summaryrefslogtreecommitdiff
path: root/chromium/third_party/webrtc/modules/pacing/paced_sender.cc
blob: 96355b30c075e0f8c9bbd8ab086d04a3be80b920 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/pacing/paced_sender.h"

#include <algorithm>
#include <map>
#include <queue>
#include <set>
#include <vector>

#include "modules/include/module_common_types.h"
#include "modules/pacing/alr_detector.h"
#include "modules/pacing/bitrate_prober.h"
#include "modules/pacing/interval_budget.h"
#include "modules/utility/include/process_thread.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"

namespace {
// Time limit in milliseconds between packet bursts.
const int64_t kMinPacketLimitMs = 5;
const int64_t kPausedPacketIntervalMs = 500;

// Upper cap on process interval, in case process has not been called in a long
// time.
const int64_t kMaxIntervalTimeMs = 30;

}  // namespace

namespace webrtc {

const int64_t PacedSender::kMaxQueueLengthMs = 2000;
const float PacedSender::kDefaultPaceMultiplier = 2.5f;

PacedSender::PacedSender(const Clock* clock,
                         PacketSender* packet_sender,
                         RtcEventLog* event_log)
    : clock_(clock),
      packet_sender_(packet_sender),
      alr_detector_(new AlrDetector()),
      paused_(false),
      media_budget_(new IntervalBudget(0)),
      padding_budget_(new IntervalBudget(0)),
      prober_(new BitrateProber(event_log)),
      probing_send_failure_(false),
      estimated_bitrate_bps_(0),
      min_send_bitrate_kbps_(0u),
      max_padding_bitrate_kbps_(0u),
      pacing_bitrate_kbps_(0),
      time_last_update_us_(clock->TimeInMicroseconds()),
      first_sent_packet_ms_(-1),
      packets_(new PacketQueue(clock)),
      packet_counter_(0),
      pacing_factor_(kDefaultPaceMultiplier),
      queue_time_limit(kMaxQueueLengthMs) {
  UpdateBudgetWithElapsedTime(kMinPacketLimitMs);
}

PacedSender::~PacedSender() {}

void PacedSender::CreateProbeCluster(int bitrate_bps) {
  rtc::CritScope cs(&critsect_);
  prober_->CreateProbeCluster(bitrate_bps, clock_->TimeInMilliseconds());
}

void PacedSender::Pause() {
  {
    rtc::CritScope cs(&critsect_);
    if (!paused_)
      LOG(LS_INFO) << "PacedSender paused.";
    paused_ = true;
    packets_->SetPauseState(true, clock_->TimeInMilliseconds());
  }
  // Tell the process thread to call our TimeUntilNextProcess() method to get
  // a new (longer) estimate for when to call Process().
  if (process_thread_)
    process_thread_->WakeUp(this);
}

void PacedSender::Resume() {
  {
    rtc::CritScope cs(&critsect_);
    if (paused_)
      LOG(LS_INFO) << "PacedSender resumed.";
    paused_ = false;
    packets_->SetPauseState(false, clock_->TimeInMilliseconds());
  }
  // Tell the process thread to call our TimeUntilNextProcess() method to
  // refresh the estimate for when to call Process().
  if (process_thread_)
    process_thread_->WakeUp(this);
}

void PacedSender::SetProbingEnabled(bool enabled) {
  RTC_CHECK_EQ(0, packet_counter_);
  rtc::CritScope cs(&critsect_);
  prober_->SetEnabled(enabled);
}

void PacedSender::SetEstimatedBitrate(uint32_t bitrate_bps) {
  if (bitrate_bps == 0)
    LOG(LS_ERROR) << "PacedSender is not designed to handle 0 bitrate.";
  rtc::CritScope cs(&critsect_);
  estimated_bitrate_bps_ = bitrate_bps;
  padding_budget_->set_target_rate_kbps(
      std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_));
  pacing_bitrate_kbps_ =
      std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) *
      pacing_factor_;
  alr_detector_->SetEstimatedBitrate(bitrate_bps);
}

void PacedSender::SetSendBitrateLimits(int min_send_bitrate_bps,
                                       int padding_bitrate) {
  rtc::CritScope cs(&critsect_);
  min_send_bitrate_kbps_ = min_send_bitrate_bps / 1000;
  pacing_bitrate_kbps_ =
      std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) *
      pacing_factor_;
  max_padding_bitrate_kbps_ = padding_bitrate / 1000;
  padding_budget_->set_target_rate_kbps(
      std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_));
}

void PacedSender::InsertPacket(RtpPacketSender::Priority priority,
                               uint32_t ssrc,
                               uint16_t sequence_number,
                               int64_t capture_time_ms,
                               size_t bytes,
                               bool retransmission) {
  rtc::CritScope cs(&critsect_);
  RTC_DCHECK(estimated_bitrate_bps_ > 0)
        << "SetEstimatedBitrate must be called before InsertPacket.";

  int64_t now_ms = clock_->TimeInMilliseconds();
  prober_->OnIncomingPacket(bytes);

  if (capture_time_ms < 0)
    capture_time_ms = now_ms;

  packets_->Push(PacketQueue::Packet(priority, ssrc, sequence_number,
                                     capture_time_ms, now_ms, bytes,
                                     retransmission, packet_counter_++));
}

int64_t PacedSender::ExpectedQueueTimeMs() const {
  rtc::CritScope cs(&critsect_);
  RTC_DCHECK_GT(pacing_bitrate_kbps_, 0);
  return static_cast<int64_t>(packets_->SizeInBytes() * 8 /
                              pacing_bitrate_kbps_);
}

rtc::Optional<int64_t> PacedSender::GetApplicationLimitedRegionStartTime()
    const {
  rtc::CritScope cs(&critsect_);
  return alr_detector_->GetApplicationLimitedRegionStartTime();
}

size_t PacedSender::QueueSizePackets() const {
  rtc::CritScope cs(&critsect_);
  return packets_->SizeInPackets();
}

int64_t PacedSender::FirstSentPacketTimeMs() const {
  rtc::CritScope cs(&critsect_);
  return first_sent_packet_ms_;
}

int64_t PacedSender::QueueInMs() const {
  rtc::CritScope cs(&critsect_);

  int64_t oldest_packet = packets_->OldestEnqueueTimeMs();
  if (oldest_packet == 0)
    return 0;

  return clock_->TimeInMilliseconds() - oldest_packet;
}

int64_t PacedSender::AverageQueueTimeMs() {
  rtc::CritScope cs(&critsect_);
  packets_->UpdateQueueTime(clock_->TimeInMilliseconds());
  return packets_->AverageQueueTimeMs();
}

int64_t PacedSender::TimeUntilNextProcess() {
  rtc::CritScope cs(&critsect_);
  int64_t elapsed_time_us = clock_->TimeInMicroseconds() - time_last_update_us_;
  int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000;
  // When paused we wake up every 500 ms to send a padding packet to ensure
  // we won't get stuck in the paused state due to no feedback being received.
  if (paused_)
    return std::max<int64_t>(kPausedPacketIntervalMs - elapsed_time_ms, 0);

  if (prober_->IsProbing()) {
    int64_t ret = prober_->TimeUntilNextProbe(clock_->TimeInMilliseconds());
    if (ret > 0 || (ret == 0 && !probing_send_failure_))
      return ret;
  }
  return std::max<int64_t>(kMinPacketLimitMs - elapsed_time_ms, 0);
}

void PacedSender::Process() {
  int64_t now_us = clock_->TimeInMicroseconds();
  rtc::CritScope cs(&critsect_);
  int64_t elapsed_time_ms = std::min(
      kMaxIntervalTimeMs, (now_us - time_last_update_us_ + 500) / 1000);
  int target_bitrate_kbps = pacing_bitrate_kbps_;

  if (paused_) {
    PacedPacketInfo pacing_info;
    time_last_update_us_ = now_us;
    // We can not send padding unless a normal packet has first been sent. If we
    // do, timestamps get messed up.
    if (packet_counter_ == 0)
      return;
    size_t bytes_sent = SendPadding(1, pacing_info);
    alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms);
    return;
  }

  if (elapsed_time_ms > 0) {
    size_t queue_size_bytes = packets_->SizeInBytes();
    if (queue_size_bytes > 0) {
      // Assuming equal size packets and input/output rate, the average packet
      // has avg_time_left_ms left to get queue_size_bytes out of the queue, if
      // time constraint shall be met. Determine bitrate needed for that.
      packets_->UpdateQueueTime(clock_->TimeInMilliseconds());
      int64_t avg_time_left_ms = std::max<int64_t>(
          1, queue_time_limit - packets_->AverageQueueTimeMs());
      int min_bitrate_needed_kbps =
          static_cast<int>(queue_size_bytes * 8 / avg_time_left_ms);
      if (min_bitrate_needed_kbps > target_bitrate_kbps)
        target_bitrate_kbps = min_bitrate_needed_kbps;
    }

    media_budget_->set_target_rate_kbps(target_bitrate_kbps);
    UpdateBudgetWithElapsedTime(elapsed_time_ms);
  }

  time_last_update_us_ = now_us;

  bool is_probing = prober_->IsProbing();
  PacedPacketInfo pacing_info;
  size_t bytes_sent = 0;
  size_t recommended_probe_size = 0;
  if (is_probing) {
    pacing_info = prober_->CurrentCluster();
    recommended_probe_size = prober_->RecommendedMinProbeSize();
  }
  while (!packets_->Empty()) {
    // Since we need to release the lock in order to send, we first pop the
    // element from the priority queue but keep it in storage, so that we can
    // reinsert it if send fails.
    const PacketQueue::Packet& packet = packets_->BeginPop();

    if (SendPacket(packet, pacing_info)) {
      // Send succeeded, remove it from the queue.
      if (first_sent_packet_ms_ == -1)
        first_sent_packet_ms_ = clock_->TimeInMilliseconds();
      bytes_sent += packet.bytes;
      packets_->FinalizePop(packet);
      if (is_probing && bytes_sent > recommended_probe_size)
        break;
    } else {
      // Send failed, put it back into the queue.
      packets_->CancelPop(packet);
      break;
    }
  }

  if (packets_->Empty()) {
    // We can not send padding unless a normal packet has first been sent. If we
    // do, timestamps get messed up.
    if (packet_counter_ > 0) {
      int padding_needed =
          static_cast<int>(is_probing ? (recommended_probe_size - bytes_sent)
                                      : padding_budget_->bytes_remaining());
      if (padding_needed > 0)
        bytes_sent += SendPadding(padding_needed, pacing_info);
    }
  }
  if (is_probing) {
    probing_send_failure_ = bytes_sent == 0;
    if (!probing_send_failure_)
      prober_->ProbeSent(clock_->TimeInMilliseconds(), bytes_sent);
  }
  alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms);
}

void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) {
  LOG(LS_INFO) << "ProcessThreadAttached 0x" << std::hex << process_thread;
  process_thread_ = process_thread;
}

bool PacedSender::SendPacket(const PacketQueue::Packet& packet,
                             const PacedPacketInfo& pacing_info) {
  RTC_DCHECK(!paused_);
  if (media_budget_->bytes_remaining() == 0 &&
      pacing_info.probe_cluster_id == PacedPacketInfo::kNotAProbe) {
    return false;
  }

  critsect_.Leave();
  const bool success = packet_sender_->TimeToSendPacket(
      packet.ssrc, packet.sequence_number, packet.capture_time_ms,
      packet.retransmission, pacing_info);
  critsect_.Enter();

  if (success) {
    // TODO(holmer): High priority packets should only be accounted for if we
    // are allocating bandwidth for audio.
    if (packet.priority != kHighPriority) {
      // Update media bytes sent.
      // TODO(eladalon): TimeToSendPacket() can also return |true| in some
      // situations where nothing actually ended up being sent to the network,
      // and we probably don't want to update the budget in such cases.
      // https://bugs.chromium.org/p/webrtc/issues/detail?id=8052
      UpdateBudgetWithBytesSent(packet.bytes);
    }
  }

  return success;
}

size_t PacedSender::SendPadding(size_t padding_needed,
                                const PacedPacketInfo& pacing_info) {
  RTC_DCHECK_GT(packet_counter_, 0);
  critsect_.Leave();
  size_t bytes_sent =
      packet_sender_->TimeToSendPadding(padding_needed, pacing_info);
  critsect_.Enter();

  if (bytes_sent > 0) {
    UpdateBudgetWithBytesSent(bytes_sent);
  }
  return bytes_sent;
}

void PacedSender::UpdateBudgetWithElapsedTime(int64_t delta_time_ms) {
  media_budget_->IncreaseBudget(delta_time_ms);
  padding_budget_->IncreaseBudget(delta_time_ms);
}

void PacedSender::UpdateBudgetWithBytesSent(size_t bytes_sent) {
  media_budget_->UseBudget(bytes_sent);
  padding_budget_->UseBudget(bytes_sent);
}

void PacedSender::SetPacingFactor(float pacing_factor) {
  rtc::CritScope cs(&critsect_);
  pacing_factor_ = pacing_factor;
}

void PacedSender::SetQueueTimeLimit(int limit_ms) {
  rtc::CritScope cs(&critsect_);
  queue_time_limit = limit_ms;
}

}  // namespace webrtc