summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/platform/scheduler/base/task_queue_manager_impl.cc
blob: 5c7b2968477294a6e590547013a7408aed4fd186 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
// Copyright 2018 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/platform/scheduler/base/task_queue_manager_impl.h"

#include <memory>
#include <queue>
#include <set>

#include "base/bind.h"
#include "base/bit_cast.h"
#include "base/compiler_specific.h"
#include "base/debug/crash_logging.h"
#include "base/rand_util.h"
#include "base/time/default_tick_clock.h"
#include "base/time/tick_clock.h"
#include "base/trace_event/trace_event.h"
#include "third_party/blink/renderer/platform/scheduler/base/real_time_domain.h"
#include "third_party/blink/renderer/platform/scheduler/base/task_queue_impl.h"
#include "third_party/blink/renderer/platform/scheduler/base/task_queue_selector.h"
#include "third_party/blink/renderer/platform/scheduler/base/task_time_observer.h"
#include "third_party/blink/renderer/platform/scheduler/base/thread_controller.h"
#include "third_party/blink/renderer/platform/scheduler/base/thread_controller_impl.h"
#include "third_party/blink/renderer/platform/scheduler/base/work_queue.h"
#include "third_party/blink/renderer/platform/scheduler/base/work_queue_sets.h"

namespace blink {
namespace scheduler {

namespace {

const double kLongTaskTraceEventThreshold = 0.05;
const double kSamplingRateForRecordingCPUTime = 0.01;

double MonotonicTimeInSeconds(base::TimeTicks time_ticks) {
  return (time_ticks - base::TimeTicks()).InSecondsF();
}

// Magic value to protect against memory corruption and bail out
// early when detected.
constexpr int kMemoryCorruptionSentinelValue = 0xdeadbeef;

void SweepCanceledDelayedTasksInQueue(
    internal::TaskQueueImpl* queue,
    std::map<TimeDomain*, base::TimeTicks>* time_domain_now) {
  TimeDomain* time_domain = queue->GetTimeDomain();
  if (time_domain_now->find(time_domain) == time_domain_now->end())
    time_domain_now->insert(std::make_pair(time_domain, time_domain->Now()));
  queue->SweepCanceledDelayedTasks(time_domain_now->at(time_domain));
}

}  // namespace

// static
std::unique_ptr<TaskQueueManager> TaskQueueManager::TakeOverCurrentThread() {
  return TaskQueueManagerImpl::TakeOverCurrentThread();
}

TaskQueueManagerImpl::TaskQueueManagerImpl(
    std::unique_ptr<internal::ThreadController> controller)
    : graceful_shutdown_helper_(new internal::GracefulQueueShutdownHelper()),
      controller_(std::move(controller)),
      memory_corruption_sentinel_(kMemoryCorruptionSentinelValue),
      weak_factory_(this) {
  // TODO(altimin): Create a sequence checker here.
  DCHECK(controller_->RunsTasksInCurrentSequence());
  TRACE_EVENT_OBJECT_CREATED_WITH_ID(
      TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"), "TaskQueueManager",
      this);
  main_thread_only().selector.SetTaskQueueSelectorObserver(this);

  RegisterTimeDomain(main_thread_only().real_time_domain.get());

  controller_->SetSequencedTaskSource(this);
  controller_->AddNestingObserver(this);
}

TaskQueueManagerImpl::~TaskQueueManagerImpl() {
  TRACE_EVENT_OBJECT_DELETED_WITH_ID(
      TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"), "TaskQueueManager",
      this);

  // TODO(altimin): restore default task runner automatically when
  // ThreadController is destroyed.
  controller_->RestoreDefaultTaskRunner();

  for (internal::TaskQueueImpl* queue : main_thread_only().active_queues) {
    main_thread_only().selector.RemoveQueue(queue);
    queue->UnregisterTaskQueue();
  }

  main_thread_only().active_queues.clear();
  main_thread_only().queues_to_gracefully_shutdown.clear();

  graceful_shutdown_helper_->OnTaskQueueManagerDeleted();

  main_thread_only().selector.SetTaskQueueSelectorObserver(nullptr);
  controller_->RemoveNestingObserver(this);
}

TaskQueueManagerImpl::MainThreadOnly::MainThreadOnly()
    : random_generator(base::RandUint64()),
      uniform_distribution(0.0, 1.0),
      real_time_domain(new RealTimeDomain()) {}

std::unique_ptr<TaskQueueManagerImpl>
TaskQueueManagerImpl::TakeOverCurrentThread() {
  return std::unique_ptr<TaskQueueManagerImpl>(
      new TaskQueueManagerImpl(internal::ThreadControllerImpl::Create(
          base::MessageLoop::current(),
          base::DefaultTickClock::GetInstance())));
}

void TaskQueueManagerImpl::RegisterTimeDomain(TimeDomain* time_domain) {
  main_thread_only().time_domains.insert(time_domain);
  time_domain->OnRegisterWithTaskQueueManager(this);
}

void TaskQueueManagerImpl::UnregisterTimeDomain(TimeDomain* time_domain) {
  main_thread_only().time_domains.erase(time_domain);
}

RealTimeDomain* TaskQueueManagerImpl::GetRealTimeDomain() const {
  return main_thread_only().real_time_domain.get();
}

std::unique_ptr<internal::TaskQueueImpl>
TaskQueueManagerImpl::CreateTaskQueueImpl(const TaskQueue::Spec& spec) {
  DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
  TimeDomain* time_domain = spec.time_domain
                                ? spec.time_domain
                                : main_thread_only().real_time_domain.get();
  DCHECK(main_thread_only().time_domains.find(time_domain) !=
         main_thread_only().time_domains.end());
  std::unique_ptr<internal::TaskQueueImpl> task_queue =
      std::make_unique<internal::TaskQueueImpl>(this, time_domain, spec);
  main_thread_only().active_queues.insert(task_queue.get());
  main_thread_only().selector.AddQueue(task_queue.get());
  return task_queue;
}

void TaskQueueManagerImpl::SetObserver(Observer* observer) {
  main_thread_only().observer = observer;
}

void TaskQueueManagerImpl::UnregisterTaskQueueImpl(
    std::unique_ptr<internal::TaskQueueImpl> task_queue) {
  TRACE_EVENT1("renderer.scheduler",
               "TaskQueueManagerImpl::UnregisterTaskQueue", "queue_name",
               task_queue->GetName());
  DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);

  main_thread_only().selector.RemoveQueue(task_queue.get());

  {
    base::AutoLock lock(any_thread_lock_);
    any_thread().has_incoming_immediate_work.erase(task_queue.get());
  }

  task_queue->UnregisterTaskQueue();

  // Add |task_queue| to |main_thread_only().queues_to_delete| so we can prevent
  // it from being freed while any of our structures hold hold a raw pointer to
  // it.
  main_thread_only().active_queues.erase(task_queue.get());
  main_thread_only().queues_to_delete[task_queue.get()] = std::move(task_queue);
}

void TaskQueueManagerImpl::ReloadEmptyWorkQueues(
    const IncomingImmediateWorkMap& queues_to_reload) const {
  // There are two cases where a queue needs reloading.  First, it might be
  // completely empty and we've just posted a task (this method handles that
  // case). Secondly if the work queue becomes empty in when calling
  // WorkQueue::TakeTaskFromWorkQueue (handled there).
  for (const auto& pair : queues_to_reload) {
    pair.first->ReloadImmediateWorkQueueIfEmpty();
  }
}

void TaskQueueManagerImpl::WakeUpReadyDelayedQueues(LazyNow* lazy_now) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"),
               "TaskQueueManagerImpl::WakeUpReadyDelayedQueues");

  for (TimeDomain* time_domain : main_thread_only().time_domains) {
    if (time_domain == main_thread_only().real_time_domain.get()) {
      time_domain->WakeUpReadyDelayedQueues(lazy_now);
    } else {
      LazyNow time_domain_lazy_now = time_domain->CreateLazyNow();
      time_domain->WakeUpReadyDelayedQueues(&time_domain_lazy_now);
    }
  }
}

void TaskQueueManagerImpl::OnBeginNestedRunLoop() {
  // We just entered a nested run loop, make sure there's a DoWork posted or
  // the system will grind to a halt.
  main_thread_only().nesting_depth++;
  if (main_thread_only().observer && main_thread_only().nesting_depth == 1)
    main_thread_only().observer->OnBeginNestedRunLoop();
}

void TaskQueueManagerImpl::OnExitNestedRunLoop() {
  main_thread_only().nesting_depth--;
  DCHECK_GE(main_thread_only().nesting_depth, 0);
  if (main_thread_only().nesting_depth == 0) {
    // While we were nested some non-nestable tasks may have become eligible to
    // run. We push them back onto the front of their original work queues.
    while (!main_thread_only().non_nestable_task_queue.empty()) {
      NonNestableTask& non_nestable_task =
          *main_thread_only().non_nestable_task_queue.begin();
      non_nestable_task.task_queue->RequeueDeferredNonNestableTask(
          std::move(non_nestable_task.task), non_nestable_task.work_type);
      main_thread_only().non_nestable_task_queue.pop_front();
    }
    if (main_thread_only().observer)
      main_thread_only().observer->OnExitNestedRunLoop();
  }
}

void TaskQueueManagerImpl::OnQueueHasIncomingImmediateWork(
    internal::TaskQueueImpl* queue,
    internal::EnqueueOrder enqueue_order,
    bool queue_is_blocked) {
  {
    base::AutoLock lock(any_thread_lock_);
    any_thread().has_incoming_immediate_work.insert(
        std::make_pair(queue, enqueue_order));
  }

  if (!queue_is_blocked)
    controller_->ScheduleWork();
}

void TaskQueueManagerImpl::MaybeScheduleImmediateWork(
    const base::Location& from_here) {
  controller_->ScheduleWork();
}

void TaskQueueManagerImpl::MaybeScheduleDelayedWork(
    const base::Location& from_here,
    TimeDomain* requesting_time_domain,
    base::TimeTicks now,
    base::TimeTicks run_time) {
  controller_->ScheduleDelayedWork(now, run_time);
}

void TaskQueueManagerImpl::CancelDelayedWork(TimeDomain* requesting_time_domain,
                                             base::TimeTicks run_time) {
  controller_->CancelDelayedWork(run_time);
}

base::Optional<base::PendingTask> TaskQueueManagerImpl::TakeTask() {
  CHECK(Validate());

  DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
  TRACE_EVENT0("renderer.scheduler", "TaskQueueManagerImpl::TakeTask");

  IncomingImmediateWorkMap queues_to_reload;

  {
    base::AutoLock lock(any_thread_lock_);
    std::swap(queues_to_reload, any_thread().has_incoming_immediate_work);
  }

  // It's important we call ReloadEmptyWorkQueues out side of the lock to
  // avoid a lock order inversion.
  ReloadEmptyWorkQueues(queues_to_reload);
  LazyNow lazy_now(main_thread_only().real_time_domain->CreateLazyNow());
  WakeUpReadyDelayedQueues(&lazy_now);

  while (true) {
    internal::WorkQueue* work_queue = nullptr;
    bool should_run =
        main_thread_only().selector.SelectWorkQueueToService(&work_queue);
    TRACE_EVENT_OBJECT_SNAPSHOT_WITH_ID(
        TRACE_DISABLED_BY_DEFAULT("renderer.scheduler.debug"),
        "TaskQueueManager", this,
        AsValueWithSelectorResult(should_run, work_queue));

    if (!should_run)
      return base::nullopt;

    // If the head task was canceled, remove it and run the selector again.
    if (work_queue->RemoveAllCanceledTasksFromFront())
      continue;

    if (work_queue->GetFrontTask()->nestable == base::Nestable::kNonNestable &&
        main_thread_only().nesting_depth > 0) {
      // Defer non-nestable work. NOTE these tasks can be arbitrarily delayed so
      // the additional delay should not be a problem.
      // Note because we don't delete queues while nested, it's perfectly OK to
      // store the raw pointer for |queue| here.
      NonNestableTask deferred_task{work_queue->TakeTaskFromWorkQueue(),
                                    work_queue->task_queue(),
                                    work_queue->queue_type()};
      // We push these tasks onto the front to make sure that when requeued they
      // are pushed in the right order.
      main_thread_only().non_nestable_task_queue.push_front(
          std::move(deferred_task));
      continue;
    }

    // Due to nested message loops we need to maintain a stack of currently
    // executing tasks so in TaskQueueManagerImpl::DidRunTask we can run the
    // right observers.
    main_thread_only().task_execution_stack.emplace_back(
        work_queue->TakeTaskFromWorkQueue(), work_queue->task_queue());
    ExecutingTask& executing_task =
        *main_thread_only().task_execution_stack.rbegin();
    NotifyWillProcessTask(&executing_task, &lazy_now);
    return std::move(executing_task.pending_task);
  }
}

void TaskQueueManagerImpl::DidRunTask() {
  LazyNow lazy_now(main_thread_only().real_time_domain->CreateLazyNow());
  ExecutingTask& executing_task =
      *main_thread_only().task_execution_stack.rbegin();
  NotifyDidProcessTask(executing_task, &lazy_now);
  main_thread_only().task_execution_stack.pop_back();

  if (main_thread_only().nesting_depth == 0)
    CleanUpQueues();
}

base::TimeDelta TaskQueueManagerImpl::DelayTillNextTask(LazyNow* lazy_now) {
  DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);

  // If the selector has non-empty queues we trivially know there is immediate
  // work to be done.
  if (!main_thread_only().selector.AllEnabledWorkQueuesAreEmpty())
    return base::TimeDelta();

  // Its possible the selectors state is dirty because ReloadEmptyWorkQueues
  // hasn't been called yet. This check catches the case of fresh incoming work.
  {
    base::AutoLock lock(any_thread_lock_);
    for (const auto& pair : any_thread().has_incoming_immediate_work) {
      if (pair.first->CouldTaskRun(pair.second))
        return base::TimeDelta();
    }
  }

  // Otherwise we need to find the shortest delay, if any.  NB we don't need to
  // call WakeUpReadyDelayedQueues because it's assumed DelayTillNextTask will
  // return base::TimeDelta>() if the delayed task is due to run now.
  base::TimeDelta delay_till_next_task = base::TimeDelta::Max();
  for (TimeDomain* time_domain : main_thread_only().time_domains) {
    base::Optional<base::TimeDelta> delay =
        time_domain->DelayTillNextTask(lazy_now);
    if (!delay)
      continue;

    if (*delay < delay_till_next_task)
      delay_till_next_task = *delay;
  }
  return delay_till_next_task;
}

void TaskQueueManagerImpl::DidQueueTask(
    const internal::TaskQueueImpl::Task& pending_task) {
  controller_->DidQueueTask(pending_task);
}

void TaskQueueManagerImpl::NotifyWillProcessTask(ExecutingTask* executing_task,
                                                 LazyNow* time_before_task) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"),
               "TaskQueueManagerImpl::NotifyWillProcessTaskObservers");
  if (executing_task->task_queue->GetQuiescenceMonitored())
    main_thread_only().task_was_run_on_quiescence_monitored_queue = true;

  base::debug::SetCrashKeyString(
      main_thread_only().file_name_crash_key,
      executing_task->pending_task.posted_from.file_name());
  base::debug::SetCrashKeyString(
      main_thread_only().function_name_crash_key,
      executing_task->pending_task.posted_from.function_name());

  if (executing_task->task_queue->GetShouldNotifyObservers()) {
    {
      TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"),
                   "TaskQueueManager.WillProcessTaskObservers");
      for (auto& observer : main_thread_only().task_observers)
        observer.WillProcessTask(executing_task->pending_task);
    }

    {
      TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"),
                   "TaskQueueManager.QueueNotifyWillProcessTask");
      executing_task->task_queue->NotifyWillProcessTask(
          executing_task->pending_task);
    }

    bool notify_time_observers =
        main_thread_only().nesting_depth == 0 &&
        (main_thread_only().task_time_observers.might_have_observers() ||
         executing_task->task_queue->RequiresTaskTiming());
    if (notify_time_observers) {
      executing_task->task_start_time = time_before_task->Now();
      double task_start_time_sec =
          MonotonicTimeInSeconds(executing_task->task_start_time);

      {
        TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"),
                     "TaskQueueManager.WillProcessTaskTimeObservers");
        for (auto& observer : main_thread_only().task_time_observers)
          observer.WillProcessTask(task_start_time_sec);
      }

      {
        TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"),
                     "TaskQueueManager.QueueOnTaskStarted");
        executing_task->task_queue->OnTaskStarted(
            executing_task->pending_task, executing_task->task_start_time);
      }
    }
  }

  executing_task->should_record_thread_time = ShouldRecordCPUTimeForTask();
  if (executing_task->should_record_thread_time)
    executing_task->task_start_thread_time = base::ThreadTicks::Now();
}

void TaskQueueManagerImpl::NotifyDidProcessTask(
    const ExecutingTask& executing_task,
    LazyNow* time_after_task) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"),
               "TaskQueueManagerImpl::NotifyDidProcessTaskObservers");

  base::ThreadTicks task_end_thread_time;
  if (executing_task.should_record_thread_time)
    task_end_thread_time = base::ThreadTicks::Now();

  if (!executing_task.task_queue->GetShouldNotifyObservers())
    return;

  double task_start_time_sec =
      MonotonicTimeInSeconds(executing_task.task_start_time);
  double task_end_time_sec = 0;

  if (task_start_time_sec) {
    task_end_time_sec = MonotonicTimeInSeconds(time_after_task->Now());

    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"),
                 "TaskQueueManager.DidProcessTaskTimeObservers");
    for (auto& observer : main_thread_only().task_time_observers)
      observer.DidProcessTask(task_start_time_sec, task_end_time_sec);
  }

  {
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"),
                 "TaskQueueManager.DidProcessTaskObservers");
    for (auto& observer : main_thread_only().task_observers)
      observer.DidProcessTask(executing_task.pending_task);
  }

  {
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"),
                 "TaskQueueManager.QueueNotifyDidProcessTask");
    executing_task.task_queue->NotifyDidProcessTask(
        executing_task.pending_task);
  }

  {
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("renderer.scheduler"),
                 "TaskQueueManager.QueueOnTaskCompleted");
    if (task_start_time_sec && task_end_time_sec) {
      executing_task.task_queue->OnTaskCompleted(
          executing_task.pending_task, executing_task.task_start_time,
          time_after_task->Now(),
          task_end_thread_time - executing_task.task_start_thread_time);
    }
  }

  if (task_start_time_sec && task_end_time_sec &&
      task_end_time_sec - task_start_time_sec > kLongTaskTraceEventThreshold) {
    TRACE_EVENT_INSTANT1("blink", "LongTask", TRACE_EVENT_SCOPE_THREAD,
                         "duration", task_end_time_sec - task_start_time_sec);
  }
}

void TaskQueueManagerImpl::SetWorkBatchSize(int work_batch_size) {
  DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
  DCHECK_GE(work_batch_size, 1);
  controller_->SetWorkBatchSize(work_batch_size);
}

void TaskQueueManagerImpl::AddTaskObserver(
    base::MessageLoop::TaskObserver* task_observer) {
  DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
  main_thread_only().task_observers.AddObserver(task_observer);
}

void TaskQueueManagerImpl::RemoveTaskObserver(
    base::MessageLoop::TaskObserver* task_observer) {
  DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
  main_thread_only().task_observers.RemoveObserver(task_observer);
}

void TaskQueueManagerImpl::AddTaskTimeObserver(
    TaskTimeObserver* task_time_observer) {
  DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
  main_thread_only().task_time_observers.AddObserver(task_time_observer);
}

void TaskQueueManagerImpl::RemoveTaskTimeObserver(
    TaskTimeObserver* task_time_observer) {
  DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
  main_thread_only().task_time_observers.RemoveObserver(task_time_observer);
}

bool TaskQueueManagerImpl::GetAndClearSystemIsQuiescentBit() {
  bool task_was_run =
      main_thread_only().task_was_run_on_quiescence_monitored_queue;
  main_thread_only().task_was_run_on_quiescence_monitored_queue = false;
  return !task_was_run;
}

internal::EnqueueOrder TaskQueueManagerImpl::GetNextSequenceNumber() {
  return enqueue_order_generator_.GenerateNext();
}

LazyNow TaskQueueManagerImpl::CreateLazyNow() const {
  return LazyNow(controller_->GetClock());
}

std::unique_ptr<base::trace_event::ConvertableToTraceFormat>
TaskQueueManagerImpl::AsValueWithSelectorResult(
    bool should_run,
    internal::WorkQueue* selected_work_queue) const {
  DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
  std::unique_ptr<base::trace_event::TracedValue> state(
      new base::trace_event::TracedValue());
  base::TimeTicks now =
      main_thread_only().real_time_domain->CreateLazyNow().Now();
  state->BeginArray("active_queues");
  for (auto& queue : main_thread_only().active_queues)
    queue->AsValueInto(now, state.get());
  state->EndArray();
  state->BeginArray("queues_to_gracefully_shutdown");
  for (const auto& pair : main_thread_only().queues_to_gracefully_shutdown)
    pair.first->AsValueInto(now, state.get());
  state->EndArray();
  state->BeginArray("queues_to_delete");
  for (const auto& pair : main_thread_only().queues_to_delete)
    pair.first->AsValueInto(now, state.get());
  state->EndArray();
  state->BeginDictionary("selector");
  main_thread_only().selector.AsValueInto(state.get());
  state->EndDictionary();
  if (should_run) {
    state->SetString("selected_queue",
                     selected_work_queue->task_queue()->GetName());
    state->SetString("work_queue_name", selected_work_queue->name());
  }

  state->BeginArray("time_domains");
  for (auto* time_domain : main_thread_only().time_domains)
    time_domain->AsValueInto(state.get());
  state->EndArray();
  {
    base::AutoLock lock(any_thread_lock_);
    state->BeginArray("has_incoming_immediate_work");
    for (const auto& pair : any_thread().has_incoming_immediate_work) {
      state->AppendString(pair.first->GetName());
    }
    state->EndArray();
  }
  return std::move(state);
}

void TaskQueueManagerImpl::OnTaskQueueEnabled(internal::TaskQueueImpl* queue) {
  DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
  DCHECK(queue->IsQueueEnabled());
  // Only schedule DoWork if there's something to do.
  if (queue->HasTaskToRunImmediately() && !queue->BlockedByFence())
    MaybeScheduleImmediateWork(FROM_HERE);
}

void TaskQueueManagerImpl::SweepCanceledDelayedTasks() {
  std::map<TimeDomain*, base::TimeTicks> time_domain_now;
  for (const auto& queue : main_thread_only().active_queues)
    SweepCanceledDelayedTasksInQueue(queue, &time_domain_now);
  for (const auto& pair : main_thread_only().queues_to_gracefully_shutdown)
    SweepCanceledDelayedTasksInQueue(pair.first, &time_domain_now);
}

void TaskQueueManagerImpl::TakeQueuesToGracefullyShutdownFromHelper() {
  std::vector<std::unique_ptr<internal::TaskQueueImpl>> queues =
      graceful_shutdown_helper_->TakeQueues();
  for (std::unique_ptr<internal::TaskQueueImpl>& queue : queues) {
    main_thread_only().queues_to_gracefully_shutdown[queue.get()] =
        std::move(queue);
  }
}

void TaskQueueManagerImpl::CleanUpQueues() {
  TakeQueuesToGracefullyShutdownFromHelper();

  for (auto it = main_thread_only().queues_to_gracefully_shutdown.begin();
       it != main_thread_only().queues_to_gracefully_shutdown.end();) {
    if (it->first->IsEmpty()) {
      UnregisterTaskQueueImpl(std::move(it->second));
      main_thread_only().active_queues.erase(it->first);
      main_thread_only().queues_to_gracefully_shutdown.erase(it++);
    } else {
      ++it;
    }
  }
  main_thread_only().queues_to_delete.clear();
}

scoped_refptr<internal::GracefulQueueShutdownHelper>
TaskQueueManagerImpl::GetGracefulQueueShutdownHelper() const {
  return graceful_shutdown_helper_;
}

base::WeakPtr<TaskQueueManagerImpl> TaskQueueManagerImpl::GetWeakPtr() {
  return weak_factory_.GetWeakPtr();
}

void TaskQueueManagerImpl::SetDefaultTaskRunner(
    scoped_refptr<base::SingleThreadTaskRunner> task_runner) {
  controller_->SetDefaultTaskRunner(task_runner);
}

const base::TickClock* TaskQueueManagerImpl::GetClock() const {
  return controller_->GetClock();
}

base::TimeTicks TaskQueueManagerImpl::NowTicks() const {
  return controller_->GetClock()->NowTicks();
}

bool TaskQueueManagerImpl::ShouldRecordCPUTimeForTask() {
  return base::ThreadTicks::IsSupported() &&
         main_thread_only().uniform_distribution(
             main_thread_only().random_generator) <
             kSamplingRateForRecordingCPUTime;
}

MSVC_DISABLE_OPTIMIZE()
bool TaskQueueManagerImpl::Validate() {
  return memory_corruption_sentinel_ == kMemoryCorruptionSentinelValue;
}
MSVC_ENABLE_OPTIMIZE()

void TaskQueueManagerImpl::EnableCrashKeys(
    const char* file_name_crash_key_name,
    const char* function_name_crash_key_name) {
  DCHECK(!main_thread_only().file_name_crash_key);
  DCHECK(!main_thread_only().function_name_crash_key);
  main_thread_only().file_name_crash_key = base::debug::AllocateCrashKeyString(
      file_name_crash_key_name, base::debug::CrashKeySize::Size64);
  main_thread_only().function_name_crash_key =
      base::debug::AllocateCrashKeyString(function_name_crash_key_name,
                                          base::debug::CrashKeySize::Size64);
}

internal::TaskQueueImpl* TaskQueueManagerImpl::currently_executing_task_queue()
    const {
  if (main_thread_only().task_execution_stack.empty())
    return nullptr;
  return main_thread_only().task_execution_stack.rbegin()->task_queue;
}

}  // namespace scheduler
}  // namespace blink