summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/platform/heap/heap_page.h
blob: f9f0076112cfa09e30d3bf9837fc67127b5a36f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
/*
 * Copyright (C) 2013 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_HEAP_HEAP_PAGE_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_HEAP_HEAP_PAGE_H_

#include <stdint.h>
#include <array>
#include <atomic>

#include "base/bits.h"
#include "base/compiler_specific.h"
#include "build/build_config.h"
#include "third_party/blink/renderer/platform/heap/blink_gc.h"
#include "third_party/blink/renderer/platform/heap/gc_info.h"
#include "third_party/blink/renderer/platform/heap/heap_buildflags.h"
#include "third_party/blink/renderer/platform/heap/thread_state.h"
#include "third_party/blink/renderer/platform/heap/thread_state_statistics.h"
#include "third_party/blink/renderer/platform/heap/unsanitized_atomic.h"
#include "third_party/blink/renderer/platform/heap/visitor.h"
#include "third_party/blink/renderer/platform/platform_export.h"
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
#include "third_party/blink/renderer/platform/wtf/allocator/partitions.h"
#include "third_party/blink/renderer/platform/wtf/assertions.h"
#include "third_party/blink/renderer/platform/wtf/container_annotations.h"
#include "third_party/blink/renderer/platform/wtf/forward.h"
#include "third_party/blink/renderer/platform/wtf/sanitizers.h"
#include "third_party/blink/renderer/platform/wtf/threading_primitives.h"

namespace blink {

// TODO(palmer): Document the reason for 17.
constexpr size_t kBlinkPageSizeLog2 = 17;
constexpr size_t kBlinkPageSize = 1 << kBlinkPageSizeLog2;
constexpr size_t kBlinkPageOffsetMask = kBlinkPageSize - 1;
constexpr size_t kBlinkPageBaseMask = ~kBlinkPageOffsetMask;

// We allocate pages at random addresses but in groups of kBlinkPagesPerRegion
// at a given random address. We group pages to not spread out too much over the
// address space which would blow away the page tables and lead to bad
// performance.
constexpr size_t kBlinkPagesPerRegion = 10;

// TODO(nya): Replace this with something like #if ENABLE_NACL.
#if defined(ARCH_CPU_PPC64)
// NaCl's system page size is 64 KiB. This causes a problem in Oilpan's heap
// layout because Oilpan allocates two guard pages for each Blink page (whose
// size is kBlinkPageSize = 2^17 = 128 KiB). So we don't use guard pages in
// NaCl.
// The same issue holds for ppc64 systems, which use a 64k page size.
constexpr size_t kBlinkGuardPageSize = 0;
#else
constexpr size_t kBlinkGuardPageSize = base::kSystemPageSize;
#endif

// Double precision floats are more efficient when 8-byte aligned, so we 8-byte
// align all allocations (even on 32 bit systems).
static_assert(8 == sizeof(double), "We expect sizeof(double) to be 8");
constexpr size_t kAllocationGranularity = sizeof(double);
constexpr size_t kAllocationMask = kAllocationGranularity - 1;
constexpr size_t kMaxHeapObjectSizeLog2 = 27;
constexpr size_t kMaxHeapObjectSize = 1 << kMaxHeapObjectSizeLog2;
constexpr size_t kLargeObjectSizeThreshold = kBlinkPageSize / 2;

// A zap value used for freed memory that is allowed to be added to the free
// list in the next call to AddToFreeList.
constexpr uint8_t kReuseAllowedZapValue = 0x2a;
// A zap value used for freed memory that is forbidden to be added to the free
// list in the next call to AddToFreeList.
constexpr uint8_t kReuseForbiddenZapValue = 0x2c;

// In non-production builds, memory is zapped when it's freed. The zapped memory
// is zeroed out when the memory is reused in ThreadHeap::AllocateObject.
//
// In production builds, memory is not zapped (for performance). The memory is
// just zeroed out when it is added to the free list.
#if defined(MEMORY_SANITIZER)
// TODO(kojii): We actually need __msan_poison/unpoison here, but it'll be
// added later.
#define SET_MEMORY_INACCESSIBLE(address, size) \
  FreeList::ZapFreedMemory(address, size);
#define SET_MEMORY_ACCESSIBLE(address, size) memset((address), 0, (size))
#define CHECK_MEMORY_INACCESSIBLE(address, size)     \
  ASAN_UNPOISON_MEMORY_REGION(address, size);        \
  FreeList::CheckFreedMemoryIsZapped(address, size); \
  ASAN_POISON_MEMORY_REGION(address, size)
#elif DCHECK_IS_ON() || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER)
#define SET_MEMORY_INACCESSIBLE(address, size) \
  FreeList::ZapFreedMemory(address, size);     \
  ASAN_POISON_MEMORY_REGION(address, size)
#define SET_MEMORY_ACCESSIBLE(address, size)  \
  ASAN_UNPOISON_MEMORY_REGION(address, size); \
  memset((address), 0, (size))
#define CHECK_MEMORY_INACCESSIBLE(address, size)     \
  ASAN_UNPOISON_MEMORY_REGION(address, size);        \
  FreeList::CheckFreedMemoryIsZapped(address, size); \
  ASAN_POISON_MEMORY_REGION(address, size)
#else
#define SET_MEMORY_INACCESSIBLE(address, size) memset((address), 0, (size))
#define SET_MEMORY_ACCESSIBLE(address, size) \
  do {                                       \
  } while (false)
#define CHECK_MEMORY_INACCESSIBLE(address, size) \
  do {                                           \
  } while (false)
#endif

class NormalPageArena;
class PageMemory;
class BaseArena;

// HeapObjectHeader is a 32-bit object that has the following layout:
//
// | padding (32 bits)            | Only present on 64-bit platforms.
// | gc_info_index (14 bits)      |
// | unused (1 bit)               |
// | in construction (1 bit)      | true: bit not set; false bit set
//
// | size (14 bits)               | Actually 17 bits because sizes are aligned.
// | unused (1 bit)               |
// | mark bit (1 bit)             |
//
// Notes:
// - 14 bits for |gc_info_index} (type information) are enough as there are
//   fewer than 2^14 types allocated in Blink.
// - |size| for regular objects is encoded with 14 bits but can actually
//   represent sizes up to |kBlinkPageSize| (2^17) because allocations are
//   always 8 byte aligned (see kAllocationGranularity).
// - |size| for large objects is encoded as 0. The size of a large object is
//   stored in |LargeObjectPage::PayloadSize()|.
// - |mark bit| and |in construction| bits are located in separate variables and
//   therefore can be accessed concurrently. Since tsan works with word-size
//   objects they still should be accessed atomically.
constexpr uint16_t kHeaderMarkBitMask = 1;
constexpr uint16_t kHeaderSizeShift = 2;
constexpr uint16_t kHeaderSizeMask =
    static_cast<uint16_t>(((1 << 14) - 1) << kHeaderSizeShift);

constexpr uint16_t kHeaderIsInConstructionMask = 1;
constexpr uint16_t kHeaderGCInfoIndexShift = 2;
constexpr uint16_t kHeaderGCInfoSize = static_cast<uint16_t>(1 << 14);
constexpr uint16_t kHeaderGCInfoIndexMask =
    static_cast<uint16_t>((kHeaderGCInfoSize - 1) << kHeaderGCInfoIndexShift);

constexpr uint16_t kLargeObjectSizeInHeader = 0;
constexpr uint16_t kGcInfoIndexForFreeListHeader = 0;
constexpr size_t kNonLargeObjectPageSizeMax = 1 << kBlinkPageSizeLog2;

static_assert(kHeaderGCInfoSize == GCInfoTable::kMaxIndex,
              "GCInfoTable size and and header GCInfo index size must match");

static_assert(
    kNonLargeObjectPageSizeMax >= kBlinkPageSize,
    "max size supported by HeapObjectHeader must at least be kBlinkPageSize");

namespace internal {

NO_SANITIZE_ADDRESS constexpr uint16_t EncodeSize(size_t size) {
  // Essentially, gets optimized to >> 1.
  return static_cast<uint16_t>((size << kHeaderSizeShift) /
                               kAllocationGranularity);
}

NO_SANITIZE_ADDRESS constexpr size_t DecodeSize(uint16_t encoded) {
  // Essentially, gets optimized to << 1.
  return ((encoded & kHeaderSizeMask) >> kHeaderSizeShift) *
         kAllocationGranularity;
}

}  // namespace internal

class PLATFORM_EXPORT HeapObjectHeader {
  DISALLOW_NEW();

 public:
  enum class AccessMode : uint8_t { kNonAtomic, kAtomic };

  static HeapObjectHeader* FromPayload(const void*);
  template <AccessMode = AccessMode::kNonAtomic>
  static HeapObjectHeader* FromInnerAddress(const void*);

  // Checks sanity of the header given a payload pointer.
  static void CheckFromPayload(const void*);

  // If |gc_info_index| is 0, this header is interpreted as a free list header.
  HeapObjectHeader(size_t, size_t);

  template <AccessMode mode = AccessMode::kNonAtomic>
  NO_SANITIZE_ADDRESS bool IsFree() const {
    return GcInfoIndex<mode>() == kGcInfoIndexForFreeListHeader;
  }

  template <AccessMode mode = AccessMode::kNonAtomic>
  NO_SANITIZE_ADDRESS uint32_t GcInfoIndex() const {
    const uint16_t encoded =
        LoadEncoded<mode, EncodedHalf::kHigh, std::memory_order_acquire>();
    return (encoded & kHeaderGCInfoIndexMask) >> kHeaderGCInfoIndexShift;
  }

  template <AccessMode = AccessMode::kNonAtomic>
  size_t size() const;
  void SetSize(size_t size);

  template <AccessMode = AccessMode::kNonAtomic>
  bool IsLargeObject() const;

  template <AccessMode = AccessMode::kNonAtomic>
  bool IsMarked() const;
  template <AccessMode = AccessMode::kNonAtomic>
  void Unmark();
  template <AccessMode = AccessMode::kNonAtomic>
  bool TryMark();

  template <AccessMode = AccessMode::kNonAtomic>
  bool IsOld() const;

  template <AccessMode = AccessMode::kNonAtomic>
  bool IsInConstruction() const;
  template <AccessMode = AccessMode::kNonAtomic>
  void MarkFullyConstructed();

  // The payload starts directly after the HeapObjectHeader, and the payload
  // size does not include the sizeof(HeapObjectHeader).
  Address Payload() const;
  size_t PayloadSize() const;
  template <AccessMode = AccessMode::kNonAtomic>
  Address PayloadEnd() const;

  void Finalize(Address, size_t);

  // Returns true if object has finalizer.
  bool HasNonTrivialFinalizer() const;

  // Returns a human-readable name of this object.
  const char* Name() const;

 private:
  enum class EncodedHalf : uint8_t { kLow, kHigh };

  template <AccessMode,
            EncodedHalf part,
            std::memory_order = std::memory_order_seq_cst>
  uint16_t LoadEncoded() const;
  template <AccessMode mode,
            EncodedHalf part,
            std::memory_order = std::memory_order_seq_cst>
  void StoreEncoded(uint16_t bits, uint16_t mask);

#if defined(ARCH_CPU_64_BITS)
  uint32_t padding_ = 0;
#endif  // defined(ARCH_CPU_64_BITS)
  uint16_t encoded_high_;
  uint16_t encoded_low_;
};

class FreeListEntry final : public HeapObjectHeader {
 public:
  NO_SANITIZE_ADDRESS
  explicit FreeListEntry(size_t size)
      : HeapObjectHeader(size, kGcInfoIndexForFreeListHeader), next_(nullptr) {}

  Address GetAddress() { return reinterpret_cast<Address>(this); }

  NO_SANITIZE_ADDRESS
  void Unlink(FreeListEntry** previous_next) {
    *previous_next = next_;
    next_ = nullptr;
  }

  NO_SANITIZE_ADDRESS
  void Link(FreeListEntry** previous_next) {
    next_ = *previous_next;
    *previous_next = this;
  }

  NO_SANITIZE_ADDRESS
  FreeListEntry* Next() const { return next_; }

  NO_SANITIZE_ADDRESS
  void Append(FreeListEntry* next) {
    DCHECK(!next_);
    next_ = next;
  }

 private:
  FreeListEntry* next_;

  friend class FreeList;
};

class FreeList {
  DISALLOW_NEW();

 public:
  // Returns a bucket number for inserting a |FreeListEntry| of a given size.
  // All entries in the given bucket, n, have size >= 2^n.
  static int BucketIndexForSize(size_t);

#if DCHECK_IS_ON() || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER) || \
    defined(MEMORY_SANITIZER)
  static void GetAllowedAndForbiddenCounts(Address, size_t, size_t&, size_t&);
  static void ZapFreedMemory(Address, size_t);
  static void CheckFreedMemoryIsZapped(Address, size_t);
#endif

  FreeList();

  FreeListEntry* Allocate(size_t);
  void Add(Address, size_t);
  void MoveFrom(FreeList*);
  void Clear();

  bool IsEmpty() const;
  size_t FreeListSize() const;

  void CollectStatistics(ThreadState::Statistics::FreeListStatistics*);

  template <typename Predicate>
  FreeListEntry* FindEntry(Predicate pred) {
    for (size_t i = 0; i < kBlinkPageSizeLog2; ++i) {
      for (FreeListEntry* entry = free_list_heads_[i]; entry;
           entry = entry->Next()) {
        if (pred(entry)) {
          return entry;
        }
      }
    }
    return nullptr;
  }

 private:
  bool IsConsistent(size_t index) const {
    return (!free_list_heads_[index] && !free_list_tails_[index]) ||
           (free_list_heads_[index] && free_list_tails_[index] &&
            !free_list_tails_[index]->Next());
  }

  // All |FreeListEntry|s in the nth list have size >= 2^n.
  FreeListEntry* free_list_heads_[kBlinkPageSizeLog2];
  FreeListEntry* free_list_tails_[kBlinkPageSizeLog2];
  int biggest_free_list_index_;
};

// Blink heap pages are set up with a guard page before and after the payload.
constexpr size_t BlinkPagePayloadSize() {
  return kBlinkPageSize - 2 * kBlinkGuardPageSize;
}

// Blink heap pages are aligned to the Blink heap page size. Therefore, the
// start of a Blink page can be obtained by rounding down to the Blink page
// size.
inline Address RoundToBlinkPageStart(Address address) {
  return reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address) &
                                   kBlinkPageBaseMask);
}

inline Address RoundToBlinkPageEnd(Address address) {
  return reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address - 1) &
                                   kBlinkPageBaseMask) +
         kBlinkPageSize;
}

// Masks an address down to the enclosing Blink page base address.
inline Address BlinkPageAddress(Address address) {
  return reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address) &
                                   kBlinkPageBaseMask);
}

inline bool VTableInitialized(const void* object_pointer) {
  return !!(*reinterpret_cast<const ConstAddress*>(object_pointer));
}

#if DCHECK_IS_ON()

// Sanity check for a page header address: the address of the page header should
// be 1 OS page size away from being Blink page size-aligned.
inline bool IsPageHeaderAddress(Address address) {
  return !((reinterpret_cast<uintptr_t>(address) & kBlinkPageOffsetMask) -
           kBlinkGuardPageSize);
}

#endif

// |FinalizeType| specifies when finalization should take place.
// In case of concurrent sweeper we defer finalization to be done
// on the main thread.
enum class FinalizeType : uint8_t { kInlined, kDeferred };

// |SweepResult| indicates if page turned out to be empty after sweeping.
enum class SweepResult : uint8_t { kPageEmpty, kPageNotEmpty };

// |PageType| indicates whether a page is used for normal objects or whether it
// holds a large object.
enum class PageType : uint8_t { kNormalPage, kLargeObjectPage };

// |BasePage| is a base class for |NormalPage| and |LargeObjectPage|.
//
// - |NormalPage| is a page whose size is |kBlinkPageSize|. A |NormalPage| can
//   contain multiple objects. An object whose size is smaller than
//   |kLargeObjectSizeThreshold| is stored in a |NormalPage|.
//
// - |LargeObjectPage| is a page that contains only one object. The object size
//   is arbitrary. An object whose size is larger than |kBlinkPageSize| is
//   stored as a single project in |LargeObjectPage|.
//
// Note: An object whose size is between |kLargeObjectSizeThreshold| and
// |kBlinkPageSize| can go to either of |NormalPage| or |LargeObjectPage|.
class BasePage {
  DISALLOW_NEW();

 public:
  BasePage(PageMemory*, BaseArena*, PageType);
  virtual ~BasePage() = default;

  // Virtual methods are slow. So performance-sensitive methods should be
  // defined as non-virtual methods on |NormalPage| and |LargeObjectPage|. The
  // following methods are not performance-sensitive.
  virtual size_t ObjectPayloadSizeForTesting() = 0;
  virtual void RemoveFromHeap() = 0;
  // Sweeps a page. Returns true when that page is empty and false otherwise.
  // Does not create free list entries for empty pages.
  virtual bool Sweep(FinalizeType) = 0;
  virtual void MakeConsistentForMutator() = 0;
  virtual void Unmark() = 0;

  // Calls finalizers after sweeping is done.
  virtual void FinalizeSweep(SweepResult) = 0;

#if defined(ADDRESS_SANITIZER)
  virtual void PoisonUnmarkedObjects() = 0;
#endif

  virtual void CollectStatistics(
      ThreadState::Statistics::ArenaStatistics* arena_stats) = 0;

#if DCHECK_IS_ON()
  virtual bool Contains(ConstAddress) const = 0;
#endif
  virtual size_t size() const = 0;

  Address GetAddress() const {
    return reinterpret_cast<Address>(const_cast<BasePage*>(this));
  }
  PageMemory* Storage() const { return storage_; }
  BaseArena* Arena() const { return arena_; }
  ThreadState* thread_state() const { return thread_state_; }

  // Returns true if this page has been swept by the ongoing sweep; false
  // otherwise.
  bool HasBeenSwept() const { return swept_; }

  void MarkAsSwept() {
    DCHECK(!swept_);
    swept_ = true;
  }

  void MarkAsUnswept() {
    DCHECK(swept_);
    swept_ = false;
  }

  // Returns true  if this page is a large object page; false otherwise.
  bool IsLargeObjectPage() const {
    return page_type_ == PageType::kLargeObjectPage;
  }

  // Young pages are pages that contain at least a single young object.
  bool IsYoung() const { return is_young_; }

  void SetAsYoung(bool young) { is_young_ = young; }

  virtual void VerifyMarking() = 0;

 private:
  PageMemory* const storage_;
  BaseArena* const arena_;
  ThreadState* const thread_state_;

  // Track the sweeping state of a page. Set to false at the start of a sweep,
  // true upon completion of sweeping that page.
  bool swept_ = true;
  bool is_young_ = false;

  PageType page_type_;

  friend class BaseArena;
};

class PageStack : Vector<BasePage*> {
  using Base = Vector<BasePage*>;

 public:
  PageStack() = default;

  void Push(BasePage* page) { push_back(page); }

  BasePage* Pop() {
    if (IsEmpty())
      return nullptr;
    BasePage* top = back();
    pop_back();
    return top;
  }

  BasePage* Top() const {
    if (IsEmpty())
      return nullptr;
    return back();
  }

  using Base::begin;
  using Base::end;

  using Base::clear;
  using Base::erase;

  using Base::IsEmpty;
  using Base::size;
};

class PageStackThreadSafe : public PageStack {
 public:
  void PushLocked(BasePage* page) {
    WTF::MutexLocker locker(mutex_);
    Push(page);
  }

  BasePage* PopLocked() {
    WTF::MutexLocker locker(mutex_);
    return Pop();
  }

  bool IsEmptyLocked() const {
    WTF::MutexLocker locker(mutex_);
    return IsEmpty();
  }

  // Explicit unsafe move assignment.
  void MoveFrom(PageStack&& other) { PageStack::operator=(std::move(other)); }

 private:
  mutable WTF::Mutex mutex_;
};

// A bitmap for recording object starts. Objects have to be allocated at
// minimum granularity of kGranularity.
//
// Depends on internals such as:
// - kBlinkPageSize
// - kAllocationGranularity
class PLATFORM_EXPORT ObjectStartBitmap {
  USING_FAST_MALLOC(ObjectStartBitmap);

 public:
  // Granularity of addresses added to the bitmap.
  static constexpr size_t Granularity() { return kAllocationGranularity; }

  // Maximum number of entries in the bitmap.
  static constexpr size_t MaxEntries() {
    return kReservedForBitmap * kCellSize;
  }

  explicit ObjectStartBitmap(Address offset);

  // Finds an object header based on a
  // address_maybe_pointing_to_the_middle_of_object. Will search for an object
  // start in decreasing address order.
  Address FindHeader(
      ConstAddress address_maybe_pointing_to_the_middle_of_object) const;

  inline void SetBit(Address);
  inline void ClearBit(Address);
  inline bool CheckBit(Address) const;

  // Iterates all object starts recorded in the bitmap.
  //
  // The callback is of type
  //   void(Address)
  // and is passed the object start address as parameter.
  template <typename Callback>
  inline void Iterate(Callback) const;

  // Clear the object start bitmap.
  void Clear();

 private:
  static const size_t kCellSize = sizeof(uint8_t) * 8;
  static const size_t kCellMask = sizeof(uint8_t) * 8 - 1;
  static const size_t kBitmapSize =
      (kBlinkPageSize + ((kCellSize * kAllocationGranularity) - 1)) /
      (kCellSize * kAllocationGranularity);
  static const size_t kReservedForBitmap =
      ((kBitmapSize + kAllocationMask) & ~kAllocationMask);

  inline void ObjectStartIndexAndBit(Address, size_t*, size_t*) const;

  Address offset_;
  // The bitmap contains a bit for every kGranularity aligned address on a
  // a NormalPage, i.e., for a page of size kBlinkPageSize.
  uint8_t object_start_bit_map_[kReservedForBitmap];
};

class PLATFORM_EXPORT NormalPage final : public BasePage {
 public:
  NormalPage(PageMemory*, BaseArena*);
  ~NormalPage() override;

  Address Payload() const { return GetAddress() + PageHeaderSize(); }
  static constexpr size_t PayloadSize() {
    return (BlinkPagePayloadSize() - PageHeaderSize()) & ~kAllocationMask;
  }
  Address PayloadEnd() const { return Payload() + PayloadSize(); }
  bool ContainedInObjectPayload(ConstAddress address) const {
    return Payload() <= address && address < PayloadEnd();
  }

  size_t ObjectPayloadSizeForTesting() override;
  void RemoveFromHeap() override;
  bool Sweep(FinalizeType) override;
  void MakeConsistentForMutator() override;
  void Unmark() override;
  void FinalizeSweep(SweepResult) override;
#if defined(ADDRESS_SANITIZER)
  void PoisonUnmarkedObjects() override;
#endif

  void CollectStatistics(
      ThreadState::Statistics::ArenaStatistics* arena_stats) override;

#if DCHECK_IS_ON()
  // Returns true for the whole |kBlinkPageSize| page that the page is on, even
  // for the header, and the unmapped guard page at the start. That ensures the
  // result can be used to populate the negative page cache.
  bool Contains(ConstAddress) const override;
#endif
  size_t size() const override { return kBlinkPageSize; }
  static constexpr size_t PageHeaderSize() {
    // Compute the amount of padding we have to add to a header to make the size
    // of the header plus the padding a multiple of 8 bytes.
    constexpr size_t kPaddingSize =
        (sizeof(NormalPage) + kAllocationGranularity -
         (sizeof(HeapObjectHeader) % kAllocationGranularity)) %
        kAllocationGranularity;
    return sizeof(NormalPage) + kPaddingSize;
  }

  inline NormalPageArena* ArenaForNormalPage() const;

  // Context object holding the state of the arena page compaction pass, passed
  // in when compacting individual pages.
  class CompactionContext {
    STACK_ALLOCATED();

   public:
    // Page compacting into.
    NormalPage* current_page_ = nullptr;
    // Offset into |current_page_| to the next free address.
    size_t allocation_point_ = 0;
    // Vector of available pages to use for compaction. Page compaction picks
    // the next one when the current one is exhausted.
    PageStack available_pages_;
    // Vector of pages that have been compacted. Page compaction will add
    // compacted pages once the current one becomes exhausted.
    PageStack* compacted_pages_;
  };

  void SweepAndCompact(CompactionContext&);

  // Object start bitmap of this page.
  ObjectStartBitmap* object_start_bit_map() { return &object_start_bit_map_; }
  const ObjectStartBitmap* object_start_bit_map() const {
    return &object_start_bit_map_;
  }

  // Verifies that the object start bitmap only contains a bit iff the object
  // is also reachable through iteration on the page.
  void VerifyObjectStartBitmapIsConsistentWithPayload();

  // Uses the object_start_bit_map_ to find an object for a given address. The
  // returned header is either nullptr, indicating that no object could be
  // found, or it is pointing to valid object or free list entry.
  HeapObjectHeader* ConservativelyFindHeaderFromAddress(ConstAddress) const;

  // Uses the object_start_bit_map_ to find an object for a given address. It is
  // assumed that the address points into a valid heap object. Use the
  // conservative version if that assumption does not hold.
  template <
      HeapObjectHeader::AccessMode = HeapObjectHeader::AccessMode::kNonAtomic>
  HeapObjectHeader* FindHeaderFromAddress(ConstAddress) const;

  void VerifyMarking() override;

  // Marks a card corresponding to address.
  void MarkCard(Address address);

  // Iterates over all objects in marked cards.
  template <typename Function>
  void IterateCardTable(Function function) const;

  // Clears all bits in the card table.
  void ClearCardTable() { card_table_.Clear(); }

 private:
  // Data structure that divides a page in a number of cards each of 512 bytes
  // size. Marked cards are stored in bytes, not bits, to make write barrier
  // faster and reduce chances of false sharing. This gives only ~0.1% of memory
  // overhead. Also, since there are guard pages before and after a Blink page,
  // some of card bits are wasted and unneeded.
  class CardTable final {
   public:
    struct value_type {
      uint8_t bit;
      size_t index;
    };

    struct iterator {
      iterator& operator++() {
        ++index;
        return *this;
      }
      value_type operator*() const { return {table->table_[index], index}; }
      bool operator!=(iterator other) const {
        return table != other.table || index != other.index;
      }

      size_t index = 0;
      const CardTable* table = nullptr;
    };

    using const_iterator = iterator;

    static constexpr size_t kBitsPerCard = 9;
    static constexpr size_t kCardSize = 1 << kBitsPerCard;

    const_iterator begin() const { return {FirstPayloadCard(), this}; }
    const_iterator end() const { return {LastPayloadCard(), this}; }

    void Mark(size_t card) {
      DCHECK_LE(FirstPayloadCard(), card);
      DCHECK_GT(LastPayloadCard(), card);
      table_[card] = 1;
    }

    bool IsMarked(size_t card) const {
      DCHECK_LE(FirstPayloadCard(), card);
      DCHECK_GT(LastPayloadCard(), card);
      return table_[card];
    }

    void Clear() { std::fill(table_.begin(), table_.end(), 0); }

   private:
    static constexpr size_t FirstPayloadCard() {
      return (kBlinkGuardPageSize + NormalPage::PageHeaderSize()) / kCardSize;
    }
    static constexpr size_t LastPayloadCard() {
      return (kBlinkGuardPageSize + BlinkPagePayloadSize()) / kCardSize;
    }

    std::array<uint8_t, kBlinkPageSize / kCardSize> table_{};
  };

  struct ToBeFinalizedObject {
    HeapObjectHeader* header;
    void Finalize();
  };
  struct FutureFreelistEntry {
    Address start;
    size_t size;
  };

  template <typename Function>
  void IterateOnCard(Function function, size_t card_number) const;

  void MergeFreeLists();
  void AddToFreeList(Address start,
                     size_t size,
                     FinalizeType finalize_type,
                     bool found_finalizer);

  CardTable card_table_;
  ObjectStartBitmap object_start_bit_map_;
#if BUILDFLAG(BLINK_HEAP_YOUNG_GENERATION)
  std::unique_ptr<ObjectStartBitmap> cached_object_start_bit_map_;
#endif
  Vector<ToBeFinalizedObject> to_be_finalized_objects_;
  FreeList cached_freelist_;
  Vector<FutureFreelistEntry> unfinalized_freelist_;

  friend class CardTableTest;
};

// Large allocations are allocated as separate objects and linked in a list.
//
// In order to use the same memory allocation routines for everything allocated
// in the heap, large objects are considered heap pages containing only one
// object.
class PLATFORM_EXPORT LargeObjectPage final : public BasePage {
 public:
  static size_t PageHeaderSize() {
    // Compute the amount of padding we have to add to a header to make the size
    // of the header plus the padding a multiple of 8 bytes.
    size_t padding_size =
        (sizeof(LargeObjectPage) + kAllocationGranularity -
         (sizeof(HeapObjectHeader) % kAllocationGranularity)) %
        kAllocationGranularity;
    return sizeof(LargeObjectPage) + padding_size;
  }

  LargeObjectPage(PageMemory*, BaseArena*, size_t);

  // LargeObjectPage has the following memory layout:
  //   this          -> +------------------+
  //                    | Header           | PageHeaderSize()
  //   ObjectHeader() -> +------------------+
  //                    | HeapObjectHeader | sizeof(HeapObjectHeader)
  //   Payload()     -> +------------------+
  //                    | Object payload   | PayloadSize()
  //                    |                  |
  //   PayloadEnd()  -> +------------------+
  //
  //   ObjectSize(): PayloadSize() + sizeof(HeapObjectHeader)
  //   size():       ObjectSize() + PageHeaderSize()

  HeapObjectHeader* ObjectHeader() const {
    Address header_address = GetAddress() + PageHeaderSize();
    return reinterpret_cast<HeapObjectHeader*>(header_address);
  }

  // Returns the size of the page that is allocatable for objects. This differs
  // from PayloadSize() as it also includes the HeapObjectHeader.
  size_t ObjectSize() const { return object_size_; }

  // Returns the size of the page including the header.
  size_t size() const override { return PageHeaderSize() + object_size_; }

  // Returns the payload start of the underlying object.
  Address Payload() const { return ObjectHeader()->Payload(); }

  // Returns the payload size of the underlying object.
  size_t PayloadSize() const { return object_size_ - sizeof(HeapObjectHeader); }

  // Points to the payload end of the underlying object.
  Address PayloadEnd() const { return Payload() + PayloadSize(); }

  bool ContainedInObjectPayload(ConstAddress address) const {
    return Payload() <= address && address < PayloadEnd();
  }

  size_t ObjectPayloadSizeForTesting() override;
  void RemoveFromHeap() override;
  bool Sweep(FinalizeType) override;
  void MakeConsistentForMutator() override;
  void Unmark() override;
  void FinalizeSweep(SweepResult) override;

  void CollectStatistics(
      ThreadState::Statistics::ArenaStatistics* arena_stats) override;

  void VerifyMarking() override;

#if defined(ADDRESS_SANITIZER)
  void PoisonUnmarkedObjects() override;
#endif

#if DCHECK_IS_ON()
  // Returns true for any address that is on one of the pages that this large
  // object uses. That ensures that we can use a negative result to populate the
  // negative page cache.
  bool Contains(ConstAddress) const override;
#endif

#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
  void SetIsVectorBackingPage() { is_vector_backing_page_ = true; }
  bool IsVectorBackingPage() const { return is_vector_backing_page_; }
#endif

  // Remembers the page as containing inter-generational pointers.
  void SetRemembered(bool remembered) {
    is_remembered_ = remembered;
  }
  bool IsRemembered() const { return is_remembered_; }

 private:
  // The size of the underlying object including HeapObjectHeader.
  size_t object_size_;
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
  bool is_vector_backing_page_;
#endif
  bool is_remembered_ = false;
};

// Each thread has a number of thread arenas (e.g., Generic arenas, typed arenas
// for |Node|, arenas for collection backings, etc.) and |BaseArena| represents
// each thread arena.
//
// |BaseArena| is a parent class of |NormalPageArena| and |LargeObjectArena|.
// |NormalPageArena| represents a part of a heap that contains |NormalPage|s,
// and |LargeObjectArena| represents a part of a heap that contains
// |LargeObjectPage|s.
class PLATFORM_EXPORT BaseArena {
  USING_FAST_MALLOC(BaseArena);

 public:
  BaseArena(ThreadState*, int);
  virtual ~BaseArena();
  void RemoveAllPages();

  void CollectStatistics(std::string, ThreadState::Statistics*);
  virtual void CollectFreeListStatistics(
      ThreadState::Statistics::FreeListStatistics*) {}

#if DCHECK_IS_ON()
  BasePage* FindPageFromAddress(ConstAddress) const;
#endif
  virtual void ClearFreeLists() {}
  virtual void MakeIterable() {}
  virtual void MakeConsistentForGC();
  void MakeConsistentForMutator();
  void Unmark();
#if DCHECK_IS_ON()
  virtual bool IsConsistentForGC() = 0;
#endif
  size_t ObjectPayloadSizeForTesting();
  void PrepareForSweep(BlinkGC::CollectionType);
#if defined(ADDRESS_SANITIZER)
  void PoisonUnmarkedObjects();
#endif
  Address LazySweep(size_t, size_t gc_info_index);
  bool SweepUnsweptPage(BasePage*);
  bool SweepUnsweptPageOnConcurrentThread(BasePage*);
  // Returns true if we have swept all pages within the deadline. Returns false
  // otherwise.
  bool LazySweepWithDeadline(base::TimeTicks deadline);
  // Returns true if the arena has been fully swept.
  bool ConcurrentSweepOnePage();
  void CompleteSweep();
  void InvokeFinalizersOnSweptPages();

  ThreadState* GetThreadState() { return thread_state_; }
  int ArenaIndex() const { return index_; }

  Address AllocateLargeObject(size_t allocation_size, size_t gc_info_index);

  // Resets the allocation point if it exists for an arena.
  virtual void ResetAllocationPoint() {}

  void VerifyMarking();
  virtual void VerifyObjectStartBitmap() {}

 protected:
  bool SweepingCompleted() const { return unswept_pages_.IsEmptyLocked(); }
  bool SweepingAndFinalizationCompleted() const {
    return unswept_pages_.IsEmptyLocked() &&
           swept_unfinalized_pages_.IsEmptyLocked() &&
           swept_unfinalized_empty_pages_.IsEmptyLocked();
  }

  // Pages for allocation.
  PageStackThreadSafe swept_pages_;
  // Pages that are being swept.
  PageStackThreadSafe unswept_pages_;
  // Pages that have been swept but contain unfinalized objects.
  PageStackThreadSafe swept_unfinalized_pages_;
  // Pages that have been swept and need to be removed from the heap.
  PageStackThreadSafe swept_unfinalized_empty_pages_;

 private:
  virtual Address LazySweepPages(size_t, size_t gc_info_index) = 0;

  ThreadState* thread_state_;

  // Index into the page pools. This is used to ensure that the pages of the
  // same type go into the correct page pool and thus avoid type confusion.
  //
  // TODO(palmer): Should this be size_t?
  int index_;
};

class PLATFORM_EXPORT NormalPageArena final : public BaseArena {
 public:
  NormalPageArena(ThreadState*, int index);
  void AddToFreeList(Address address, size_t size);
  void AddToFreeList(FreeList* other) { free_list_.MoveFrom(other); }
  void ClearFreeLists() override;
  void CollectFreeListStatistics(
      ThreadState::Statistics::FreeListStatistics*) override;
  void MakeIterable() override;

#if DCHECK_IS_ON()
  bool IsConsistentForGC() override;
  bool PagesToBeSweptContains(ConstAddress) const;
#endif

  Address AllocateObject(size_t allocation_size, size_t gc_info_index);

  void FreePage(NormalPage*);

  void PromptlyFreeObject(HeapObjectHeader*);
  void PromptlyFreeObjectInFreeList(HeapObjectHeader*, size_t);
  bool ExpandObject(HeapObjectHeader*, size_t);
  bool ShrinkObject(HeapObjectHeader*, size_t);
  size_t promptly_freed_size() const { return promptly_freed_size_; }

  bool IsObjectAllocatedAtAllocationPoint(HeapObjectHeader* header) {
    return header->PayloadEnd() == current_allocation_point_;
  }

  size_t ArenaSize();
  size_t FreeListSize();

  void SweepAndCompact();

  void ResetAllocationPoint() override { SetAllocationPoint(nullptr, 0); }

  void VerifyObjectStartBitmap() override;

  Address CurrentAllocationPoint() const { return current_allocation_point_; }

  bool IsInCurrentAllocationPointRegion(ConstAddress address) const {
    return HasCurrentAllocationArea() &&
           (CurrentAllocationPoint() <= address) &&
           (address < (CurrentAllocationPoint() + RemainingAllocationSize()));
  }

  size_t RemainingAllocationSize() const { return remaining_allocation_size_; }

  void MakeConsistentForGC() override;

  template <typename Function>
  void IterateAndClearCardTables(Function function);

 private:
  void AllocatePage();

  // OutOfLineAllocate represent the slow-path allocation. The suffixed version
  // contains just allocation code while the other version also invokes a
  // safepoint where allocated bytes are reported to observers.
  Address OutOfLineAllocate(size_t allocation_size, size_t gc_info_index);
  Address OutOfLineAllocateImpl(size_t allocation_size, size_t gc_info_index);

  Address AllocateFromFreeList(size_t, size_t gc_info_index);

  Address LazySweepPages(size_t, size_t gc_info_index) override;

  bool HasCurrentAllocationArea() const {
    return CurrentAllocationPoint() && RemainingAllocationSize();
  }
  void SetAllocationPoint(Address, size_t);

  FreeList free_list_;
  Address current_allocation_point_;
  size_t remaining_allocation_size_;

  // The size of promptly freed objects in the heap. This counter is set to
  // zero before sweeping when clearing the free list and after coalescing.
  // It will increase for promptly freed objects on already swept pages.
  size_t promptly_freed_size_;
};

class LargeObjectArena final : public BaseArena {
 public:
  LargeObjectArena(ThreadState*, int index);
  Address AllocateLargeObjectPage(size_t, size_t gc_info_index);
  void FreeLargeObjectPage(LargeObjectPage*);

#if DCHECK_IS_ON()
  bool IsConsistentForGC() override { return true; }
#endif

  template <typename Function>
  void IterateAndClearRememberedPages(Function function);

 private:
  Address DoAllocateLargeObjectPage(size_t, size_t gc_info_index);
  Address LazySweepPages(size_t, size_t gc_info_index) override;
};

// Mask an address down to the enclosing Oilpan heap base page. All Oilpan heap
// pages are aligned at |kBlinkPageBase| plus the size of a guard page. This
// will work only for 1) a pointer pointing to a non-large object and 2) a
// pointer pointing to the beginning of a large object.
//
// FIXME: Remove PLATFORM_EXPORT once we get a proper public interface to our
// typed arenas. This is only exported to enable tests in HeapTest.cpp.
PLATFORM_EXPORT ALWAYS_INLINE BasePage* PageFromObject(const void* object) {
  Address address = reinterpret_cast<Address>(const_cast<void*>(object));
  BasePage* page = reinterpret_cast<BasePage*>(BlinkPageAddress(address) +
                                               kBlinkGuardPageSize);
#if DCHECK_IS_ON()
  DCHECK(page->Contains(address));
#endif
  return page;
}

inline HeapObjectHeader* HeapObjectHeader::FromPayload(const void* payload) {
  Address addr = reinterpret_cast<Address>(const_cast<void*>(payload));
  HeapObjectHeader* header =
      reinterpret_cast<HeapObjectHeader*>(addr - sizeof(HeapObjectHeader));
  return header;
}

template <HeapObjectHeader::AccessMode mode>
inline HeapObjectHeader* HeapObjectHeader::FromInnerAddress(
    const void* address) {
  BasePage* const page = PageFromObject(address);
  return page->IsLargeObjectPage()
             ? static_cast<LargeObjectPage*>(page)->ObjectHeader()
             : static_cast<NormalPage*>(page)->FindHeaderFromAddress<mode>(
                   reinterpret_cast<ConstAddress>(address));
}

inline void HeapObjectHeader::CheckFromPayload(const void* payload) {
  (void)FromPayload(payload);
}

template <HeapObjectHeader::AccessMode mode>
NO_SANITIZE_ADDRESS inline size_t HeapObjectHeader::size() const {
  // Size is immutable after construction while either marking or sweeping
  // is running so relaxed load (if mode == kAtomic) is enough.
  uint16_t encoded_low_value =
      LoadEncoded<mode, EncodedHalf::kLow, std::memory_order_relaxed>();
  const size_t result = internal::DecodeSize(encoded_low_value);
  // Large objects should not refer to header->size() but use
  // LargeObjectPage::PayloadSize().
  DCHECK(result != kLargeObjectSizeInHeader);
  DCHECK(!PageFromObject(this)->IsLargeObjectPage());
  return result;
}

NO_SANITIZE_ADDRESS inline void HeapObjectHeader::SetSize(size_t size) {
  DCHECK(!PageFromObject(Payload())->thread_state()->IsIncrementalMarking());
  DCHECK_LT(size, kNonLargeObjectPageSizeMax);
  encoded_low_ = static_cast<uint16_t>(internal::EncodeSize(size) |
                                       (encoded_low_ & ~kHeaderSizeMask));
}

template <HeapObjectHeader::AccessMode mode>
NO_SANITIZE_ADDRESS inline bool HeapObjectHeader::IsLargeObject() const {
  uint16_t encoded_low_value =
      LoadEncoded<mode, EncodedHalf::kLow, std::memory_order_relaxed>();
  return internal::DecodeSize(encoded_low_value) == kLargeObjectSizeInHeader;
}

template <HeapObjectHeader::AccessMode mode>
NO_SANITIZE_ADDRESS inline bool HeapObjectHeader::IsInConstruction() const {
  return (LoadEncoded<mode, EncodedHalf::kHigh, std::memory_order_acquire>() &
          kHeaderIsInConstructionMask) == 0;
}

template <HeapObjectHeader::AccessMode mode>
NO_SANITIZE_ADDRESS inline void HeapObjectHeader::MarkFullyConstructed() {
  DCHECK(IsInConstruction());
  StoreEncoded<mode, EncodedHalf::kHigh, std::memory_order_release>(
      kHeaderIsInConstructionMask, kHeaderIsInConstructionMask);
}

inline Address HeapObjectHeader::Payload() const {
  return reinterpret_cast<Address>(const_cast<HeapObjectHeader*>(this)) +
         sizeof(HeapObjectHeader);
}

template <HeapObjectHeader::AccessMode mode>
inline Address HeapObjectHeader::PayloadEnd() const {
  return reinterpret_cast<Address>(const_cast<HeapObjectHeader*>(this)) +
         size<mode>();
}

NO_SANITIZE_ADDRESS inline size_t HeapObjectHeader::PayloadSize() const {
  const size_t size = internal::DecodeSize(encoded_low_);
  if (UNLIKELY(size == kLargeObjectSizeInHeader)) {
    DCHECK(PageFromObject(this)->IsLargeObjectPage());
    return static_cast<LargeObjectPage*>(PageFromObject(this))->PayloadSize();
  }
  DCHECK(!PageFromObject(this)->IsLargeObjectPage());
  return size - sizeof(HeapObjectHeader);
}

template <HeapObjectHeader::AccessMode mode>
NO_SANITIZE_ADDRESS inline bool HeapObjectHeader::IsMarked() const {
  const uint16_t encoded =
      LoadEncoded<mode, EncodedHalf::kLow, std::memory_order_relaxed>();
  return encoded & kHeaderMarkBitMask;
}

template <HeapObjectHeader::AccessMode mode>
NO_SANITIZE_ADDRESS inline bool HeapObjectHeader::IsOld() const {
  // Oilpan uses the sticky-mark-bits technique to encode old objects.
  return IsMarked<mode>();
}

template <HeapObjectHeader::AccessMode mode>
NO_SANITIZE_ADDRESS inline void HeapObjectHeader::Unmark() {
  DCHECK(IsMarked<mode>());
  StoreEncoded<mode, EncodedHalf::kLow, std::memory_order_relaxed>(
      0u, kHeaderMarkBitMask);
}

// The function relies on size bits being unmodified when the function is
// called, i.e. SetSize() and TryMark() can't be called concurrently.
template <HeapObjectHeader::AccessMode mode>
NO_SANITIZE_ADDRESS inline bool HeapObjectHeader::TryMark() {
  if (mode == AccessMode::kNonAtomic) {
    if (encoded_low_ & kHeaderMarkBitMask)
      return false;
    encoded_low_ |= kHeaderMarkBitMask;
    return true;
  }
  auto* atomic_encoded = internal::AsUnsanitizedAtomic(&encoded_low_);
  uint16_t old_value = atomic_encoded->load(std::memory_order_relaxed);
  if (old_value & kHeaderMarkBitMask)
    return false;
  const uint16_t new_value = old_value | kHeaderMarkBitMask;
  return atomic_encoded->compare_exchange_strong(old_value, new_value,
                                                 std::memory_order_relaxed);
}

inline Address NormalPageArena::AllocateObject(size_t allocation_size,
                                               size_t gc_info_index) {
  if (LIKELY(allocation_size <= remaining_allocation_size_)) {
    Address header_address = current_allocation_point_;
    current_allocation_point_ += allocation_size;
    remaining_allocation_size_ -= allocation_size;
    DCHECK_GT(gc_info_index, 0u);
    new (NotNull, header_address)
        HeapObjectHeader(allocation_size, gc_info_index);
    DCHECK(!PageFromObject(header_address)->IsLargeObjectPage());
    static_cast<NormalPage*>(PageFromObject(header_address))
        ->object_start_bit_map()
        ->SetBit(header_address);
    Address result = header_address + sizeof(HeapObjectHeader);
    DCHECK(!(reinterpret_cast<uintptr_t>(result) & kAllocationMask));

    SET_MEMORY_ACCESSIBLE(result, allocation_size - sizeof(HeapObjectHeader));
#if DCHECK_IS_ON()
    DCHECK(FindPageFromAddress(header_address + allocation_size - 1));
#endif
    return result;
  }
  return OutOfLineAllocate(allocation_size, gc_info_index);
}

inline NormalPageArena* NormalPage::ArenaForNormalPage() const {
  return static_cast<NormalPageArena*>(Arena());
}

// Iterates over all card tables and clears them.
template <typename Function>
inline void NormalPageArena::IterateAndClearCardTables(Function function) {
  for (BasePage* page : swept_pages_) {
    auto* normal_page = static_cast<NormalPage*>(page);
    normal_page->IterateCardTable(function);
    normal_page->ClearCardTable();
  }
}

// Iterates over all pages that may contain inter-generational pointers.
template <typename Function>
inline void LargeObjectArena::IterateAndClearRememberedPages(
    Function function) {
  for (BasePage* page : swept_pages_) {
    auto* large_page = static_cast<LargeObjectPage*>(page);
    if (large_page->IsRemembered()) {
      function(large_page->ObjectHeader());
      large_page->SetRemembered(false);
    }
  }
}

inline void ObjectStartBitmap::SetBit(Address header_address) {
  size_t cell_index, object_bit;
  ObjectStartIndexAndBit(header_address, &cell_index, &object_bit);
  object_start_bit_map_[cell_index] |= (1 << object_bit);
}

inline void ObjectStartBitmap::ClearBit(Address header_address) {
  size_t cell_index, object_bit;
  ObjectStartIndexAndBit(header_address, &cell_index, &object_bit);
  object_start_bit_map_[cell_index] &= ~(1 << object_bit);
}

inline bool ObjectStartBitmap::CheckBit(Address header_address) const {
  size_t cell_index, object_bit;
  ObjectStartIndexAndBit(header_address, &cell_index, &object_bit);
  return object_start_bit_map_[cell_index] & (1 << object_bit);
}

inline void ObjectStartBitmap::ObjectStartIndexAndBit(Address header_address,
                                                      size_t* cell_index,
                                                      size_t* bit) const {
  const size_t object_offset = header_address - offset_;
  DCHECK(!(object_offset & kAllocationMask));
  const size_t object_start_number = object_offset / kAllocationGranularity;
  *cell_index = object_start_number / kCellSize;
#if DCHECK_IS_ON()
  const size_t bitmap_size = kBitmapSize;
  DCHECK_LT(*cell_index, bitmap_size);
#endif
  *bit = object_start_number & kCellMask;
}

template <typename Callback>
inline void ObjectStartBitmap::Iterate(Callback callback) const {
  for (size_t cell_index = 0; cell_index < kReservedForBitmap; cell_index++) {
    if (!object_start_bit_map_[cell_index])
      continue;

    uint8_t value = object_start_bit_map_[cell_index];
    while (value) {
      const int trailing_zeroes = base::bits::CountTrailingZeroBits(value);
      const size_t object_start_number =
          (cell_index * kCellSize) + trailing_zeroes;
      const Address object_address =
          offset_ + (kAllocationGranularity * object_start_number);
      callback(object_address);
      // Clear current object bit in temporary value to advance iteration.
      value &= ~(1 << (object_start_number & kCellMask));
    }
  }
}

NO_SANITIZE_ADDRESS inline HeapObjectHeader::HeapObjectHeader(
    size_t size,
    size_t gc_info_index) {
  // sizeof(HeapObjectHeader) must be equal to or smaller than
  // |kAllocationGranularity|, because |HeapObjectHeader| is used as a header
  // for a freed entry. Given that the smallest entry size is
  // |kAllocationGranurarity|, |HeapObjectHeader| must fit into the size.
  static_assert(
      sizeof(HeapObjectHeader) <= kAllocationGranularity,
      "size of HeapObjectHeader must be smaller than kAllocationGranularity");

  DCHECK_LT(gc_info_index, GCInfoTable::kMaxIndex);
  DCHECK_LT(size, kNonLargeObjectPageSizeMax);
  DCHECK_EQ(0u, size & kAllocationMask);
  encoded_high_ =
      static_cast<uint16_t>(gc_info_index << kHeaderGCInfoIndexShift);
  encoded_low_ = internal::EncodeSize(size);
  DCHECK(IsInConstruction());
}

template <HeapObjectHeader::AccessMode mode,
          HeapObjectHeader::EncodedHalf part,
          std::memory_order memory_order>
NO_SANITIZE_ADDRESS inline uint16_t HeapObjectHeader::LoadEncoded() const {
  const uint16_t& half =
      part == EncodedHalf::kLow ? encoded_low_ : encoded_high_;
  if (mode == AccessMode::kNonAtomic)
    return half;
  return internal::AsUnsanitizedAtomic(&half)->load(memory_order);
}

// Sets bits selected by the mask to the given value. Please note that atomicity
// of the whole operation is not guaranteed.
template <HeapObjectHeader::AccessMode mode,
          HeapObjectHeader::EncodedHalf part,
          std::memory_order memory_order>
NO_SANITIZE_ADDRESS inline void HeapObjectHeader::StoreEncoded(uint16_t bits,
                                                               uint16_t mask) {
  DCHECK_EQ(static_cast<uint16_t>(0u), bits & ~mask);
  uint16_t& half = part == EncodedHalf::kLow ? encoded_low_ : encoded_high_;
  if (mode == AccessMode::kNonAtomic) {
    half = (half & ~mask) | bits;
    return;
  }
  // We don't perform CAS loop here assuming that the data is constant and no
  // one except for us can change this half concurrently.
  auto* atomic_encoded = internal::AsUnsanitizedAtomic(&half);
  uint16_t value = atomic_encoded->load(std::memory_order_relaxed);
  value = (value & ~mask) | bits;
  atomic_encoded->store(value, memory_order);
}

template <HeapObjectHeader::AccessMode mode>
HeapObjectHeader* NormalPage::FindHeaderFromAddress(
    ConstAddress address) const {
  DCHECK(ContainedInObjectPayload(address));
  DCHECK(!ArenaForNormalPage()->IsInCurrentAllocationPointRegion(address));
  HeapObjectHeader* header = reinterpret_cast<HeapObjectHeader*>(
      object_start_bit_map()->FindHeader(address));
  DCHECK_LT(0u, header->GcInfoIndex());
  DCHECK_GT(header->PayloadEnd<mode>(), address);
  return header;
}

template <typename Function>
void NormalPage::IterateCardTable(Function function) const {
  // TODO(bikineev): Consider introducing a "dirty" per-page bit to avoid
  // the loop (this may in turn pessimize barrier implementation).
  for (auto card : card_table_) {
    if (UNLIKELY(card.bit)) {
      IterateOnCard(std::move(function), card.index);
    }
  }
}

// Iterates over all objects in the specified marked card. Please note that
// since objects are not aligned by the card boundary, it starts from the
// object which may reside on a previous card.
template <typename Function>
void NormalPage::IterateOnCard(Function function, size_t card_number) const {
#if DCHECK_IS_ON()
  DCHECK(card_table_.IsMarked(card_number));
  DCHECK(ArenaForNormalPage()->IsConsistentForGC());
#endif

  const Address card_begin = RoundToBlinkPageStart(GetAddress()) +
                             (card_number << CardTable::kBitsPerCard);
  const Address card_end = card_begin + CardTable::kCardSize;
  // Generational barrier marks cards corresponding to slots (not source
  // objects), therefore the potential source object may reside on a
  // previous card.
  HeapObjectHeader* header = reinterpret_cast<HeapObjectHeader*>(
      card_number == card_table_.begin().index
          ? Payload()
          : object_start_bit_map_.FindHeader(card_begin));
  for (; header < reinterpret_cast<HeapObjectHeader*>(card_end);
       reinterpret_cast<Address&>(header) += header->size()) {
    if (!header->IsFree()) {
      function(header);
    }
  }
}

inline void NormalPage::MarkCard(Address address) {
#if DCHECK_IS_ON()
  DCHECK(Contains(address));
#endif
  const size_t byte = reinterpret_cast<size_t>(address) & kBlinkPageOffsetMask;
  const size_t card = byte / CardTable::kCardSize;
  card_table_.Mark(card);
}

}  // namespace blink

#endif  // THIRD_PARTY_BLINK_RENDERER_PLATFORM_HEAP_HEAP_PAGE_H_