summaryrefslogtreecommitdiff
path: root/chromium/third_party/dav1d/libdav1d/src/thread_task.c
blob: 53aa41e5c8ad76099a98d0c0d7ecdc66ddbf7b43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
/*
 * Copyright © 2018, VideoLAN and dav1d authors
 * Copyright © 2018, Two Orioles, LLC
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"

#include "common/frame.h"

#include "src/thread_task.h"
#include "src/fg_apply.h"

// This function resets the cur pointer to the first frame theoretically
// executable after a task completed (ie. each time we update some progress or
// insert some tasks in the queue).
// When frame_idx is set, it can be either from a completed task, or from tasks
// inserted in the queue, in which case we have to make sure the cur pointer
// isn't past this insert.
// The special case where frame_idx is UINT_MAX is to handle the reset after
// completing a task and locklessly signaling progress. In this case we don't
// enter a critical section, which is needed for this function, so we set an
// atomic for a delayed handling, happening here. Meaning we can call this
// function without any actual update other than what's in the atomic, hence
// this special case.
static inline int reset_task_cur(const Dav1dContext *const c,
                                 struct TaskThreadData *const ttd,
                                 unsigned frame_idx)
{
    const unsigned first = atomic_load(&ttd->first);
    if (!ttd->cur && c->fc[first].task_thread.task_cur_prev == NULL)
        return 0;
    unsigned reset_frame_idx = atomic_exchange(&ttd->reset_task_cur, UINT_MAX);
    if (reset_frame_idx != UINT_MAX) {
        if (frame_idx == UINT_MAX) {
            if (reset_frame_idx > first + ttd->cur)
                return 0;
            ttd->cur = reset_frame_idx - first;
            goto cur_found;
        }
    } else if (frame_idx == UINT_MAX)
        return 0;
    if (frame_idx < first) frame_idx += c->n_fc;
    const unsigned min_frame_idx = umin(reset_frame_idx, frame_idx);
    const unsigned cur_frame_idx = first + ttd->cur;
    if (ttd->cur < c->n_fc && cur_frame_idx < min_frame_idx)
        return 0;
    for (ttd->cur = min_frame_idx - first; ttd->cur < c->n_fc; ttd->cur++)
        if (c->fc[(first + ttd->cur) % c->n_fc].task_thread.task_head)
            break;
cur_found:
    for (unsigned i = ttd->cur; i < c->n_fc; i++)
        c->fc[(first + i) % c->n_fc].task_thread.task_cur_prev = NULL;
    return 1;
}

static inline void reset_task_cur_async(struct TaskThreadData *const ttd,
                                        unsigned frame_idx, unsigned n_frames)
{
    if (frame_idx < (unsigned)atomic_load(&ttd->first)) frame_idx += n_frames;
    unsigned last_idx = frame_idx;
    do {
        frame_idx = last_idx;
        last_idx = atomic_exchange(&ttd->reset_task_cur, frame_idx);
    } while (last_idx < frame_idx);
}

static void insert_tasks_between(Dav1dFrameContext *const f,
                                 Dav1dTask *const first, Dav1dTask *const last,
                                 Dav1dTask *const a, Dav1dTask *const b,
                                 const int cond_signal)
{
    struct TaskThreadData *const ttd = f->task_thread.ttd;
    if (atomic_load(f->c->flush)) return;
    assert(!a || a->next == b);
    if (!a) f->task_thread.task_head = first;
    else a->next = first;
    if (!b) f->task_thread.task_tail = last;
    last->next = b;
    reset_task_cur(f->c, ttd, first->frame_idx);
    if (cond_signal && !atomic_fetch_or(&ttd->cond_signaled, 1))
        pthread_cond_signal(&ttd->cond);
}

static void insert_tasks(Dav1dFrameContext *const f,
                         Dav1dTask *const first, Dav1dTask *const last,
                         const int cond_signal)
{
    // insert task back into task queue
    Dav1dTask *t_ptr, *prev_t = NULL;
    for (t_ptr = f->task_thread.task_head;
         t_ptr; prev_t = t_ptr, t_ptr = t_ptr->next)
    {
        // entropy coding precedes other steps
        if (t_ptr->type == DAV1D_TASK_TYPE_TILE_ENTROPY) {
            if (first->type > DAV1D_TASK_TYPE_TILE_ENTROPY) continue;
            // both are entropy
            if (first->sby > t_ptr->sby) continue;
            if (first->sby < t_ptr->sby) {
                insert_tasks_between(f, first, last, prev_t, t_ptr, cond_signal);
                return;
            }
            // same sby
        } else {
            if (first->type == DAV1D_TASK_TYPE_TILE_ENTROPY) {
                insert_tasks_between(f, first, last, prev_t, t_ptr, cond_signal);
                return;
            }
            if (first->sby > t_ptr->sby) continue;
            if (first->sby < t_ptr->sby) {
                insert_tasks_between(f, first, last, prev_t, t_ptr, cond_signal);
                return;
            }
            // same sby
            if (first->type > t_ptr->type) continue;
            if (first->type < t_ptr->type) {
                insert_tasks_between(f, first, last, prev_t, t_ptr, cond_signal);
                return;
            }
            // same task type
        }

        // sort by tile-id
        assert(first->type == DAV1D_TASK_TYPE_TILE_RECONSTRUCTION ||
               first->type == DAV1D_TASK_TYPE_TILE_ENTROPY);
        assert(first->type == t_ptr->type);
        assert(t_ptr->sby == first->sby);
        const int p = first->type == DAV1D_TASK_TYPE_TILE_ENTROPY;
        const int t_tile_idx = (int) (first - f->task_thread.tile_tasks[p]);
        const int p_tile_idx = (int) (t_ptr - f->task_thread.tile_tasks[p]);
        assert(t_tile_idx != p_tile_idx);
        if (t_tile_idx > p_tile_idx) continue;
        insert_tasks_between(f, first, last, prev_t, t_ptr, cond_signal);
        return;
    }
    // append at the end
    insert_tasks_between(f, first, last, prev_t, NULL, cond_signal);
}

static inline void insert_task(Dav1dFrameContext *const f,
                               Dav1dTask *const t, const int cond_signal)
{
    insert_tasks(f, t, t, cond_signal);
}

static int create_filter_sbrow(Dav1dFrameContext *const f,
                               const int pass, Dav1dTask **res_t)
{
    const int has_deblock = f->frame_hdr->loopfilter.level_y[0] ||
                            f->frame_hdr->loopfilter.level_y[1];
    const int has_cdef = f->seq_hdr->cdef;
    const int has_resize = f->frame_hdr->width[0] != f->frame_hdr->width[1];
    const int has_lr = f->lf.restore_planes;

    Dav1dTask *tasks = f->task_thread.tasks;
    const int uses_2pass = f->c->n_fc > 1;
    int num_tasks = f->sbh * (1 + uses_2pass);
    if (num_tasks > f->task_thread.num_tasks) {
        const size_t size = sizeof(Dav1dTask) * num_tasks;
        tasks = realloc(f->task_thread.tasks, size);
        if (!tasks) return -1;
        memset(tasks, 0, size);
        f->task_thread.tasks = tasks;
        f->task_thread.num_tasks = num_tasks;
    }
    tasks += f->sbh * (pass & 1);

    if (pass & 1) {
        f->frame_thread.entropy_progress = 0;
    } else {
        const int prog_sz = ((f->sbh + 31) & ~31) >> 5;
        if (prog_sz > f->frame_thread.prog_sz) {
            atomic_uint *const prog = realloc(f->frame_thread.frame_progress,
                                              prog_sz * 2 * sizeof(*prog));
            if (!prog) return -1;
            f->frame_thread.frame_progress = prog;
            f->frame_thread.copy_lpf_progress = prog + prog_sz;
            f->frame_thread.prog_sz = prog_sz;
        }
        memset(f->frame_thread.frame_progress, 0, prog_sz * 2 * sizeof(atomic_uint));
        atomic_store(&f->frame_thread.deblock_progress, 0);
    }
    f->frame_thread.next_tile_row[pass & 1] = 0;

    Dav1dTask *t = &tasks[0];
    t->sby = 0;
    t->recon_progress = 1;
    t->deblock_progress = 0;
    t->type = pass == 1 ? DAV1D_TASK_TYPE_ENTROPY_PROGRESS :
              has_deblock ? DAV1D_TASK_TYPE_DEBLOCK_COLS :
              has_cdef || has_lr /* i.e. LR backup */ ? DAV1D_TASK_TYPE_DEBLOCK_ROWS :
              has_resize ? DAV1D_TASK_TYPE_SUPER_RESOLUTION :
              DAV1D_TASK_TYPE_RECONSTRUCTION_PROGRESS;
    t->frame_idx = (int)(f - f->c->fc);

    *res_t = t;
    return 0;
}

int dav1d_task_create_tile_sbrow(Dav1dFrameContext *const f, const int pass,
                                 const int cond_signal)
{
    Dav1dTask *tasks = f->task_thread.tile_tasks[0];
    const int uses_2pass = f->c->n_fc > 1;
    const int num_tasks = f->frame_hdr->tiling.cols * f->frame_hdr->tiling.rows;
    int alloc_num_tasks = num_tasks * (1 + uses_2pass);
    if (alloc_num_tasks > f->task_thread.num_tile_tasks) {
        const size_t size = sizeof(Dav1dTask) * alloc_num_tasks;
        tasks = realloc(f->task_thread.tile_tasks[0], size);
        if (!tasks) return -1;
        memset(tasks, 0, size);
        f->task_thread.tile_tasks[0] = tasks;
        f->task_thread.num_tile_tasks = alloc_num_tasks;
    }
    f->task_thread.tile_tasks[1] = tasks + num_tasks;
    tasks += num_tasks * (pass & 1);

    Dav1dTask *pf_t;
    if (create_filter_sbrow(f, pass, &pf_t))
        return -1;

    Dav1dTask *prev_t = NULL;
    for (int tile_idx = 0; tile_idx < num_tasks; tile_idx++) {
        Dav1dTileState *const ts = &f->ts[tile_idx];
        Dav1dTask *t = &tasks[tile_idx];
        t->sby = ts->tiling.row_start >> f->sb_shift;
        if (pf_t && t->sby) {
            prev_t->next = pf_t;
            prev_t = pf_t;
            pf_t = NULL;
        }
        t->recon_progress = 0;
        t->deblock_progress = 0;
        t->deps_skip = 0;
        t->type = pass != 1 ? DAV1D_TASK_TYPE_TILE_RECONSTRUCTION :
                              DAV1D_TASK_TYPE_TILE_ENTROPY;
        t->frame_idx = (int)(f - f->c->fc);
        if (prev_t) prev_t->next = t;
        prev_t = t;
    }
    if (pf_t) {
        prev_t->next = pf_t;
        prev_t = pf_t;
    }
    insert_tasks(f, &tasks[0], prev_t, cond_signal);
    f->task_thread.done[pass & 1] = 0;

    return 0;
}

void dav1d_task_frame_init(Dav1dFrameContext *const f) {
    const Dav1dContext *const c = f->c;

    f->task_thread.init_done = 0;
    // schedule init task, which will schedule the remaining tasks
    Dav1dTask *const t = &f->task_thread.init_task;
    t->type = DAV1D_TASK_TYPE_INIT;
    t->frame_idx = (int)(f - c->fc);
    t->sby = 0;
    t->recon_progress = t->deblock_progress = 0;
    insert_task(f, t, 1);
}

void dav1d_task_delayed_fg(Dav1dContext *const c, Dav1dPicture *const out,
                           const Dav1dPicture *const in)
{
    struct TaskThreadData *const ttd = &c->task_thread;
    ttd->delayed_fg.in = in;
    ttd->delayed_fg.out = out;
    ttd->delayed_fg.type = DAV1D_TASK_TYPE_FG_PREP;
    atomic_init(&ttd->delayed_fg.progress[0], 0);
    atomic_init(&ttd->delayed_fg.progress[1], 0);
    pthread_mutex_lock(&ttd->lock);
    ttd->delayed_fg.exec = 1;
    pthread_cond_signal(&ttd->cond);
    pthread_cond_wait(&ttd->delayed_fg.cond, &ttd->lock);
    pthread_mutex_unlock(&ttd->lock);
}

static inline int ensure_progress(struct TaskThreadData *const ttd,
                                  Dav1dFrameContext *const f,
                                  Dav1dTask *const t, const enum TaskType type,
                                  atomic_int *const state, int *const target)
{
    // deblock_rows (non-LR portion) depends on deblock of previous sbrow,
    // so ensure that completed. if not, re-add to task-queue; else, fall-through
    int p1 = atomic_load(state);
    if (p1 < t->sby) {
        pthread_mutex_lock(&ttd->lock);
        p1 = atomic_load(state);
        if (p1 < t->sby) {
            t->type = type;
            t->recon_progress = t->deblock_progress = 0;
            *target = t->sby;
            insert_task(f, t, 0);
            return 1;
        }
        pthread_mutex_unlock(&ttd->lock);
    }
    return 0;
}

static inline int check_tile(Dav1dTask *const t, Dav1dFrameContext *const f,
                             const int frame_mt)
{
    const int tp = t->type == DAV1D_TASK_TYPE_TILE_ENTROPY;
    const int tile_idx = (int)(t - f->task_thread.tile_tasks[tp]);
    Dav1dTileState *const ts = &f->ts[tile_idx];
    const int p1 = atomic_load(&ts->progress[tp]);
    if (p1 < t->sby) return 1;
    int error = p1 == TILE_ERROR;
    error |= atomic_fetch_or(&f->task_thread.error, error);
    if (!error && frame_mt && !tp) {
        const int p2 = atomic_load(&ts->progress[1]);
        if (p2 <= t->sby) return 1;
        error = p2 == TILE_ERROR;
        error |= atomic_fetch_or(&f->task_thread.error, error);
    }
    if (!error && frame_mt && !IS_KEY_OR_INTRA(f->frame_hdr)) {
        // check reference state
        const Dav1dThreadPicture *p = &f->sr_cur;
        const int ss_ver = p->p.p.layout == DAV1D_PIXEL_LAYOUT_I420;
        const unsigned p_b = (t->sby + 1) << (f->sb_shift + 2);
        const int tile_sby = t->sby - (ts->tiling.row_start >> f->sb_shift);
        const int (*const lowest_px)[2] = ts->lowest_pixel[tile_sby];
        for (int n = t->deps_skip; n < 7; n++, t->deps_skip++) {
            unsigned lowest;
            if (tp) {
                // if temporal mv refs are disabled, we only need this
                // for the primary ref; if segmentation is disabled, we
                // don't even need that
                lowest = p_b;
            } else {
                // +8 is postfilter-induced delay
                const int y = lowest_px[n][0] == INT_MIN ? INT_MIN :
                              lowest_px[n][0] + 8;
                const int uv = lowest_px[n][1] == INT_MIN ? INT_MIN :
                               lowest_px[n][1] * (1 << ss_ver) + 8;
                const int max = imax(y, uv);
                if (max == INT_MIN) continue;
                lowest = iclip(max, 1, f->refp[n].p.p.h);
            }
            const unsigned p3 = atomic_load(&f->refp[n].progress[!tp]);
            if (p3 < lowest) return 1;
            atomic_fetch_or(&f->task_thread.error, p3 == FRAME_ERROR);
        }
    }
    return 0;
}

static inline void abort_frame(Dav1dFrameContext *const f, const int error) {
    atomic_store(&f->task_thread.error, error == DAV1D_ERR(EINVAL) ? 1 : -1);
    f->task_thread.task_counter = 0;
    f->task_thread.done[0] = 1;
    f->task_thread.done[1] = 1;
    atomic_store(&f->sr_cur.progress[0], FRAME_ERROR);
    atomic_store(&f->sr_cur.progress[1], FRAME_ERROR);
    dav1d_decode_frame_exit(f, error);
    f->n_tile_data = 0;
    pthread_cond_signal(&f->task_thread.cond);
}

static inline void delayed_fg_task(const Dav1dContext *const c,
                                   struct TaskThreadData *const ttd)
{
    const Dav1dPicture *const in = ttd->delayed_fg.in;
    Dav1dPicture *const out = ttd->delayed_fg.out;
#if CONFIG_16BPC
    int off;
    if (out->p.bpc != 8)
        off = (out->p.bpc >> 1) - 4;
#endif
    switch (ttd->delayed_fg.type) {
    case DAV1D_TASK_TYPE_FG_PREP:
        ttd->delayed_fg.exec = 0;
        if (atomic_load(&ttd->cond_signaled))
            pthread_cond_signal(&ttd->cond);
        pthread_mutex_unlock(&ttd->lock);
        switch (out->p.bpc) {
#if CONFIG_8BPC
        case 8:
            dav1d_prep_grain_8bpc(&c->dsp[0].fg, out, in,
                                  ttd->delayed_fg.scaling_8bpc,
                                  ttd->delayed_fg.grain_lut_8bpc);
            break;
#endif
#if CONFIG_16BPC
        case 10:
        case 12:
            dav1d_prep_grain_16bpc(&c->dsp[off].fg, out, in,
                                   ttd->delayed_fg.scaling_16bpc,
                                   ttd->delayed_fg.grain_lut_16bpc);
            break;
#endif
        default: abort();
        }
        ttd->delayed_fg.type = DAV1D_TASK_TYPE_FG_APPLY;
        pthread_mutex_lock(&ttd->lock);
        ttd->delayed_fg.exec = 1;
        // fall-through
    case DAV1D_TASK_TYPE_FG_APPLY:;
        int row = atomic_fetch_add(&ttd->delayed_fg.progress[0], 1);
        pthread_mutex_unlock(&ttd->lock);
        int progmax = (out->p.h + 31) >> 5;
    fg_apply_loop:
        if (row + 1 < progmax)
            pthread_cond_signal(&ttd->cond);
        else if (row + 1 >= progmax) {
            pthread_mutex_lock(&ttd->lock);
            ttd->delayed_fg.exec = 0;
            if (row >= progmax) goto end_add;
            pthread_mutex_unlock(&ttd->lock);
        }
        switch (out->p.bpc) {
#if CONFIG_8BPC
        case 8:
            dav1d_apply_grain_row_8bpc(&c->dsp[0].fg, out, in,
                                       ttd->delayed_fg.scaling_8bpc,
                                       ttd->delayed_fg.grain_lut_8bpc, row);
            break;
#endif
#if CONFIG_16BPC
        case 10:
        case 12:
            dav1d_apply_grain_row_16bpc(&c->dsp[off].fg, out, in,
                                        ttd->delayed_fg.scaling_16bpc,
                                        ttd->delayed_fg.grain_lut_16bpc, row);
            break;
#endif
        default: abort();
        }
        row = atomic_fetch_add(&ttd->delayed_fg.progress[0], 1);
        int done = atomic_fetch_add(&ttd->delayed_fg.progress[1], 1) + 1;
        if (row < progmax) goto fg_apply_loop;
        pthread_mutex_lock(&ttd->lock);
        ttd->delayed_fg.exec = 0;
    end_add:
        done = atomic_fetch_add(&ttd->delayed_fg.progress[1], 1) + 1;
        progmax = atomic_load(&ttd->delayed_fg.progress[0]);
        // signal for completion only once the last runner reaches this
        if (done < progmax)
            break;
        pthread_cond_signal(&ttd->delayed_fg.cond);
        break;
    default: abort();
    }
}

void *dav1d_worker_task(void *data) {
    Dav1dTaskContext *const tc = data;
    const Dav1dContext *const c = tc->c;
    struct TaskThreadData *const ttd = tc->task_thread.ttd;

    dav1d_set_thread_name("dav1d-worker");

    pthread_mutex_lock(&ttd->lock);
    for (;;) {
        if (tc->task_thread.die) break;
        if (atomic_load(c->flush)) goto park;
        if (ttd->delayed_fg.exec) { // run delayed film grain first
            delayed_fg_task(c, ttd);
            continue;
        }
        Dav1dFrameContext *f;
        Dav1dTask *t, *prev_t = NULL;
        if (c->n_fc > 1) { // run init tasks second
            for (unsigned i = 0; i < c->n_fc; i++) {
                const unsigned first = atomic_load(&ttd->first);
                f = &c->fc[(first + i) % c->n_fc];
                if (f->task_thread.init_done) continue;
                t = f->task_thread.task_head;
                if (!t) continue;
                if (t->type == DAV1D_TASK_TYPE_INIT) goto found;
                if (t->type == DAV1D_TASK_TYPE_INIT_CDF) {
                    const int p1 = f->in_cdf.progress ?
                        atomic_load(f->in_cdf.progress) : 1;
                    if (p1) {
                        atomic_fetch_or(&f->task_thread.error, p1 == TILE_ERROR);
                        goto found;
                    }
                }
            }
        }
        while (ttd->cur < c->n_fc) { // run decoding tasks last
            const unsigned first = atomic_load(&ttd->first);
            f = &c->fc[(first + ttd->cur) % c->n_fc];
            prev_t = f->task_thread.task_cur_prev;
            t = prev_t ? prev_t->next : f->task_thread.task_head;
            while (t) {
                if (t->type == DAV1D_TASK_TYPE_INIT_CDF) goto next;
                else if (t->type == DAV1D_TASK_TYPE_TILE_ENTROPY ||
                         t->type == DAV1D_TASK_TYPE_TILE_RECONSTRUCTION)
                {
                    // if not bottom sbrow of tile, this task will be re-added
                    // after it's finished
                    if (!check_tile(t, f, c->n_fc > 1))
                        goto found;
                } else if (t->recon_progress) {
                    const int p = t->type == DAV1D_TASK_TYPE_ENTROPY_PROGRESS;
                    int error = atomic_load(&f->task_thread.error);
                    assert(!f->task_thread.done[p] || error);
                    const int tile_row_base = f->frame_hdr->tiling.cols *
                                              f->frame_thread.next_tile_row[p];
                    if (p) {
                        const int p1 = f->frame_thread.entropy_progress;
                        if (p1 < t->sby) goto next;
                        atomic_fetch_or(&f->task_thread.error, p1 == TILE_ERROR);
                    }
                    for (int tc = 0; tc < f->frame_hdr->tiling.cols; tc++) {
                        Dav1dTileState *const ts = &f->ts[tile_row_base + tc];
                        const int p2 = atomic_load(&ts->progress[p]);
                        if (p2 < t->recon_progress) goto next;
                        atomic_fetch_or(&f->task_thread.error, p2 == TILE_ERROR);
                    }
                    if (t->sby + 1 < f->sbh) {
                        // add sby+1 to list to replace this one
                        Dav1dTask *next_t = &t[1];
                        *next_t = *t;
                        next_t->sby++;
                        const int ntr = f->frame_thread.next_tile_row[p] + 1;
                        const int start = f->frame_hdr->tiling.row_start_sb[ntr];
                        if (next_t->sby == start)
                            f->frame_thread.next_tile_row[p] = ntr;
                        next_t->recon_progress = next_t->sby + 1;
                        insert_task(f, next_t, 0);
                    }
                    goto found;
                } else if (t->type == DAV1D_TASK_TYPE_CDEF) {
                    atomic_uint *prog = f->frame_thread.copy_lpf_progress;
                    const int p1 = atomic_load(&prog[(t->sby - 1) >> 5]);
                    if (p1 & (1U << ((t->sby - 1) & 31)))
                        goto found;
                } else {
                    assert(t->deblock_progress);
                    const int p1 = atomic_load(&f->frame_thread.deblock_progress);
                    if (p1 >= t->deblock_progress) {
                        atomic_fetch_or(&f->task_thread.error, p1 == TILE_ERROR);
                        goto found;
                    }
                }
            next:
                prev_t = t;
                t = t->next;
                f->task_thread.task_cur_prev = prev_t;
            }
            ttd->cur++;
        }
        if (reset_task_cur(c, ttd, UINT_MAX)) continue;
    park:
        tc->task_thread.flushed = 1;
        pthread_cond_signal(&tc->task_thread.td.cond);
        // we want to be woken up next time progress is signaled
        atomic_store(&ttd->cond_signaled, 0);
        pthread_cond_wait(&ttd->cond, &ttd->lock);
        tc->task_thread.flushed = 0;
        reset_task_cur(c, ttd, UINT_MAX);
        continue;

    found:
        // remove t from list
        if (prev_t) prev_t->next = t->next;
        else f->task_thread.task_head = t->next;
        if (!t->next) f->task_thread.task_tail = prev_t;
        if (t->type > DAV1D_TASK_TYPE_INIT_CDF && !f->task_thread.task_head)
            ttd->cur++;
        // we don't need to check cond_signaled here, since we found a task
        // after the last signal so we want to re-signal the next waiting thread
        // and again won't need to signal after that
        atomic_store(&ttd->cond_signaled, 1);
        pthread_cond_signal(&ttd->cond);
        pthread_mutex_unlock(&ttd->lock);
    found_unlocked:;
        const int flush = atomic_load(c->flush);
        int error = atomic_fetch_or(&f->task_thread.error, flush) | flush;

        // run it
        tc->f = f;
        int sby = t->sby;
        switch (t->type) {
        case DAV1D_TASK_TYPE_INIT: {
            assert(c->n_fc > 1);
            int res = dav1d_decode_frame_init(f);
            int p1 = f->in_cdf.progress ? atomic_load(f->in_cdf.progress) : 1;
            if (res || p1 == TILE_ERROR) {
                pthread_mutex_lock(&ttd->lock);
                abort_frame(f, res ? res : DAV1D_ERR(EINVAL));
            } else if (!res) {
                t->type = DAV1D_TASK_TYPE_INIT_CDF;
                if (p1) goto found_unlocked;
                pthread_mutex_lock(&ttd->lock);
                insert_task(f, t, 0);
            }
            reset_task_cur(c, ttd, t->frame_idx);
            continue;
        }
        case DAV1D_TASK_TYPE_INIT_CDF: {
            assert(c->n_fc > 1);
            int res = DAV1D_ERR(EINVAL);
            if (!atomic_load(&f->task_thread.error))
                res = dav1d_decode_frame_init_cdf(f);
            pthread_mutex_lock(&ttd->lock);
            if (f->frame_hdr->refresh_context && !f->task_thread.update_set) {
                atomic_store(f->out_cdf.progress, res < 0 ? TILE_ERROR : 1);
            }
            if (!res) {
                assert(c->n_fc > 1);
                for (int p = 1; p <= 2; p++) {
                    const int res = dav1d_task_create_tile_sbrow(f, p, 0);
                    if (res) {
                        // memory allocation failed
                        f->task_thread.done[2 - p] = 1;
                        atomic_store(&f->task_thread.error, -1);
                        f->task_thread.task_counter -= f->sbh +
                            f->frame_hdr->tiling.cols * f->frame_hdr->tiling.rows;
                        atomic_store(&f->sr_cur.progress[p - 1], FRAME_ERROR);
                        if (p == 2 && f->task_thread.done[1]) {
                            assert(!f->task_thread.task_counter);
                            dav1d_decode_frame_exit(f, DAV1D_ERR(ENOMEM));
                            f->n_tile_data = 0;
                            pthread_cond_signal(&f->task_thread.cond);
                        }
                    }
                }
            } else abort_frame(f, res);
            reset_task_cur(c, ttd, t->frame_idx);
            f->task_thread.init_done = 1;
            continue;
        }
        case DAV1D_TASK_TYPE_TILE_ENTROPY:
        case DAV1D_TASK_TYPE_TILE_RECONSTRUCTION: {
            const int p = t->type == DAV1D_TASK_TYPE_TILE_ENTROPY;
            const int tile_idx = (int)(t - f->task_thread.tile_tasks[p]);
            Dav1dTileState *const ts = &f->ts[tile_idx];

            tc->ts = ts;
            tc->by = sby << f->sb_shift;
            const int uses_2pass = c->n_fc > 1;
            tc->frame_thread.pass = !uses_2pass ? 0 :
                1 + (t->type == DAV1D_TASK_TYPE_TILE_RECONSTRUCTION);
            if (!error) error = dav1d_decode_tile_sbrow(tc);
            const int progress = error ? TILE_ERROR : 1 + sby;

            // signal progress
            atomic_fetch_or(&f->task_thread.error, error);
            if (((sby + 1) << f->sb_shift) < ts->tiling.row_end) {
                t->sby++;
                t->deps_skip = 0;
                if (!check_tile(t, f, uses_2pass)) {
                    atomic_store(&ts->progress[p], progress);
                    reset_task_cur_async(ttd, t->frame_idx, c->n_fc);
                    if (!atomic_fetch_or(&ttd->cond_signaled, 1))
                        pthread_cond_signal(&ttd->cond);
                    goto found_unlocked;
                }
                pthread_mutex_lock(&ttd->lock);
                atomic_store(&ts->progress[p], progress);
                reset_task_cur(c, ttd, t->frame_idx);
                insert_task(f, t, 0);
            } else {
                pthread_mutex_lock(&ttd->lock);
                atomic_store(&ts->progress[p], progress);
                reset_task_cur(c, ttd, t->frame_idx);
                error = atomic_load(&f->task_thread.error);
                if (f->frame_hdr->refresh_context &&
                    tc->frame_thread.pass <= 1 && f->task_thread.update_set &&
                    f->frame_hdr->tiling.update == tile_idx)
                {
                    if (!error)
                        dav1d_cdf_thread_update(f->frame_hdr, f->out_cdf.data.cdf,
                                                &f->ts[f->frame_hdr->tiling.update].cdf);
                    if (c->n_fc > 1)
                        atomic_store(f->out_cdf.progress, error ? TILE_ERROR : 1);
                }
                if (!--f->task_thread.task_counter && f->task_thread.done[0] &&
                    (!uses_2pass || f->task_thread.done[1]))
                {
                    dav1d_decode_frame_exit(f, error == 1 ? DAV1D_ERR(EINVAL) :
                                            error ? DAV1D_ERR(ENOMEM) : 0);
                    f->n_tile_data = 0;
                    pthread_cond_signal(&f->task_thread.cond);
                }
                assert(f->task_thread.task_counter >= 0);
                if (!atomic_fetch_or(&ttd->cond_signaled, 1))
                    pthread_cond_signal(&ttd->cond);
            }
            continue;
        }
        case DAV1D_TASK_TYPE_DEBLOCK_COLS:
            if (!atomic_load(&f->task_thread.error))
                f->bd_fn.filter_sbrow_deblock_cols(f, sby);
            if (ensure_progress(ttd, f, t, DAV1D_TASK_TYPE_DEBLOCK_ROWS,
                                &f->frame_thread.deblock_progress,
                                &t->deblock_progress)) continue;
            // fall-through
        case DAV1D_TASK_TYPE_DEBLOCK_ROWS:
            if (!atomic_load(&f->task_thread.error))
                f->bd_fn.filter_sbrow_deblock_rows(f, sby);
            // signal deblock progress
            if (f->frame_hdr->loopfilter.level_y[0] ||
                f->frame_hdr->loopfilter.level_y[1])
            {
                error = atomic_load(&f->task_thread.error);
                atomic_store(&f->frame_thread.deblock_progress,
                             error ? TILE_ERROR : sby + 1);
                reset_task_cur_async(ttd, t->frame_idx, c->n_fc);
                if (!atomic_fetch_or(&ttd->cond_signaled, 1))
                    pthread_cond_signal(&ttd->cond);
            } else if (f->seq_hdr->cdef || f->lf.restore_planes) {
                atomic_fetch_or(&f->frame_thread.copy_lpf_progress[sby >> 5],
                                1U << (sby & 31));
                // CDEF needs the top buffer to be saved by lr_copy_lpf of the
                // previous sbrow
                if (sby) {
                    int prog = atomic_load(&f->frame_thread.copy_lpf_progress[(sby - 1) >> 5]);
                    if (~prog & (1U << ((sby - 1) & 31))) {
                        pthread_mutex_lock(&ttd->lock);
                        prog = atomic_load(&f->frame_thread.copy_lpf_progress[(sby - 1) >> 5]);
                        if (~prog & (1U << ((sby - 1) & 31))) {
                            t->type = DAV1D_TASK_TYPE_CDEF;
                            t->recon_progress = t->deblock_progress = 0;
                            insert_task(f, t, 0);
                            continue;
                        }
                        pthread_mutex_unlock(&ttd->lock);
                    }
                }
            }
            // fall-through
        case DAV1D_TASK_TYPE_CDEF:
            if (f->seq_hdr->cdef) {
                if (!atomic_load(&f->task_thread.error))
                    f->bd_fn.filter_sbrow_cdef(tc, sby);
                reset_task_cur_async(ttd, t->frame_idx, c->n_fc);
                if (!atomic_fetch_or(&ttd->cond_signaled, 1))
                    pthread_cond_signal(&ttd->cond);
            }
            // fall-through
        case DAV1D_TASK_TYPE_SUPER_RESOLUTION:
            if (f->frame_hdr->width[0] != f->frame_hdr->width[1])
                if (!atomic_load(&f->task_thread.error))
                    f->bd_fn.filter_sbrow_resize(f, sby);
            // fall-through
        case DAV1D_TASK_TYPE_LOOP_RESTORATION:
            if (!atomic_load(&f->task_thread.error) && f->lf.restore_planes)
                f->bd_fn.filter_sbrow_lr(f, sby);
            // fall-through
        case DAV1D_TASK_TYPE_RECONSTRUCTION_PROGRESS:
            // dummy to cover for no post-filters
        case DAV1D_TASK_TYPE_ENTROPY_PROGRESS:
            // dummy to convert tile progress to frame
            break;
        default: abort();
        }
        // if task completed [typically LR], signal picture progress as per below
        const int uses_2pass = c->n_fc > 1;
        const int sbh = f->sbh;
        const int sbsz = f->sb_step * 4;
        const enum PlaneType progress_plane_type =
            t->type == DAV1D_TASK_TYPE_ENTROPY_PROGRESS ? PLANE_TYPE_BLOCK :
            c->n_fc > 1 ? PLANE_TYPE_Y : PLANE_TYPE_ALL;
        if (t->type != DAV1D_TASK_TYPE_ENTROPY_PROGRESS)
            atomic_fetch_or(&f->frame_thread.frame_progress[sby >> 5],
                            1U << (sby & 31));
        pthread_mutex_lock(&ttd->lock);
        if (t->type != DAV1D_TASK_TYPE_ENTROPY_PROGRESS) {
            unsigned frame_prog = c->n_fc > 1 ? atomic_load(&f->sr_cur.progress[1]) : 0;
            if (frame_prog < FRAME_ERROR) {
                int idx = frame_prog >> (f->sb_shift + 7);
                int prog;
                do {
                    atomic_uint *state = &f->frame_thread.frame_progress[idx];
                    const unsigned val = ~atomic_load(state);
                    prog = val ? ctz(val) : 32;
                    if (prog != 32) break;
                    prog = 0;
                } while (++idx < f->frame_thread.prog_sz);
                sby = ((idx << 5) | prog) - 1;
            } else sby = sbh - 1;
        }
        error = atomic_load(&f->task_thread.error);
        const unsigned y = sby + 1 == sbh ? UINT_MAX : (unsigned)(sby + 1) * sbsz;
        if (c->n_fc > 1 && f->sr_cur.p.data[0] /* upon flush, this can be free'ed already */) {
            const int idx = t->type != DAV1D_TASK_TYPE_ENTROPY_PROGRESS;
            atomic_store(&f->sr_cur.progress[idx], error ? FRAME_ERROR : y);
        }
        if (progress_plane_type == PLANE_TYPE_BLOCK)
            f->frame_thread.entropy_progress = error ? TILE_ERROR : sby + 1;
        if (sby + 1 == sbh)
            f->task_thread.done[progress_plane_type == PLANE_TYPE_BLOCK] = 1;
        if (!--f->task_thread.task_counter &&
            f->task_thread.done[0] && (!uses_2pass || f->task_thread.done[1]))
        {
            dav1d_decode_frame_exit(f, error == 1 ? DAV1D_ERR(EINVAL) :
                                    error ? DAV1D_ERR(ENOMEM) : 0);
            f->n_tile_data = 0;
            pthread_cond_signal(&f->task_thread.cond);
        }
        reset_task_cur(c, ttd, t->frame_idx);
    }
    pthread_mutex_unlock(&ttd->lock);

    return NULL;
}