summaryrefslogtreecommitdiff
path: root/chromium/third_party/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
blob: 4956456a8c015aa746379cf60c329ef03b04c7be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
 *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/aec3/aec_state.h"

#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "test/gtest.h"

namespace webrtc {

// Verify the general functionality of AecState
TEST(AecState, NormalUsage) {
  ApmDataDumper data_dumper(42);
  AecState state(AudioProcessing::Config::EchoCanceller3{});
  RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
                             std::vector<size_t>(1, 30));
  std::array<float, kFftLengthBy2Plus1> E2_main = {};
  std::array<float, kFftLengthBy2Plus1> Y2 = {};
  std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
  EchoPathVariability echo_path_variability(false, false);
  std::array<float, kBlockSize> s;
  s.fill(100.f);

  std::vector<std::array<float, kFftLengthBy2Plus1>>
      converged_filter_frequency_response(10);
  for (auto& v : converged_filter_frequency_response) {
    v.fill(0.01f);
  }
  std::vector<std::array<float, kFftLengthBy2Plus1>>
      diverged_filter_frequency_response = converged_filter_frequency_response;
  converged_filter_frequency_response[2].fill(100.f);
  converged_filter_frequency_response[2][0] = 1.f;

  std::array<float, kAdaptiveFilterTimeDomainLength> impulse_response;
  impulse_response.fill(0.f);

  // Verify that linear AEC usability is false when the filter is diverged and
  // there is no external delay reported.
  state.Update(diverged_filter_frequency_response, impulse_response, true,
               rtc::Optional<size_t>(), render_buffer, E2_main, Y2, x[0], s,
               false);
  EXPECT_FALSE(state.UsableLinearEstimate());

  // Verify that linear AEC usability is true when the filter is converged
  std::fill(x[0].begin(), x[0].end(), 101.f);
  for (int k = 0; k < 3000; ++k) {
    state.Update(converged_filter_frequency_response, impulse_response, true,
                 rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
                 false);
  }
  EXPECT_TRUE(state.UsableLinearEstimate());

  // Verify that linear AEC usability becomes false after an echo path change is
  // reported
  state.HandleEchoPathChange(EchoPathVariability(true, false));
  state.Update(converged_filter_frequency_response, impulse_response, true,
               rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
               false);
  EXPECT_FALSE(state.UsableLinearEstimate());

  // Verify that the active render detection works as intended.
  std::fill(x[0].begin(), x[0].end(), 101.f);
  state.HandleEchoPathChange(EchoPathVariability(true, true));
  state.Update(converged_filter_frequency_response, impulse_response, true,
               rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
               false);
  EXPECT_FALSE(state.ActiveRender());

  for (int k = 0; k < 1000; ++k) {
    state.Update(converged_filter_frequency_response, impulse_response, true,
                 rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
                 false);
  }
  EXPECT_TRUE(state.ActiveRender());

  // Verify that echo leakage is properly reported.
  state.Update(converged_filter_frequency_response, impulse_response, true,
               rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
               false);
  EXPECT_FALSE(state.EchoLeakageDetected());

  state.Update(converged_filter_frequency_response, impulse_response, true,
               rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
               true);
  EXPECT_TRUE(state.EchoLeakageDetected());

  // Verify that the ERL is properly estimated
  for (auto& x_k : x) {
    x_k = std::vector<float>(kBlockSize, 0.f);
  }

  x[0][0] = 5000.f;
  for (size_t k = 0; k < render_buffer.Buffer().size(); ++k) {
    render_buffer.Insert(x);
  }

  Y2.fill(10.f * 10000.f * 10000.f);
  for (size_t k = 0; k < 1000; ++k) {
    state.Update(converged_filter_frequency_response, impulse_response, true,
                 rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
                 false);
  }

  ASSERT_TRUE(state.UsableLinearEstimate());
  const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
  EXPECT_EQ(erl[0], erl[1]);
  for (size_t k = 1; k < erl.size() - 1; ++k) {
    EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1);
  }
  EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]);

  // Verify that the ERLE is properly estimated
  E2_main.fill(1.f * 10000.f * 10000.f);
  Y2.fill(10.f * E2_main[0]);
  for (size_t k = 0; k < 1000; ++k) {
    state.Update(converged_filter_frequency_response, impulse_response, true,
                 rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
                 false);
  }
  ASSERT_TRUE(state.UsableLinearEstimate());
  {
    const auto& erle = state.Erle();
    EXPECT_EQ(erle[0], erle[1]);
    constexpr size_t kLowFrequencyLimit = 32;
    for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
      EXPECT_NEAR(k % 2 == 0 ? 8.f : 1.f, erle[k], 0.1);
    }
    for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
      EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
    }
    EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
  }

  E2_main.fill(1.f * 10000.f * 10000.f);
  Y2.fill(5.f * E2_main[0]);
  for (size_t k = 0; k < 1000; ++k) {
    state.Update(converged_filter_frequency_response, impulse_response, true,
                 rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
                 false);
  }

  ASSERT_TRUE(state.UsableLinearEstimate());
  {
    const auto& erle = state.Erle();
    EXPECT_EQ(erle[0], erle[1]);
    constexpr size_t kLowFrequencyLimit = 32;
    for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
      EXPECT_NEAR(k % 2 == 0 ? 5.f : 1.f, erle[k], 0.1);
    }
    for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
      EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
    }
    EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
  }
}

// Verifies the delay for a converged filter is correctly identified.
TEST(AecState, ConvergedFilterDelay) {
  constexpr int kFilterLength = 10;
  AecState state(AudioProcessing::Config::EchoCanceller3{});
  RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
                             std::vector<size_t>(1, 30));
  std::array<float, kFftLengthBy2Plus1> E2_main;
  std::array<float, kFftLengthBy2Plus1> Y2;
  std::array<float, kBlockSize> x;
  EchoPathVariability echo_path_variability(false, false);
  std::array<float, kBlockSize> s;
  s.fill(100.f);
  x.fill(0.f);

  std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
      kFilterLength);

  std::array<float, kAdaptiveFilterTimeDomainLength> impulse_response;
  impulse_response.fill(0.f);

  // Verify that the filter delay for a converged filter is properly identified.
  for (int k = 0; k < kFilterLength; ++k) {
    for (auto& v : frequency_response) {
      v.fill(0.01f);
    }
    frequency_response[k].fill(100.f);
    frequency_response[k][0] = 0.f;
    state.HandleEchoPathChange(echo_path_variability);
    state.Update(frequency_response, impulse_response, true,
                 rtc::Optional<size_t>(), render_buffer, E2_main, Y2, x, s,
                 false);
    EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay());
    if (k != (kFilterLength - 1)) {
      EXPECT_EQ(k, state.FilterDelay());
    }
  }
}

// Verify that the externally reported delay is properly reported and converted.
TEST(AecState, ExternalDelay) {
  AecState state(AudioProcessing::Config::EchoCanceller3{});
  std::array<float, kFftLengthBy2Plus1> E2_main;
  std::array<float, kFftLengthBy2Plus1> E2_shadow;
  std::array<float, kFftLengthBy2Plus1> Y2;
  std::array<float, kBlockSize> x;
  std::array<float, kBlockSize> s;
  s.fill(100.f);
  E2_main.fill(0.f);
  E2_shadow.fill(0.f);
  Y2.fill(0.f);
  x.fill(0.f);
  RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
                             std::vector<size_t>(1, 30));
  std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
      kAdaptiveFilterLength);
  for (auto& v : frequency_response) {
    v.fill(0.01f);
  }

  std::array<float, kAdaptiveFilterTimeDomainLength> impulse_response;
  impulse_response.fill(0.f);

  for (size_t k = 0; k < frequency_response.size() - 1; ++k) {
    state.HandleEchoPathChange(EchoPathVariability(false, false));
    state.Update(frequency_response, impulse_response, true,
                 rtc::Optional<size_t>(k * kBlockSize + 5), render_buffer,
                 E2_main, Y2, x, s, false);
    EXPECT_TRUE(state.ExternalDelay());
    EXPECT_EQ(k, state.ExternalDelay());
  }

  // Verify that the externally reported delay is properly unset when it is no
  // longer present.
  state.HandleEchoPathChange(EchoPathVariability(false, false));
  state.Update(frequency_response, impulse_response, true,
               rtc::Optional<size_t>(), render_buffer, E2_main, Y2, x, s,
               false);
  EXPECT_FALSE(state.ExternalDelay());
}

}  // namespace webrtc