summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/platform/image-decoders/image_decoder.cc
blob: c544780efa9e218c49df9154c45e8b584c102cfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*
 * Copyright (C) Research In Motion Limited 2009-2010. All rights reserved.
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 *  You should have received a copy of the GNU Library General Public License
 *  along with this library; see the file COPYING.LIB.  If not, write to
 *  the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 *  Boston, MA 02110-1301, USA.
 *
 */

#include "third_party/blink/renderer/platform/image-decoders/image_decoder.h"

#include <memory>
#include "third_party/blink/renderer/platform/graphics/bitmap_image_metrics.h"
#include "third_party/blink/renderer/platform/image-decoders/bmp/bmp_image_decoder.h"
#include "third_party/blink/renderer/platform/image-decoders/fast_shared_buffer_reader.h"
#include "third_party/blink/renderer/platform/image-decoders/gif/gif_image_decoder.h"
#include "third_party/blink/renderer/platform/image-decoders/ico/ico_image_decoder.h"
#include "third_party/blink/renderer/platform/image-decoders/jpeg/jpeg_image_decoder.h"
#include "third_party/blink/renderer/platform/image-decoders/png/png_image_decoder.h"
#include "third_party/blink/renderer/platform/image-decoders/webp/webp_image_decoder.h"
#include "third_party/blink/renderer/platform/instrumentation/platform_instrumentation.h"

namespace blink {

const size_t ImageDecoder::kNoDecodedImageByteLimit;

inline bool MatchesJPEGSignature(const char* contents) {
  return !memcmp(contents, "\xFF\xD8\xFF", 3);
}

inline bool MatchesPNGSignature(const char* contents) {
  return !memcmp(contents, "\x89PNG\r\n\x1A\n", 8);
}

inline bool MatchesGIFSignature(const char* contents) {
  return !memcmp(contents, "GIF87a", 6) || !memcmp(contents, "GIF89a", 6);
}

inline bool MatchesWebPSignature(const char* contents) {
  return !memcmp(contents, "RIFF", 4) && !memcmp(contents + 8, "WEBPVP", 6);
}

inline bool MatchesICOSignature(const char* contents) {
  return !memcmp(contents, "\x00\x00\x01\x00", 4);
}

inline bool MatchesCURSignature(const char* contents) {
  return !memcmp(contents, "\x00\x00\x02\x00", 4);
}

inline bool MatchesBMPSignature(const char* contents) {
  return !memcmp(contents, "BM", 2);
}

static constexpr size_t kLongestSignatureLength = sizeof("RIFF????WEBPVP") - 1;
static const size_t k4BytesPerPixel = 4;
static const size_t k8BytesPerPixel = 8;

std::unique_ptr<ImageDecoder> ImageDecoder::Create(
    scoped_refptr<SegmentReader> data,
    bool data_complete,
    AlphaOption alpha_option,
    HighBitDepthDecodingOption high_bit_depth_decoding_option,
    const ColorBehavior& color_behavior,
    const SkISize& desired_size) {
  // At least kLongestSignatureLength bytes are needed to sniff the signature.
  if (data->size() < kLongestSignatureLength)
    return nullptr;
  // On low end devices, always decode to 8888.
  if (high_bit_depth_decoding_option == kHighBitDepthToHalfFloat &&
      Platform::Current() && Platform::Current()->IsLowEndDevice()) {
    high_bit_depth_decoding_option = kDefaultBitDepth;
  }

  size_t max_decoded_bytes = Platform::Current()
                                 ? Platform::Current()->MaxDecodedImageBytes()
                                 : kNoDecodedImageByteLimit;
  if (!desired_size.isEmpty()) {
    size_t num_pixels = desired_size.width() * desired_size.height();
    if (high_bit_depth_decoding_option == kDefaultBitDepth) {
      max_decoded_bytes =
          std::min(k4BytesPerPixel * num_pixels, max_decoded_bytes);
    } else {  // kHighBitDepthToHalfFloat
      max_decoded_bytes =
          std::min(k8BytesPerPixel * num_pixels, max_decoded_bytes);
    }
  }

  // Access the first kLongestSignatureLength chars to sniff the signature.
  // (note: FastSharedBufferReader only makes a copy if the bytes are segmented)
  char buffer[kLongestSignatureLength];
  const FastSharedBufferReader fast_reader(data);
  const char* contents =
      fast_reader.GetConsecutiveData(0, kLongestSignatureLength, buffer);

  std::unique_ptr<ImageDecoder> decoder;
  if (MatchesJPEGSignature(contents)) {
    decoder.reset(
        new JPEGImageDecoder(alpha_option, color_behavior, max_decoded_bytes));
  } else if (MatchesPNGSignature(contents)) {
    decoder.reset(new PNGImageDecoder(alpha_option,
                                      high_bit_depth_decoding_option,
                                      color_behavior, max_decoded_bytes));
  } else if (MatchesGIFSignature(contents)) {
    decoder.reset(
        new GIFImageDecoder(alpha_option, color_behavior, max_decoded_bytes));
  } else if (MatchesWebPSignature(contents)) {
    decoder.reset(
        new WEBPImageDecoder(alpha_option, color_behavior, max_decoded_bytes));
  } else if (MatchesICOSignature(contents) || MatchesCURSignature(contents)) {
    decoder.reset(
        new ICOImageDecoder(alpha_option, color_behavior, max_decoded_bytes));
  } else if (MatchesBMPSignature(contents)) {
    decoder.reset(
        new BMPImageDecoder(alpha_option, color_behavior, max_decoded_bytes));
  }

  if (decoder)
    decoder->SetData(std::move(data), data_complete);

  return decoder;
}

bool ImageDecoder::HasSufficientDataToSniffImageType(const SharedBuffer& data) {
  return data.size() >= kLongestSignatureLength;
}

size_t ImageDecoder::FrameCount() {
  const size_t old_size = frame_buffer_cache_.size();
  const size_t new_size = DecodeFrameCount();
  if (old_size != new_size) {
    frame_buffer_cache_.resize(new_size);
    for (size_t i = old_size; i < new_size; ++i) {
      frame_buffer_cache_[i].SetPremultiplyAlpha(premultiply_alpha_);
      InitializeNewFrame(i);
    }
  }
  return new_size;
}

ImageFrame* ImageDecoder::DecodeFrameBufferAtIndex(size_t index) {
  TRACE_EVENT0("blink", "ImageDecoder::DecodeFrameBufferAtIndex");

  if (index >= FrameCount())
    return nullptr;
  ImageFrame* frame = &frame_buffer_cache_[index];
  if (frame->GetStatus() != ImageFrame::kFrameComplete) {
    PlatformInstrumentation::WillDecodeImage(FilenameExtension());
    Decode(index);
    PlatformInstrumentation::DidDecodeImage();
  }

  if (!has_histogrammed_color_space_) {
    BitmapImageMetrics::CountImageGammaAndGamut(
        embedded_color_profile_ ? embedded_color_profile_->GetProfile()
                                : nullptr);
    has_histogrammed_color_space_ = true;
  }

  frame->NotifyBitmapIfPixelsChanged();
  return frame;
}

bool ImageDecoder::FrameHasAlphaAtIndex(size_t index) const {
  return !FrameIsReceivedAtIndex(index) ||
         frame_buffer_cache_[index].HasAlpha();
}

bool ImageDecoder::FrameIsReceivedAtIndex(size_t index) const {
  // Animated images override this method to return the status based on the data
  // received for the queried frame.
  return IsAllDataReceived();
}

bool ImageDecoder::FrameIsDecodedAtIndex(size_t index) const {
  return index < frame_buffer_cache_.size() &&
         frame_buffer_cache_[index].GetStatus() == ImageFrame::kFrameComplete;
}

size_t ImageDecoder::FrameBytesAtIndex(size_t index) const {
  if (index >= frame_buffer_cache_.size() ||
      frame_buffer_cache_[index].GetStatus() == ImageFrame::kFrameEmpty)
    return 0;

  struct ImageSize {
    explicit ImageSize(IntSize size) {
      area = static_cast<uint64_t>(size.Width()) * size.Height();
    }

    uint64_t area;
  };

  size_t decoded_bytes_per_pixel = k4BytesPerPixel;
  if (frame_buffer_cache_[index].GetPixelFormat() ==
      ImageFrame::PixelFormat::kRGBA_F16) {
    decoded_bytes_per_pixel = k8BytesPerPixel;
  }
  return ImageSize(FrameSizeAtIndex(index)).area * decoded_bytes_per_pixel;
}

size_t ImageDecoder::ClearCacheExceptFrame(size_t clear_except_frame) {
  // Don't clear if there are no frames or only one frame.
  if (frame_buffer_cache_.size() <= 1)
    return 0;

  // We expect that after this call, we'll be asked to decode frames after this
  // one. So we want to avoid clearing frames such that those requests would
  // force re-decoding from the beginning of the image. There are two cases in
  // which preserving |clear_except_frame| is not enough to avoid that:
  //
  // 1. |clear_except_frame| is not yet sufficiently decoded to decode
  //    subsequent frames. We need the previous frame to sufficiently decode
  //    this frame.
  // 2. The disposal method of |clear_except_frame| is DisposeOverwritePrevious.
  //    In that case, we need to keep the required previous frame in the cache
  //    to prevent re-decoding that frame when |clear_except_frame| is disposed.
  //
  // If either 1 or 2 is true, store the required previous frame in
  // |clear_except_frame2| so it won't be cleared.
  size_t clear_except_frame2 = kNotFound;
  if (clear_except_frame < frame_buffer_cache_.size()) {
    const ImageFrame& frame = frame_buffer_cache_[clear_except_frame];
    if (!FrameStatusSufficientForSuccessors(clear_except_frame) ||
        frame.GetDisposalMethod() == ImageFrame::kDisposeOverwritePrevious)
      clear_except_frame2 = frame.RequiredPreviousFrameIndex();
  }

  // Now |clear_except_frame2| indicates the frame that |clear_except_frame|
  // depends on, as described above. But if decoding is skipping forward past
  // intermediate frames, this frame may be insufficiently decoded. So we need
  // to keep traversing back through the required previous frames until we find
  // the nearest ancestor that is sufficiently decoded. Preserving that will
  // minimize the amount of future decoding needed.
  while (clear_except_frame2 < frame_buffer_cache_.size() &&
         !FrameStatusSufficientForSuccessors(clear_except_frame2)) {
    clear_except_frame2 =
        frame_buffer_cache_[clear_except_frame2].RequiredPreviousFrameIndex();
  }

  return ClearCacheExceptTwoFrames(clear_except_frame, clear_except_frame2);
}

size_t ImageDecoder::ClearCacheExceptTwoFrames(size_t clear_except_frame1,
                                               size_t clear_except_frame2) {
  size_t frame_bytes_cleared = 0;
  for (size_t i = 0; i < frame_buffer_cache_.size(); ++i) {
    if (frame_buffer_cache_[i].GetStatus() != ImageFrame::kFrameEmpty &&
        i != clear_except_frame1 && i != clear_except_frame2) {
      frame_bytes_cleared += FrameBytesAtIndex(i);
      ClearFrameBuffer(i);
    }
  }
  return frame_bytes_cleared;
}

void ImageDecoder::ClearFrameBuffer(size_t frame_index) {
  frame_buffer_cache_[frame_index].ClearPixelData();
}

Vector<size_t> ImageDecoder::FindFramesToDecode(size_t index) const {
  DCHECK(index < frame_buffer_cache_.size());

  Vector<size_t> frames_to_decode;
  do {
    frames_to_decode.push_back(index);
    index = frame_buffer_cache_[index].RequiredPreviousFrameIndex();
  } while (index != kNotFound && frame_buffer_cache_[index].GetStatus() !=
                                     ImageFrame::kFrameComplete);
  return frames_to_decode;
}

bool ImageDecoder::PostDecodeProcessing(size_t index) {
  DCHECK(index < frame_buffer_cache_.size());

  if (frame_buffer_cache_[index].GetStatus() != ImageFrame::kFrameComplete)
    return false;

  if (purge_aggressively_)
    ClearCacheExceptFrame(index);

  return true;
}

void ImageDecoder::CorrectAlphaWhenFrameBufferSawNoAlpha(size_t index) {
  DCHECK(index < frame_buffer_cache_.size());
  ImageFrame& buffer = frame_buffer_cache_[index];

  // When this frame spans the entire image rect we can SetHasAlpha to false,
  // since there are logically no transparent pixels outside of the frame rect.
  if (buffer.OriginalFrameRect().Contains(IntRect(IntPoint(), Size()))) {
    buffer.SetHasAlpha(false);
    buffer.SetRequiredPreviousFrameIndex(kNotFound);
  } else if (buffer.RequiredPreviousFrameIndex() != kNotFound) {
    // When the frame rect does not span the entire image rect, and it does
    // *not* have a required previous frame, the pixels outside of the frame
    // rect will be fully transparent, so we shoudn't SetHasAlpha to false.
    //
    // It is a tricky case when the frame does have a required previous frame.
    // The frame does not have alpha only if everywhere outside its rect
    // doesn't have alpha.  To know whether this is true, we check the start
    // state of the frame -- if it doesn't have alpha, we're safe.
    //
    // We first check that the required previous frame does not have
    // DisposeOverWritePrevious as its disposal method - this should never
    // happen, since the required frame should in that case be the required
    // frame of this frame's required frame.
    //
    // If |prev_buffer| is DisposeNotSpecified or DisposeKeep, |buffer| has no
    // alpha if |prev_buffer| had no alpha. Since InitFrameBuffer() already
    // copied the alpha state, there's nothing to do here.
    //
    // The only remaining case is a DisposeOverwriteBgcolor frame.  If
    // it had no alpha, and its rect is contained in the current frame's
    // rect, we know the current frame has no alpha.
    //
    // For DisposeNotSpecified, DisposeKeep and DisposeOverwriteBgcolor there
    // is one situation that is not taken into account - when |prev_buffer|
    // *does* have alpha, but only in the frame rect of |buffer|, we can still
    // say that this frame has no alpha. However, to determine this, we
    // potentially need to analyze all image pixels of |prev_buffer|, which is
    // too computationally expensive.
    const ImageFrame* prev_buffer =
        &frame_buffer_cache_[buffer.RequiredPreviousFrameIndex()];
    DCHECK(prev_buffer->GetDisposalMethod() !=
           ImageFrame::kDisposeOverwritePrevious);

    if ((prev_buffer->GetDisposalMethod() ==
         ImageFrame::kDisposeOverwriteBgcolor) &&
        !prev_buffer->HasAlpha() &&
        buffer.OriginalFrameRect().Contains(prev_buffer->OriginalFrameRect()))
      buffer.SetHasAlpha(false);
  }
}

bool ImageDecoder::InitFrameBuffer(size_t frame_index) {
  DCHECK(frame_index < frame_buffer_cache_.size());

  ImageFrame* const buffer = &frame_buffer_cache_[frame_index];

  // If the frame is already initialized, return true.
  if (buffer->GetStatus() != ImageFrame::kFrameEmpty)
    return true;

  size_t required_previous_frame_index = buffer->RequiredPreviousFrameIndex();
  if (required_previous_frame_index == kNotFound) {
    // This frame doesn't rely on any previous data.
    if (!buffer->AllocatePixelData(Size().Width(), Size().Height(),
                                   ColorSpaceForSkImages())) {
      return false;
    }
    buffer->ZeroFillPixelData();
  } else {
    ImageFrame* const prev_buffer =
        &frame_buffer_cache_[required_previous_frame_index];
    DCHECK(prev_buffer->GetStatus() == ImageFrame::kFrameComplete);

    // We try to reuse |prev_buffer| as starting state to avoid copying.
    // If CanReusePreviousFrameBuffer returns false, we must copy the data since
    // |prev_buffer| is necessary to decode this or later frames. In that case,
    // copy the data instead.
    if ((!CanReusePreviousFrameBuffer(frame_index) ||
         !buffer->TakeBitmapDataIfWritable(prev_buffer)) &&
        !buffer->CopyBitmapData(*prev_buffer))
      return false;

    if (prev_buffer->GetDisposalMethod() ==
        ImageFrame::kDisposeOverwriteBgcolor) {
      // We want to clear the previous frame to transparent, without
      // affecting pixels in the image outside of the frame.
      const IntRect& prev_rect = prev_buffer->OriginalFrameRect();
      DCHECK(!prev_rect.Contains(IntRect(IntPoint(), Size())));
      buffer->ZeroFillFrameRect(prev_rect);
    }
  }

  OnInitFrameBuffer(frame_index);

  // Update our status to be partially complete.
  buffer->SetStatus(ImageFrame::kFramePartial);

  return true;
}

void ImageDecoder::UpdateAggressivePurging(size_t index) {
  if (purge_aggressively_)
    return;

  // We don't want to cache so much that we cause a memory issue.
  //
  // If we used a LRU cache we would fill it and then on next animation loop
  // we would need to decode all the frames again -- the LRU would give no
  // benefit and would consume more memory.
  // So instead, simply purge unused frames if caching all of the frames of
  // the image would use more memory than the image decoder is allowed
  // (|max_decoded_bytes|) or would overflow 32 bits..
  //
  // As we decode we will learn the total number of frames, and thus total
  // possible image memory used.

  size_t decoded_bytes_per_pixel = k4BytesPerPixel;

  if (frame_buffer_cache_.size() && frame_buffer_cache_[0].GetPixelFormat() ==
                                        ImageFrame::PixelFormat::kRGBA_F16) {
    decoded_bytes_per_pixel = k8BytesPerPixel;
  }
  const uint64_t frame_memory_usage =
      DecodedSize().Area() * decoded_bytes_per_pixel;

  // This condition never fails in the current code. Our existing image decoders
  // parse for the image size and SetFailed() if that size overflows
  DCHECK_EQ(frame_memory_usage / decoded_bytes_per_pixel, DecodedSize().Area());

  const uint64_t total_memory_usage = frame_memory_usage * index;
  if (total_memory_usage / frame_memory_usage != index) {  // overflow occurred
    purge_aggressively_ = true;
    return;
  }

  if (total_memory_usage > max_decoded_bytes_) {
    purge_aggressively_ = true;
  }
}

size_t ImageDecoder::FindRequiredPreviousFrame(size_t frame_index,
                                               bool frame_rect_is_opaque) {
  DCHECK_LT(frame_index, frame_buffer_cache_.size());
  if (!frame_index) {
    // The first frame doesn't rely on any previous data.
    return kNotFound;
  }

  const ImageFrame* curr_buffer = &frame_buffer_cache_[frame_index];
  if ((frame_rect_is_opaque ||
       curr_buffer->GetAlphaBlendSource() == ImageFrame::kBlendAtopBgcolor) &&
      curr_buffer->OriginalFrameRect().Contains(IntRect(IntPoint(), Size())))
    return kNotFound;

  // The starting state for this frame depends on the previous frame's
  // disposal method.
  size_t prev_frame = frame_index - 1;
  const ImageFrame* prev_buffer = &frame_buffer_cache_[prev_frame];

  // Frames that use the DisposeOverwritePrevious method are effectively
  // no-ops in terms of changing the starting state of a frame compared to
  // the starting state of the previous frame, so skip over them.
  while (prev_buffer->GetDisposalMethod() ==
         ImageFrame::kDisposeOverwritePrevious) {
    if (prev_frame == 0) {
      return kNotFound;
    }
    prev_frame--;
    prev_buffer = &frame_buffer_cache_[prev_frame];
  }

  switch (prev_buffer->GetDisposalMethod()) {
    case ImageFrame::kDisposeNotSpecified:
    case ImageFrame::kDisposeKeep:
      // |prev_frame| will be used as the starting state for this frame.
      // FIXME: Be even smarter by checking the frame sizes and/or
      // alpha-containing regions.
      return prev_frame;
    case ImageFrame::kDisposeOverwriteBgcolor:
      // If the previous frame fills the whole image, then the current frame
      // can be decoded alone. Likewise, if the previous frame could be
      // decoded without reference to any prior frame, the starting state for
      // this frame is a blank frame, so it can again be decoded alone.
      // Otherwise, the previous frame contributes to this frame.
      return (prev_buffer->OriginalFrameRect().Contains(
                  IntRect(IntPoint(), Size())) ||
              (prev_buffer->RequiredPreviousFrameIndex() == kNotFound))
                 ? kNotFound
                 : prev_frame;
    case ImageFrame::kDisposeOverwritePrevious:
    default:
      NOTREACHED();
      return kNotFound;
  }
}

ImagePlanes::ImagePlanes() {
  for (int i = 0; i < 3; ++i) {
    planes_[i] = nullptr;
    row_bytes_[i] = 0;
  }
}

ImagePlanes::ImagePlanes(void* planes[3], const size_t row_bytes[3]) {
  for (int i = 0; i < 3; ++i) {
    planes_[i] = planes[i];
    row_bytes_[i] = row_bytes[i];
  }
}

void* ImagePlanes::Plane(int i) {
  DCHECK_GE(i, 0);
  DCHECK_LT(i, 3);
  return planes_[i];
}

size_t ImagePlanes::RowBytes(int i) const {
  DCHECK_GE(i, 0);
  DCHECK_LT(i, 3);
  return row_bytes_[i];
}

ColorProfile::ColorProfile(const skcms_ICCProfile& profile,
                           std::unique_ptr<uint8_t[]> buffer)
    : profile_(profile), buffer_(std::move(buffer)) {}

std::unique_ptr<ColorProfile> ColorProfile::Create(const void* buffer,
                                                   size_t size) {
  // After skcms_Parse, profile will have pointers into the passed buffer,
  // so we need to copy first, then parse.
  std::unique_ptr<uint8_t[]> owned_buffer(new uint8_t[size]);
  memcpy(owned_buffer.get(), buffer, size);
  skcms_ICCProfile profile;
  if (skcms_Parse(owned_buffer.get(), size, &profile)) {
    return std::make_unique<ColorProfile>(profile, std::move(owned_buffer));
  }
  return nullptr;
}

ColorProfileTransform::ColorProfileTransform(
    const skcms_ICCProfile* src_profile,
    const skcms_ICCProfile* dst_profile) {
  DCHECK(src_profile);
  DCHECK(dst_profile);
  src_profile_ = src_profile;
  dst_profile_ = *dst_profile;
}

const skcms_ICCProfile* ColorProfileTransform::SrcProfile() const {
  return src_profile_;
}

const skcms_ICCProfile* ColorProfileTransform::DstProfile() const {
  return &dst_profile_;
}

void ImageDecoder::SetEmbeddedColorProfile(
    std::unique_ptr<ColorProfile> profile) {
  DCHECK(!IgnoresColorSpace());
  DCHECK(!has_histogrammed_color_space_);

  embedded_color_profile_ = std::move(profile);
  source_to_target_color_transform_needs_update_ = true;
  color_space_for_sk_images_ = nullptr;
}

ColorProfileTransform* ImageDecoder::ColorTransform() {
  if (!source_to_target_color_transform_needs_update_)
    return source_to_target_color_transform_.get();
  source_to_target_color_transform_needs_update_ = false;
  source_to_target_color_transform_ = nullptr;

  if (color_behavior_.IsIgnore()) {
    return nullptr;
  }

  const skcms_ICCProfile* src_profile = nullptr;
  skcms_ICCProfile dst_profile;
  if (color_behavior_.IsTransformToSRGB()) {
    if (!embedded_color_profile_) {
      return nullptr;
    }
    src_profile = embedded_color_profile_->GetProfile();
    dst_profile = *skcms_sRGB_profile();
  } else {
    DCHECK(color_behavior_.IsTag());
    src_profile = embedded_color_profile_
                      ? embedded_color_profile_->GetProfile()
                      : skcms_sRGB_profile();

    // This will most likely be equal to the |src_profile|.
    // In that case, we skip the xform when we check for equality below.
    ColorSpaceForSkImages()->toProfile(&dst_profile);
  }

  if (skcms_ApproximatelyEqualProfiles(src_profile, &dst_profile)) {
    return nullptr;
  }

  source_to_target_color_transform_ =
      std::make_unique<ColorProfileTransform>(src_profile, &dst_profile);
  return source_to_target_color_transform_.get();
}

sk_sp<SkColorSpace> ImageDecoder::ColorSpaceForSkImages() {
  if (color_space_for_sk_images_)
    return color_space_for_sk_images_;

  if (!color_behavior_.IsTag())
    return nullptr;

  if (embedded_color_profile_) {
    const skcms_ICCProfile* profile = embedded_color_profile_->GetProfile();
    color_space_for_sk_images_ = SkColorSpace::Make(*profile);

    // If the embedded color space isn't supported by Skia,
    // we xform at decode time.
    if (!color_space_for_sk_images_ && profile->has_toXYZD50) {
      // Preserve the gamut, but convert to a standard transfer function.
      skcms_ICCProfile with_srgb = *profile;
      skcms_SetTransferFunction(&with_srgb, skcms_sRGB_TransferFunction());
      color_space_for_sk_images_ = SkColorSpace::Make(with_srgb);
    }
  }

  // For color spaces without an identifiable gamut, just fall through to sRGB.
  if (!color_space_for_sk_images_)
    color_space_for_sk_images_ = SkColorSpace::MakeSRGB();

  return color_space_for_sk_images_;
}

}  // namespace blink