summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/platform/image-decoders/bmp/bmp_image_reader.cc
blob: 0320face1516bcf86ef7087c8d88eb54228bb1b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/*
 * Copyright (c) 2008, 2009, Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "third_party/blink/renderer/platform/image-decoders/bmp/bmp_image_reader.h"

namespace {

// See comments on lookup_table_addresses_ in the header.
const uint8_t nBitTo8BitlookupTable[] = {
    // 1 bit
    0, 255,
    // 2 bits
    0, 85, 170, 255,
    // 3 bits
    0, 36, 73, 109, 146, 182, 219, 255,
    // 4 bits
    0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255,
    // 5 bits
    0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140,
    148, 156, 165, 173, 181, 189, 197, 206, 214, 222, 230, 239, 247, 255,
    // 6 bits
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 45, 49, 53, 57, 61, 65, 69, 73, 77,
    81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142,
    146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202,
    206, 210, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255,
    // 7 bits
    0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,
    40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76,
    78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110,
    112, 114, 116, 118, 120, 122, 124, 126, 129, 131, 133, 135, 137, 139, 141,
    143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171,
    173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201,
    203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231,
    233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255,
};

}  // namespace

namespace blink {

BMPImageReader::BMPImageReader(ImageDecoder* parent,
                               size_t decoded_and_header_offset,
                               size_t img_data_offset,
                               bool is_in_ico)
    : parent_(parent),
      buffer_(nullptr),
      fast_reader_(nullptr),
      decoded_offset_(decoded_and_header_offset),
      header_offset_(decoded_and_header_offset),
      img_data_offset_(img_data_offset),
      is_os21x_(false),
      is_os22x_(false),
      is_top_down_(false),
      need_to_process_bitmasks_(false),
      need_to_process_color_table_(false),
      seen_non_zero_alpha_pixel_(false),
      seen_zero_alpha_pixel_(false),
      is_in_ico_(is_in_ico),
      decoding_and_mask_(false) {
  // Clue-in decodeBMP() that we need to detect the correct info header size.
  memset(&info_header_, 0, sizeof(info_header_));
}

bool BMPImageReader::DecodeBMP(bool only_size) {
  // Defensively clear the FastSharedBufferReader's cache, as another caller
  // may have called SharedBuffer::MergeSegmentsIntoBuffer().
  fast_reader_.ClearCache();

  // Calculate size of info header.
  if (!info_header_.bi_size && !ReadInfoHeaderSize())
    return false;

  const size_t header_end = header_offset_ + info_header_.bi_size;
  // Read and process info header.
  if ((decoded_offset_ < header_end) && !ProcessInfoHeader())
    return false;

  // ProcessInfoHeader() set the size, so if that's all we needed, we're done.
  if (only_size)
    return true;

  // Read and process the bitmasks, if needed.
  if (need_to_process_bitmasks_ && !ProcessBitmasks())
    return false;

  // Read and process the color table, if needed.
  if (need_to_process_color_table_ && !ProcessColorTable())
    return false;

  // Initialize the framebuffer if needed.
  DCHECK(buffer_);  // Parent should set this before asking us to decode!
  if (buffer_->GetStatus() == ImageFrame::kFrameEmpty) {
    if (!buffer_->AllocatePixelData(parent_->Size().Width(),
                                    parent_->Size().Height(),
                                    parent_->ColorSpaceForSkImages())) {
      return parent_->SetFailed();  // Unable to allocate.
    }
    buffer_->ZeroFillPixelData();
    buffer_->SetStatus(ImageFrame::kFramePartial);
    // SetSize() calls EraseARGB(), which resets the alpha flag, so we force
    // it back to false here.  We'll set it true below in all cases where
    // these 0s could actually show through.
    buffer_->SetHasAlpha(false);

    // For BMPs, the frame always fills the entire image.
    buffer_->SetOriginalFrameRect(IntRect(IntPoint(), parent_->Size()));

    if (!is_top_down_)
      coord_.SetY(parent_->Size().Height() - 1);
  }

  // Decode the data.
  if (!decoding_and_mask_ && !PastEndOfImage(0) &&
      !DecodePixelData((info_header_.bi_compression != RLE4) &&
                       (info_header_.bi_compression != RLE8) &&
                       (info_header_.bi_compression != RLE24)))
    return false;

  // If the image has an AND mask and there was no alpha data, process the
  // mask.
  if (is_in_ico_ && !decoding_and_mask_ &&
      ((info_header_.bi_bit_count < 16) || !bit_masks_[3] ||
       !seen_non_zero_alpha_pixel_)) {
    // Reset decoding coordinates to start of image.
    coord_.SetX(0);
    coord_.SetY(is_top_down_ ? 0 : (parent_->Size().Height() - 1));

    // The AND mask is stored as 1-bit data.
    info_header_.bi_bit_count = 1;

    decoding_and_mask_ = true;
  }
  if (decoding_and_mask_ && !DecodePixelData(true))
    return false;

  // Done!
  buffer_->SetStatus(ImageFrame::kFrameComplete);
  return true;
}

bool BMPImageReader::DecodePixelData(bool non_rle) {
  const IntPoint coord(coord_);
  const ProcessingResult result =
      non_rle ? ProcessNonRLEData(false, 0) : ProcessRLEData();
  if (coord_ != coord)
    buffer_->SetPixelsChanged(true);
  return (result == kFailure) ? parent_->SetFailed() : (result == kSuccess);
}

bool BMPImageReader::ReadInfoHeaderSize() {
  // Get size of info header.
  DCHECK_EQ(decoded_offset_, header_offset_);
  if ((decoded_offset_ > data_->size()) ||
      ((data_->size() - decoded_offset_) < 4))
    return false;
  info_header_.bi_size = ReadUint32(0);
  // Don't increment decoded_offset here, it just makes the code in
  // ProcessInfoHeader() more confusing.

  // Don't allow the header to overflow (which would be harmless here, but
  // problematic or at least confusing in other places), or to overrun the
  // image data.
  const size_t header_end = header_offset_ + info_header_.bi_size;
  if ((header_end < header_offset_) ||
      (img_data_offset_ && (img_data_offset_ < header_end)))
    return parent_->SetFailed();

  // See if this is a header size we understand:
  // OS/2 1.x: 12
  if (info_header_.bi_size == 12)
    is_os21x_ = true;
  // Windows V3: 40
  else if ((info_header_.bi_size == 40) || IsWindowsV4Plus())
    ;
  // OS/2 2.x: any multiple of 4 between 16 and 64, inclusive, or 42 or 46
  else if ((info_header_.bi_size >= 16) && (info_header_.bi_size <= 64) &&
           (!(info_header_.bi_size & 3) || (info_header_.bi_size == 42) ||
            (info_header_.bi_size == 46)))
    is_os22x_ = true;
  else
    return parent_->SetFailed();

  return true;
}

bool BMPImageReader::ProcessInfoHeader() {
  // Read info header.
  DCHECK_EQ(decoded_offset_, header_offset_);
  if ((decoded_offset_ > data_->size()) ||
      ((data_->size() - decoded_offset_) < info_header_.bi_size) ||
      !ReadInfoHeader())
    return false;
  decoded_offset_ += info_header_.bi_size;

  // Sanity-check header values.
  if (!IsInfoHeaderValid())
    return parent_->SetFailed();

  // Set our size.
  if (!parent_->SetSize(info_header_.bi_width, info_header_.bi_height))
    return false;

  // For paletted images, bitmaps can set biClrUsed to 0 to mean "all
  // colors", so set it to the maximum number of colors for this bit depth.
  // Also do this for bitmaps that put too large a value here.
  if (info_header_.bi_bit_count < 16) {
    const uint32_t max_colors = static_cast<uint32_t>(1)
                                << info_header_.bi_bit_count;
    if (!info_header_.bi_clr_used || (info_header_.bi_clr_used > max_colors))
      info_header_.bi_clr_used = max_colors;
  }

  // For any bitmaps that set their BitCount to the wrong value, reset the
  // counts now that we've calculated the number of necessary colors, since
  // other code relies on this value being correct.
  if (info_header_.bi_compression == RLE8)
    info_header_.bi_bit_count = 8;
  else if (info_header_.bi_compression == RLE4)
    info_header_.bi_bit_count = 4;

  // Tell caller what still needs to be processed.
  if (info_header_.bi_bit_count >= 16)
    need_to_process_bitmasks_ = true;
  else if (info_header_.bi_bit_count)
    need_to_process_color_table_ = true;

  return true;
}

bool BMPImageReader::ReadInfoHeader() {
  // Pre-initialize some fields that not all headers set.
  info_header_.bi_compression = RGB;
  info_header_.bi_clr_used = 0;

  if (is_os21x_) {
    info_header_.bi_width = ReadUint16(4);
    info_header_.bi_height = ReadUint16(6);
    DCHECK(!is_in_ico_);  // ICO is a Windows format, not OS/2!
    info_header_.bi_bit_count = ReadUint16(10);
    return true;
  }

  info_header_.bi_width = ReadUint32(4);
  info_header_.bi_height = ReadUint32(8);
  if (is_in_ico_)
    info_header_.bi_height /= 2;
  info_header_.bi_bit_count = ReadUint16(14);

  // Read compression type, if present.
  if (info_header_.bi_size >= 20) {
    uint32_t bi_compression = ReadUint32(16);

    // Detect OS/2 2.x-specific compression types.
    if ((bi_compression == 3) && (info_header_.bi_bit_count == 1)) {
      info_header_.bi_compression = HUFFMAN1D;
      is_os22x_ = true;
    } else if ((bi_compression == 4) && (info_header_.bi_bit_count == 24)) {
      info_header_.bi_compression = RLE24;
      is_os22x_ = true;
    } else if (bi_compression > 5)
      return parent_->SetFailed();  // Some type we don't understand.
    else
      info_header_.bi_compression =
          static_cast<CompressionType>(bi_compression);
  }

  // Read colors used, if present.
  if (info_header_.bi_size >= 36)
    info_header_.bi_clr_used = ReadUint32(32);

  // Windows V4+ can safely read the four bitmasks from 40-56 bytes in, so do
  // that here. If the bit depth is less than 16, these values will be ignored
  // by the image data decoders. If the bit depth is at least 16 but the
  // compression format isn't BITFIELDS, the RGB bitmasks will be ignored and
  // overwritten in processBitmasks(). (The alpha bitmask will never be
  // overwritten: images that actually want alpha have to specify a valid
  // alpha mask. See comments in ProcessBitmasks().)
  //
  // For non-Windows V4+, bit_masks_[] et. al will be initialized later
  // during ProcessBitmasks().
  if (IsWindowsV4Plus()) {
    bit_masks_[0] = ReadUint32(40);
    bit_masks_[1] = ReadUint32(44);
    bit_masks_[2] = ReadUint32(48);
    bit_masks_[3] = ReadUint32(52);
  }

  // Detect top-down BMPs.
  if (info_header_.bi_height < 0) {
    // We can't negate INT32_MIN below to get a positive int32_t.
    // IsInfoHeaderValid() will reject heights of 1 << 16 or larger anyway,
    // so just reject this bitmap now.
    if (info_header_.bi_height == INT32_MIN)
      return parent_->SetFailed();
    is_top_down_ = true;
    info_header_.bi_height = -info_header_.bi_height;
  }

  return true;
}

bool BMPImageReader::IsInfoHeaderValid() const {
  // Non-positive widths/heights are invalid.  (We've already flipped the
  // sign of the height for top-down bitmaps.)
  if ((info_header_.bi_width <= 0) || !info_header_.bi_height)
    return false;

  // Only Windows V3+ has top-down bitmaps.
  if (is_top_down_ && (is_os21x_ || is_os22x_))
    return false;

  // Only bit depths of 1, 4, 8, or 24 are universally supported.
  if ((info_header_.bi_bit_count != 1) && (info_header_.bi_bit_count != 4) &&
      (info_header_.bi_bit_count != 8) && (info_header_.bi_bit_count != 24)) {
    // Windows V3+ additionally supports bit depths of 0 (for embedded
    // JPEG/PNG images), 16, and 32.
    if (is_os21x_ || is_os22x_ ||
        (info_header_.bi_bit_count && (info_header_.bi_bit_count != 16) &&
         (info_header_.bi_bit_count != 32)))
      return false;
  }

  // Each compression type is only valid with certain bit depths (except RGB,
  // which can be used with any bit depth). Also, some formats do not support
  // some compression types.
  switch (info_header_.bi_compression) {
    case RGB:
      if (!info_header_.bi_bit_count)
        return false;
      break;

    case RLE8:
      // Supposedly there are undocumented formats like "BitCount = 1,
      // Compression = RLE4" (which means "4 bit, but with a 2-color table"),
      // so also allow the paletted RLE compression types to have too low a
      // bit count; we'll correct this later.
      if (!info_header_.bi_bit_count || (info_header_.bi_bit_count > 8))
        return false;
      break;

    case RLE4:
      // See comments in RLE8.
      if (!info_header_.bi_bit_count || (info_header_.bi_bit_count > 4))
        return false;
      break;

    case BITFIELDS:
      // Only valid for Windows V3+.
      if (is_os21x_ || is_os22x_ ||
          ((info_header_.bi_bit_count != 16) &&
           (info_header_.bi_bit_count != 32)))
        return false;
      break;

    case JPEG:
    case PNG:
      // Only valid for Windows V3+.
      if (is_os21x_ || is_os22x_ || info_header_.bi_bit_count)
        return false;
      break;

    case HUFFMAN1D:
      // Only valid for OS/2 2.x.
      if (!is_os22x_ || (info_header_.bi_bit_count != 1))
        return false;
      break;

    case RLE24:
      // Only valid for OS/2 2.x.
      if (!is_os22x_ || (info_header_.bi_bit_count != 24))
        return false;
      break;

    default:
      // Some type we don't understand.  This should have been caught in
      // ReadInfoHeader().
      NOTREACHED();
      return false;
  }

  // Top-down bitmaps cannot be compressed; they must be RGB or BITFIELDS.
  if (is_top_down_ && (info_header_.bi_compression != RGB) &&
      (info_header_.bi_compression != BITFIELDS))
    return false;

  // Reject the following valid bitmap types that we don't currently bother
  // decoding.  Few other people decode these either, they're unlikely to be
  // in much use.
  // TODO(pkasting): Consider supporting these someday.
  //   * Bitmaps larger than 2^16 pixels in either dimension (Windows
  //     probably doesn't draw these well anyway, and the decoded data would
  //     take a lot of memory).
  if ((info_header_.bi_width >= (1 << 16)) ||
      (info_header_.bi_height >= (1 << 16)))
    return false;
  //   * Windows V3+ JPEG-in-BMP and PNG-in-BMP bitmaps (supposedly not found
  //     in the wild, only used to send data to printers?).
  if ((info_header_.bi_compression == JPEG) ||
      (info_header_.bi_compression == PNG))
    return false;
  //   * OS/2 2.x Huffman-encoded monochrome bitmaps (see
  //      http://www.fileformat.info/mirror/egff/ch09_05.htm , re: "G31D"
  //      algorithm).
  if (info_header_.bi_compression == HUFFMAN1D)
    return false;

  return true;
}

bool BMPImageReader::ProcessBitmasks() {
  // Create bit_masks_[] values for R/G/B.
  if (info_header_.bi_compression != BITFIELDS) {
    // The format doesn't actually use bitmasks.  To simplify the decode
    // logic later, create bitmasks for the RGB data.  For Windows V4+,
    // this overwrites the masks we read from the header, which are
    // supposed to be ignored in non-BITFIELDS cases.
    // 16 bits:    MSB <-                     xRRRRRGG GGGBBBBB -> LSB
    // 24/32 bits: MSB <- [AAAAAAAA] RRRRRRRR GGGGGGGG BBBBBBBB -> LSB
    const int num_bits = (info_header_.bi_bit_count == 16) ? 5 : 8;
    for (int i = 0; i <= 2; ++i)
      bit_masks_[i] = ((static_cast<uint32_t>(1) << (num_bits * (3 - i))) - 1) ^
                      ((static_cast<uint32_t>(1) << (num_bits * (2 - i))) - 1);
  } else if (!IsWindowsV4Plus()) {
    // For Windows V4+ BITFIELDS mode bitmaps, this was already done when
    // we read the info header.

    // Fail if we don't have enough file space for the bitmasks.
    const size_t header_end = header_offset_ + info_header_.bi_size;
    const size_t kBitmasksSize = 12;
    const size_t bitmasks_end = header_end + kBitmasksSize;
    if ((bitmasks_end < header_end) ||
        (img_data_offset_ && (img_data_offset_ < bitmasks_end)))
      return parent_->SetFailed();

    // Read bitmasks.
    if ((data_->size() - decoded_offset_) < kBitmasksSize)
      return false;
    bit_masks_[0] = ReadUint32(0);
    bit_masks_[1] = ReadUint32(4);
    bit_masks_[2] = ReadUint32(8);

    decoded_offset_ += kBitmasksSize;
  }

  // Alpha is a poorly-documented and inconsistently-used feature.
  //
  // Windows V4+ has an alpha bitmask in the info header. Unlike the R/G/B
  // bitmasks, the MSDN docs don't indicate that it is only valid for the
  // BITFIELDS compression format, so we respect it at all times.
  //
  // To complicate things, Windows V3 BMPs, which lack this mask, can specify
  // 32bpp format, which to any sane reader would imply an 8-bit alpha
  // channel -- and for BMPs-in-ICOs, that's precisely what's intended to
  // happen. There also exist standalone BMPs in this format which clearly
  // expect the alpha channel to be respected. However, there are many other
  // BMPs which, for example, fill this channel with all 0s, yet clearly
  // expect to not be displayed as a fully-transparent rectangle.
  //
  // If these were the only two types of Windows V3, 32bpp BMPs in the wild,
  // we could distinguish between them by scanning the alpha channel in the
  // image, looking for nonzero values, and only enabling alpha if we found
  // some. (It turns out we have to do this anyway, because, crazily, there
  // are also Windows V4+ BMPs with an explicit, non-zero alpha mask, which
  // then zero-fill their alpha channels! See comments in
  // processNonRLEData().)
  //
  // Unfortunately there are also V3 BMPs -- indeed, probably more than the
  // number of 32bpp, V3 BMPs which intentionally use alpha -- which specify
  // 32bpp format, use nonzero (and non-255) alpha values, and yet expect to
  // be rendered fully-opaque. And other browsers do so.
  //
  // So it's impossible to display every BMP in the way its creators intended,
  // and we have to choose what to break. Given the paragraph above, we match
  // other browsers and ignore alpha in Windows V3 BMPs except inside ICO
  // files.
  if (!IsWindowsV4Plus())
    bit_masks_[3] = (is_in_ico_ && (info_header_.bi_compression != BITFIELDS) &&
                     (info_header_.bi_bit_count == 32))
                        ? static_cast<uint32_t>(0xff000000)
                        : 0;

  // We've now decoded all the non-image data we care about.  Skip anything
  // else before the actual raster data.
  if (img_data_offset_)
    decoded_offset_ = img_data_offset_;
  need_to_process_bitmasks_ = false;

  // Check masks and set shift and LUT address values.
  for (int i = 0; i < 4; ++i) {
    // Trim the mask to the allowed bit depth.  Some Windows V4+ BMPs
    // specify a bogus alpha channel in bits that don't exist in the pixel
    // data (for example, bits 25-31 in a 24-bit RGB format).
    if (info_header_.bi_bit_count < 32)
      bit_masks_[i] &=
          ((static_cast<uint32_t>(1) << info_header_.bi_bit_count) - 1);

    // For empty masks (common on the alpha channel, especially after the
    // trimming above), quickly clear the shift and LUT address and
    // continue, to avoid an infinite loop in the counting code below.
    uint32_t temp_mask = bit_masks_[i];
    if (!temp_mask) {
      bit_shifts_right_[i] = 0;
      lookup_table_addresses_[i] = nullptr;
      continue;
    }

    // Make sure bitmask does not overlap any other bitmasks.
    for (int j = 0; j < i; ++j) {
      if (temp_mask & bit_masks_[j])
        return parent_->SetFailed();
    }

    // Count offset into pixel data.
    for (bit_shifts_right_[i] = 0; !(temp_mask & 1); temp_mask >>= 1)
      ++bit_shifts_right_[i];

    // Count size of mask.
    size_t num_bits = 0;
    for (; temp_mask & 1; temp_mask >>= 1)
      ++num_bits;

    // Make sure bitmask is contiguous.
    if (temp_mask)
      return parent_->SetFailed();

    // Since RGBABuffer tops out at 8 bits per channel, adjust the shift
    // amounts to use the most significant 8 bits of the channel.
    if (num_bits >= 8) {
      bit_shifts_right_[i] += (num_bits - 8);
      num_bits = 0;
    }

    // Calculate LUT address.
    lookup_table_addresses_[i] =
        num_bits ? (nBitTo8BitlookupTable + (1 << num_bits) - 2) : nullptr;
  }

  return true;
}

bool BMPImageReader::ProcessColorTable() {
  // Fail if we don't have enough file space for the color table.
  const size_t header_end = header_offset_ + info_header_.bi_size;
  const size_t table_size_in_bytes =
      info_header_.bi_clr_used * (is_os21x_ ? 3 : 4);
  const size_t table_end = header_end + table_size_in_bytes;
  if ((table_end < header_end) ||
      (img_data_offset_ && (img_data_offset_ < table_end)))
    return parent_->SetFailed();

  // Read color table.
  if ((decoded_offset_ > data_->size()) ||
      ((data_->size() - decoded_offset_) < table_size_in_bytes))
    return false;
  color_table_.resize(info_header_.bi_clr_used);

  // On non-OS/2 1.x, an extra padding byte is present, which we need to skip.
  const size_t bytes_per_color = is_os21x_ ? 3 : 4;
  for (size_t i = 0; i < info_header_.bi_clr_used; ++i) {
    color_table_[i].rgb_blue = ReadUint8(0);
    color_table_[i].rgb_green = ReadUint8(1);
    color_table_[i].rgb_red = ReadUint8(2);
    decoded_offset_ += bytes_per_color;
  }

  // We've now decoded all the non-image data we care about.  Skip anything
  // else before the actual raster data.
  if (img_data_offset_)
    decoded_offset_ = img_data_offset_;
  need_to_process_color_table_ = false;

  return true;
}

BMPImageReader::ProcessingResult BMPImageReader::ProcessRLEData() {
  if (decoded_offset_ > data_->size())
    return kInsufficientData;

  // RLE decoding is poorly specified.  Two main problems:
  // (1) Are EOL markers necessary?  What happens when we have too many
  //     pixels for one row?
  //     http://www.fileformat.info/format/bmp/egff.htm says extra pixels
  //     should wrap to the next line.  Real BMPs I've encountered seem to
  //     instead expect extra pixels to be ignored until the EOL marker is
  //     seen, although this has only happened in a few cases and I suspect
  //     those BMPs may be invalid.  So we only change lines on EOL (or Delta
  //     with dy > 0), and fail in most cases when pixels extend past the end
  //     of the line.
  // (2) When Delta, EOL, or EOF are seen, what happens to the "skipped"
  //     pixels?
  //     http://www.daubnet.com/formats/BMP.html says these should be filled
  //     with color 0.  However, the "do nothing" and "don't care" comments
  //     of other references suggest leaving these alone, i.e. letting them
  //     be transparent to the background behind the image.  This seems to
  //     match how MSPAINT treats BMPs, so we do that.  Note that when we
  //     actually skip pixels for a case like this, we need to note on the
  //     framebuffer that we have alpha.

  // Impossible to decode row-at-a-time, so just do things as a stream of
  // bytes.
  while (true) {
    // Every entry takes at least two bytes; bail if there isn't enough
    // data.
    if ((data_->size() - decoded_offset_) < 2)
      return kInsufficientData;

    // For every entry except EOF, we'd better not have reached the end of
    // the image.
    const uint8_t count = ReadUint8(0);
    const uint8_t code = ReadUint8(1);
    if ((count || (code != 1)) && PastEndOfImage(0))
      return kFailure;

    // Decode.
    if (!count) {
      switch (code) {
        case 0:  // Magic token: EOL
          // Skip any remaining pixels in this row.
          if (coord_.X() < parent_->Size().Width())
            buffer_->SetHasAlpha(true);
          MoveBufferToNextRow();

          decoded_offset_ += 2;
          break;

        case 1:  // Magic token: EOF
          // Skip any remaining pixels in the image.
          if ((coord_.X() < parent_->Size().Width()) ||
              (is_top_down_ ? (coord_.Y() < (parent_->Size().Height() - 1))
                            : (coord_.Y() > 0)))
            buffer_->SetHasAlpha(true);
          // There's no need to move |coord_| here to trigger the caller
          // to call SetPixelsChanged().  If the only thing that's changed
          // is the alpha state, that will be properly written into the
          // underlying SkBitmap when we mark the frame complete.
          return kSuccess;

        case 2: {  // Magic token: Delta
          // The next two bytes specify dx and dy.  Bail if there isn't
          // enough data.
          if ((data_->size() - decoded_offset_) < 4)
            return kInsufficientData;

          // Fail if this takes us past the end of the desired row or
          // past the end of the image.
          const uint8_t dx = ReadUint8(2);
          const uint8_t dy = ReadUint8(3);
          if (dx || dy)
            buffer_->SetHasAlpha(true);
          if (((coord_.X() + dx) > parent_->Size().Width()) ||
              PastEndOfImage(dy))
            return kFailure;

          // Skip intervening pixels.
          coord_.Move(dx, is_top_down_ ? dy : -dy);

          decoded_offset_ += 4;
          break;
        }

        default: {  // Absolute mode
          // |code| pixels specified as in BI_RGB, zero-padded at the end
          // to a multiple of 16 bits.
          // Because ProcessNonRLEData() expects decoded_offset_ to
          // point to the beginning of the pixel data, bump it past
          // the escape bytes and then reset if decoding failed.
          decoded_offset_ += 2;
          const ProcessingResult result = ProcessNonRLEData(true, code);
          if (result != kSuccess) {
            decoded_offset_ -= 2;
            return result;
          }
          break;
        }
      }
    } else {  // Encoded mode
      // The following color data is repeated for |count| total pixels.
      // Strangely, some BMPs seem to specify excessively large counts
      // here; ignore pixels past the end of the row.
      const int end_x = std::min(coord_.X() + count, parent_->Size().Width());

      if (info_header_.bi_compression == RLE24) {
        // Bail if there isn't enough data.
        if ((data_->size() - decoded_offset_) < 4)
          return kInsufficientData;

        // One BGR triple that we copy |count| times.
        FillRGBA(end_x, ReadUint8(3), ReadUint8(2), code, 0xff);
        decoded_offset_ += 4;
      } else {
        // RLE8 has one color index that gets repeated; RLE4 has two
        // color indexes in the upper and lower 4 bits of the byte,
        // which are alternated.
        size_t color_indexes[2] = {code, code};
        if (info_header_.bi_compression == RLE4) {
          color_indexes[0] = (color_indexes[0] >> 4) & 0xf;
          color_indexes[1] &= 0xf;
        }
        for (int which = 0; coord_.X() < end_x;) {
          // Some images specify color values past the end of the
          // color table; set these pixels to black.
          if (color_indexes[which] < info_header_.bi_clr_used)
            SetI(color_indexes[which]);
          else
            SetRGBA(0, 0, 0, 255);
          which = !which;
        }

        decoded_offset_ += 2;
      }
    }
  }
}

BMPImageReader::ProcessingResult BMPImageReader::ProcessNonRLEData(
    bool in_rle,
    int num_pixels) {
  if (decoded_offset_ > data_->size())
    return kInsufficientData;

  if (!in_rle)
    num_pixels = parent_->Size().Width();

  // Fail if we're being asked to decode more pixels than remain in the row.
  const int end_x = coord_.X() + num_pixels;
  if (end_x > parent_->Size().Width())
    return kFailure;

  // Determine how many bytes of data the requested number of pixels
  // requires.
  const size_t pixels_per_byte = 8 / info_header_.bi_bit_count;
  const size_t bytes_per_pixel = info_header_.bi_bit_count / 8;
  const size_t unpadded_num_bytes =
      (info_header_.bi_bit_count < 16)
          ? ((num_pixels + pixels_per_byte - 1) / pixels_per_byte)
          : (num_pixels * bytes_per_pixel);
  // RLE runs are zero-padded at the end to a multiple of 16 bits.  Non-RLE
  // data is in rows and is zero-padded to a multiple of 32 bits.
  const size_t align_bits = in_rle ? 1 : 3;
  const size_t padded_num_bytes =
      (unpadded_num_bytes + align_bits) & ~align_bits;

  // Decode as many rows as we can.  (For RLE, where we only want to decode
  // one row, we've already checked that this condition is true.)
  while (!PastEndOfImage(0)) {
    // Bail if we don't have enough data for the desired number of pixels.
    if ((data_->size() - decoded_offset_) < padded_num_bytes)
      return kInsufficientData;

    if (info_header_.bi_bit_count < 16) {
      // Paletted data.  Pixels are stored little-endian within bytes.
      // Decode pixels one byte at a time, left to right (so, starting at
      // the most significant bits in the byte).
      const uint8_t mask = (1 << info_header_.bi_bit_count) - 1;
      for (size_t end_offset = decoded_offset_ + unpadded_num_bytes;
           decoded_offset_ < end_offset; ++decoded_offset_) {
        uint8_t pixel_data = ReadUint8(0);
        for (size_t pixel = 0;
             (pixel < pixels_per_byte) && (coord_.X() < end_x); ++pixel) {
          const size_t color_index =
              (pixel_data >> (8 - info_header_.bi_bit_count)) & mask;
          if (decoding_and_mask_) {
            // There's no way to accurately represent an AND + XOR
            // operation as an RGBA image, so where the AND values
            // are 1, we simply set the framebuffer pixels to fully
            // transparent, on the assumption that most ICOs on the
            // web will not be doing a lot of inverting.
            if (color_index) {
              SetRGBA(0, 0, 0, 0);
              buffer_->SetHasAlpha(true);
            } else
              coord_.Move(1, 0);
          } else {
            // See comments near the end of ProcessRLEData().
            if (color_index < info_header_.bi_clr_used)
              SetI(color_index);
            else
              SetRGBA(0, 0, 0, 255);
          }
          pixel_data <<= info_header_.bi_bit_count;
        }
      }
    } else {
      // RGB data.  Decode pixels one at a time, left to right.
      for (; coord_.X() < end_x; decoded_offset_ += bytes_per_pixel) {
        const uint32_t pixel = ReadCurrentPixel(bytes_per_pixel);

        // Some BMPs specify an alpha channel but don't actually use it
        // (it contains all 0s).  To avoid displaying these images as
        // fully-transparent, decode as if images are fully opaque
        // until we actually see a non-zero alpha value; at that point,
        // reset any previously-decoded pixels to fully transparent and
        // continue decoding based on the real alpha channel values.
        // As an optimization, avoid calling SetHasAlpha(true) for
        // images where all alpha values are 255; opaque images are
        // faster to draw.
        int alpha = GetAlpha(pixel);
        if (!seen_non_zero_alpha_pixel_ && !alpha) {
          seen_zero_alpha_pixel_ = true;
          alpha = 255;
        } else {
          seen_non_zero_alpha_pixel_ = true;
          if (seen_zero_alpha_pixel_) {
            buffer_->ZeroFillPixelData();
            seen_zero_alpha_pixel_ = false;
          } else if (alpha != 255)
            buffer_->SetHasAlpha(true);
        }

        SetRGBA(GetComponent(pixel, 0), GetComponent(pixel, 1),
                GetComponent(pixel, 2), alpha);
      }
    }

    // Success, keep going.
    decoded_offset_ += (padded_num_bytes - unpadded_num_bytes);
    if (in_rle)
      return kSuccess;
    MoveBufferToNextRow();
  }

  // Finished decoding whole image.
  return kSuccess;
}

void BMPImageReader::MoveBufferToNextRow() {
  coord_.Move(-coord_.X(), is_top_down_ ? 1 : -1);
}

}  // namespace blink