size_t kPacketSize = 1200;

  send_bucket_->InsertPacket(
      PacedSender::kHighPriority, ssrc, sequence_number + 3,
      clock_.TimeInMilliseconds() + 33, kPacketSize, true);

  send_bucket_->InsertPacket(
      PacedSender::kHighPriority, ssrc, sequence_number + 2,
      clock_.TimeInMilliseconds() + 33, kPacketSize, true);

  send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc, sequence_number,
                             clock_.TimeInMilliseconds(), kPacketSize, true);

  send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc,
                             sequence_number + 1, clock_.TimeInMilliseconds(),
                             kPacketSize, true);

  // Packets from earlier frames should be sent first.
  {
    ::testing::InSequence sequence;
    EXPECT_CALL(callback_,
                TimeToSendPacket(ssrc, sequence_number,
                                 clock_.TimeInMilliseconds(), true, _))
        .WillOnce(Return(true));
    EXPECT_CALL(callback_,
                TimeToSendPacket(ssrc, sequence_number + 1,
                                 clock_.TimeInMilliseconds(), true, _))
        .WillOnce(Return(true));
    EXPECT_CALL(callback_,
                TimeToSendPacket(ssrc, sequence_number + 3,
                                 clock_.TimeInMilliseconds() + 33, true, _))
        .WillOnce(Return(true));
    EXPECT_CALL(callback_,
                TimeToSendPacket(ssrc, sequence_number + 2,
                                 clock_.TimeInMilliseconds() + 33, true, _))
        .WillOnce(Return(true));

    while (send_bucket_->QueueSizePackets() > 0) {
      int time_until_process = send_bucket_->TimeUntilNextProcess();
      if (time_until_process <= 0) {
        send_bucket_->Process();
      } else {
        clock_.AdvanceTimeMilliseconds(time_until_process);
      }
    }
  }
}

TEST_P(PacedSenderTest, PaddingOveruse) {
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;
  const size_t kPacketSize = 1200;

  send_bucket_->Process();
  send_bucket_->SetEstimatedBitrate(60000);
  send_bucket_->SetSendBitrateLimits(60000, 0);

  SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
                      clock_.TimeInMilliseconds(), kPacketSize, false);
  send_bucket_->Process();

  // Add 30kbit padding. When increasing budget, media budget will increase from
  // negative (overuse) while padding budget will increase from 0.
  clock_.AdvanceTimeMilliseconds(5);
  send_bucket_->SetSendBitrateLimits(60000, 30000);

  SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
                      clock_.TimeInMilliseconds(), kPacketSize, false);
  EXPECT_LT(5u, send_bucket_->ExpectedQueueTimeMs());
  // Don't send padding if queue is non-empty, even if padding budget > 0.
  EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
  send_bucket_->Process();
}

TEST_P(PacedSenderTest, AverageQueueTime) {
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;
  const size_t kPacketSize = 1200;
  const int kBitrateBps = 10 * kPacketSize * 8;  // 10 packets per second.

  send_bucket_->SetEstimatedBitrate(kBitrateBps);

  EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs());

  int64_t first_capture_time = clock_.TimeInMilliseconds();
  send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                             sequence_number, first_capture_time, kPacketSize,
                             false);
  clock_.AdvanceTimeMilliseconds(10);
  send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                             sequence_number + 1, clock_.TimeInMilliseconds(),
                             kPacketSize, false);
  clock_.AdvanceTimeMilliseconds(10);

  EXPECT_EQ((20 + 10) / 2, send_bucket_->AverageQueueTimeMs());

  // Only first packet (queued for 20ms) should be removed, leave the second
  // packet (queued for 10ms) alone in the queue.
  EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
                                          first_capture_time, false, _))
      .Times(1)
      .WillRepeatedly(Return(true));
  send_bucket_->Process();

  EXPECT_EQ(10, send_bucket_->AverageQueueTimeMs());

  clock_.AdvanceTimeMilliseconds(10);
  EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1,
                                          first_capture_time + 10, false, _))
      .Times(1)
      .WillRepeatedly(Return(true));
  for (int i = 0; i < 3; ++i) {
    clock_.AdvanceTimeMilliseconds(30);  // Max delta.
    send_bucket_->Process();
  }

  EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs());
}

TEST_P(PacedSenderTest, ProbeClusterId) {
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;
  const size_t kPacketSize = 1200;

  send_bucket_->SetSendBitrateLimits(kTargetBitrateBps, kTargetBitrateBps);
  send_bucket_->SetProbingEnabled(true);
  for (int i = 0; i < 10; ++i) {
    send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                               sequence_number + i, clock_.TimeInMilliseconds(),
                               kPacketSize, false);
  }

  // First probing cluster.
  EXPECT_CALL(callback_,
              TimeToSendPacket(_, _, _, _,
                               Field(&PacedPacketInfo::probe_cluster_id, 0)))
      .Times(5)
      .WillRepeatedly(Return(true));
  for (int i = 0; i < 5; ++i) {
    clock_.AdvanceTimeMilliseconds(20);
    send_bucket_->Process();
  }

  // Second probing cluster.
  EXPECT_CALL(callback_,
              TimeToSendPacket(_, _, _, _,
                               Field(&PacedPacketInfo::probe_cluster_id, 1)))
      .Times(5)
      .WillRepeatedly(Return(true));
  for (int i = 0; i < 5; ++i) {
    clock_.AdvanceTimeMilliseconds(20);
    send_bucket_->Process();
  }

  // Needed for the Field comparer below.
  const int kNotAProbe = PacedPacketInfo::kNotAProbe;
  // No more probing packets.
  EXPECT_CALL(callback_,
              TimeToSendPadding(
                  _, Field(&PacedPacketInfo::probe_cluster_id, kNotAProbe)))
      .Times(1)
      .WillRepeatedly(Return(500));
  send_bucket_->Process();
}

TEST_P(PacedSenderTest, AvoidBusyLoopOnSendFailure) {
  uint32_t ssrc = 12346;
  uint16_t sequence_number = 1234;
  const size_t kPacketSize = kFirstClusterBps / (8000 / 10);

  send_bucket_->SetSendBitrateLimits(kTargetBitrateBps, kTargetBitrateBps);
  send_bucket_->SetProbingEnabled(true);
  send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
                             sequence_number, clock_.TimeInMilliseconds(),
                             kPacketSize, false);

  EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _, _))
      .WillOnce(Return(true));
  send_bucket_->Process();
  EXPECT_EQ(10, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(9);

  EXPECT_CALL(callback_, TimeToSendPadding(_, _))
      .Times(2)
      .WillRepeatedly(Return(0));
  send_bucket_->Process();
  EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess());
  clock_.AdvanceTimeMilliseconds(1);
  send_bucket_->Process();
  EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
}

TEST_P(PacedSenderTest, QueueTimeWithPause) {
  const size_t kPacketSize = 1200;
  const uint32_t kSsrc = 12346;
  uint16_t sequence_number = 1234;

  send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
      sequence_number++, clock_.TimeInMilliseconds(),
      kPacketSize, false);
  send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
      sequence_number++, clock_.TimeInMilliseconds(),
      kPacketSize, false);

  clock_.AdvanceTimeMilliseconds(100);
  EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());

  send_bucket_->Pause();
  EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());

  // In paused state, queue time should not increase.
  clock_.AdvanceTimeMilliseconds(100);
  EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());

  send_bucket_->Resume();
  EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());

  clock_.AdvanceTimeMilliseconds(100);
  EXPECT_EQ(200, send_bucket_->AverageQueueTimeMs());
}

TEST_P(PacedSenderTest, QueueTimePausedDuringPush) {
  const size_t kPacketSize = 1200;
  const uint32_t kSsrc = 12346;
  uint16_t sequence_number = 1234;

  send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
      sequence_number++, clock_.TimeInMilliseconds(),
      kPacketSize, false);
  clock_.AdvanceTimeMilliseconds(100);
  send_bucket_->Pause();
  clock_.AdvanceTimeMilliseconds(100);
  EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());

  // Add a new packet during paused phase.
  send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
      sequence_number++, clock_.TimeInMilliseconds(),
      kPacketSize, false);
  // From a queue time perspective, packet inserted during pause will have zero
  // queue time. Average queue time will then be (0 + 100) / 2 = 50.
  EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs());

  clock_.AdvanceTimeMilliseconds(100);
  EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs());

  send_bucket_->Resume();
  EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs());

  clock_.AdvanceTimeMilliseconds(100);
  EXPECT_EQ(150, send_bucket_->AverageQueueTimeMs());
}

// TODO(sprang): Extract PacketQueue from PacedSender so that we can test
// removing elements while paused. (This is possible, but only because of semi-
// racy condition so can't easily be tested).

}  // namespace test
}  // namespace webrtc