summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/platform/graphics/path.cc
blob: f8c90391af97150ea0aae840159f271ef7e163d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*
 * Copyright (C) 2003, 2006 Apple Computer, Inc.  All rights reserved.
 *                     2006 Rob Buis <buis@kde.org>
 * Copyright (C) 2007 Eric Seidel <eric@webkit.org>
 * Copyright (C) 2013 Google Inc. All rights reserved.
 * Copyright (C) 2013 Intel Corporation. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "third_party/blink/renderer/platform/graphics/path.h"

#include <math.h>
#include "third_party/blink/renderer/platform/geometry/float_point.h"
#include "third_party/blink/renderer/platform/geometry/float_rect.h"
#include "third_party/blink/renderer/platform/graphics/graphics_context.h"
#include "third_party/blink/renderer/platform/graphics/skia/skia_utils.h"
#include "third_party/blink/renderer/platform/transforms/affine_transform.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
#include "third_party/skia/include/pathops/SkPathOps.h"

namespace blink {

Path::Path() : path_() {}

Path::Path(const Path& other) {
  path_ = SkPath(other.path_);
}

Path::Path(const SkPath& other) {
  path_ = other;
}

Path::~Path() = default;

Path& Path::operator=(const Path& other) {
  path_ = SkPath(other.path_);
  return *this;
}

Path& Path::operator=(const SkPath& other) {
  path_ = other;
  return *this;
}

bool Path::operator==(const Path& other) const {
  return path_ == other.path_;
}

bool Path::Contains(const FloatPoint& point) const {
  if (!std::isfinite(point.X()) || !std::isfinite(point.Y()))
    return false;
  return path_.contains(SkScalar(point.X()), SkScalar(point.Y()));
}

bool Path::Contains(const FloatPoint& point, WindRule rule) const {
  if (!std::isfinite(point.X()) || !std::isfinite(point.Y()))
    return false;
  SkScalar x = point.X();
  SkScalar y = point.Y();
  SkPath::FillType fill_type = WebCoreWindRuleToSkFillType(rule);
  if (path_.getFillType() != fill_type) {
    SkPath tmp(path_);
    tmp.setFillType(fill_type);
    return tmp.contains(x, y);
  }
  return path_.contains(x, y);
}

// FIXME: this method ignores the CTM and may yield inaccurate results for large
// scales.
SkPath Path::StrokePath(const StrokeData& stroke_data) const {
  PaintFlags flags;
  stroke_data.SetupPaint(&flags);

  // Skia stroke resolution scale. This is multiplied by 4 internally
  // (i.e. 1.0 corresponds to 1/4 pixel res).
  static const SkScalar kResScale = 0.3f;

  SkPath stroke_path;
  flags.getFillPath(path_, &stroke_path, nullptr, kResScale);

  return stroke_path;
}

bool Path::StrokeContains(const FloatPoint& point,
                          const StrokeData& stroke_data) const {
  if (!std::isfinite(point.X()) || !std::isfinite(point.Y()))
    return false;
  return StrokePath(stroke_data)
      .contains(SkScalar(point.X()), SkScalar(point.Y()));
}

FloatRect Path::BoundingRect() const {
  return path_.computeTightBounds();
}

FloatRect Path::StrokeBoundingRect(const StrokeData& stroke_data) const {
  return StrokePath(stroke_data).computeTightBounds();
}

static FloatPoint* ConvertPathPoints(FloatPoint dst[],
                                     const SkPoint src[],
                                     int count) {
  for (int i = 0; i < count; i++) {
    dst[i].SetX(SkScalarToFloat(src[i].fX));
    dst[i].SetY(SkScalarToFloat(src[i].fY));
  }
  return dst;
}

void Path::Apply(void* info, PathApplierFunction function) const {
  SkPath::RawIter iter(path_);
  SkPoint pts[4];
  PathElement path_element;
  FloatPoint path_points[3];

  for (;;) {
    switch (iter.next(pts)) {
      case SkPath::kMove_Verb:
        path_element.type = kPathElementMoveToPoint;
        path_element.points = ConvertPathPoints(path_points, &pts[0], 1);
        break;
      case SkPath::kLine_Verb:
        path_element.type = kPathElementAddLineToPoint;
        path_element.points = ConvertPathPoints(path_points, &pts[1], 1);
        break;
      case SkPath::kQuad_Verb:
        path_element.type = kPathElementAddQuadCurveToPoint;
        path_element.points = ConvertPathPoints(path_points, &pts[1], 2);
        break;
      case SkPath::kCubic_Verb:
        path_element.type = kPathElementAddCurveToPoint;
        path_element.points = ConvertPathPoints(path_points, &pts[1], 3);
        break;
      case SkPath::kConic_Verb: {
        // Approximate with quads.  Use two for now, increase if more precision
        // is needed.
        const int kPow2 = 1;
        const unsigned kQuadCount = 1 << kPow2;
        SkPoint quads[1 + 2 * kQuadCount];
        SkPath::ConvertConicToQuads(pts[0], pts[1], pts[2], iter.conicWeight(),
                                    quads, kPow2);

        path_element.type = kPathElementAddQuadCurveToPoint;
        for (unsigned i = 0; i < kQuadCount; ++i) {
          path_element.points =
              ConvertPathPoints(path_points, &quads[1 + 2 * i], 2);
          function(info, &path_element);
        }
        continue;
      }
      case SkPath::kClose_Verb:
        path_element.type = kPathElementCloseSubpath;
        path_element.points = ConvertPathPoints(path_points, nullptr, 0);
        break;
      case SkPath::kDone_Verb:
        return;
    }
    function(info, &path_element);
  }
}

void Path::Transform(const AffineTransform& xform) {
  path_.transform(AffineTransformToSkMatrix(xform));
}

float Path::length() const {
  SkScalar length = 0;
  SkPathMeasure measure(path_, false);

  do {
    length += measure.getLength();
  } while (measure.nextContour());

  return SkScalarToFloat(length);
}

FloatPoint Path::PointAtLength(float length) const {
  FloatPoint point;
  float normal;
  PointAndNormalAtLength(length, point, normal);
  return point;
}

static bool CalculatePointAndNormalOnPath(SkPathMeasure& measure,
                                          SkScalar& contour_start,
                                          SkScalar length,
                                          FloatPoint& point,
                                          float& normal_angle) {
  do {
    SkScalar contour_end = contour_start + measure.getLength();
    if (length <= contour_end) {
      SkVector tangent;
      SkPoint position;

      SkScalar pos_in_contour = length - contour_start;
      if (measure.getPosTan(pos_in_contour, &position, &tangent)) {
        normal_angle =
            rad2deg(SkScalarToFloat(SkScalarATan2(tangent.fY, tangent.fX)));
        point = FloatPoint(SkScalarToFloat(position.fX),
                           SkScalarToFloat(position.fY));
        return true;
      }
    }
    contour_start = contour_end;
  } while (measure.nextContour());
  return false;
}

void Path::PointAndNormalAtLength(float length,
                                  FloatPoint& point,
                                  float& normal) const {
  SkPathMeasure measure(path_, false);
  SkScalar start = 0;
  if (CalculatePointAndNormalOnPath(
          measure, start, WebCoreFloatToSkScalar(length), point, normal))
    return;

  SkPoint position = path_.getPoint(0);
  point =
      FloatPoint(SkScalarToFloat(position.fX), SkScalarToFloat(position.fY));
  normal = 0;
}

Path::PositionCalculator::PositionCalculator(const Path& path)
    : path_(path.GetSkPath()),
      path_measure_(path.GetSkPath(), false),
      accumulated_length_(0) {}

void Path::PositionCalculator::PointAndNormalAtLength(float length,
                                                      FloatPoint& point,
                                                      float& normal_angle) {
  SkScalar sk_length = WebCoreFloatToSkScalar(length);
  if (sk_length >= 0) {
    if (sk_length < accumulated_length_) {
      // Reset path measurer to rewind (and restart from 0).
      path_measure_.setPath(&path_, false);
      accumulated_length_ = 0;
    }

    if (CalculatePointAndNormalOnPath(path_measure_, accumulated_length_,
                                      sk_length, point, normal_angle))
      return;
  }

  SkPoint position = path_.getPoint(0);
  point =
      FloatPoint(SkScalarToFloat(position.fX), SkScalarToFloat(position.fY));
  normal_angle = 0;
}

void Path::Clear() {
  path_.reset();
}

bool Path::IsEmpty() const {
  return path_.isEmpty();
}

bool Path::IsClosed() const {
  return path_.isLastContourClosed();
}

void Path::SetIsVolatile(bool is_volatile) {
  path_.setIsVolatile(is_volatile);
}

bool Path::HasCurrentPoint() const {
  return path_.getPoints(nullptr, 0);
}

FloatPoint Path::CurrentPoint() const {
  if (path_.countPoints() > 0) {
    SkPoint sk_result;
    path_.getLastPt(&sk_result);
    FloatPoint result;
    result.SetX(SkScalarToFloat(sk_result.fX));
    result.SetY(SkScalarToFloat(sk_result.fY));
    return result;
  }

  // FIXME: Why does this return quietNaN? Other ports return 0,0.
  float quiet_na_n = std::numeric_limits<float>::quiet_NaN();
  return FloatPoint(quiet_na_n, quiet_na_n);
}

void Path::SetWindRule(const WindRule rule) {
  path_.setFillType(WebCoreWindRuleToSkFillType(rule));
}

void Path::MoveTo(const FloatPoint& point) {
  path_.moveTo(FloatPointToSkPoint(point));
}

void Path::AddLineTo(const FloatPoint& point) {
  path_.lineTo(FloatPointToSkPoint(point));
}

void Path::AddQuadCurveTo(const FloatPoint& cp, const FloatPoint& ep) {
  path_.quadTo(FloatPointToSkPoint(cp), FloatPointToSkPoint(ep));
}

void Path::AddBezierCurveTo(const FloatPoint& p1,
                            const FloatPoint& p2,
                            const FloatPoint& ep) {
  path_.cubicTo(FloatPointToSkPoint(p1), FloatPointToSkPoint(p2),
                FloatPointToSkPoint(ep));
}

void Path::AddArcTo(const FloatPoint& p1, const FloatPoint& p2, float radius) {
  path_.arcTo(FloatPointToSkPoint(p1), FloatPointToSkPoint(p2),
              WebCoreFloatToSkScalar(radius));
}

void Path::AddArcTo(const FloatPoint& p,
                    const FloatSize& r,
                    float x_rotate,
                    bool large_arc,
                    bool sweep) {
  path_.arcTo(WebCoreFloatToSkScalar(r.Width()),
              WebCoreFloatToSkScalar(r.Height()),
              WebCoreFloatToSkScalar(x_rotate),
              large_arc ? SkPath::kLarge_ArcSize : SkPath::kSmall_ArcSize,
              sweep ? SkPath::kCW_Direction : SkPath::kCCW_Direction,
              WebCoreFloatToSkScalar(p.X()), WebCoreFloatToSkScalar(p.Y()));
}

void Path::CloseSubpath() {
  path_.close();
}

void Path::AddEllipse(const FloatPoint& p,
                      float radius_x,
                      float radius_y,
                      float start_angle,
                      float end_angle) {
  DCHECK(EllipseIsRenderable(start_angle, end_angle));
  DCHECK_GE(start_angle, 0);
  DCHECK_LT(start_angle, kTwoPiFloat);

  SkScalar cx = WebCoreFloatToSkScalar(p.X());
  SkScalar cy = WebCoreFloatToSkScalar(p.Y());
  SkScalar radius_x_scalar = WebCoreFloatToSkScalar(radius_x);
  SkScalar radius_y_scalar = WebCoreFloatToSkScalar(radius_y);

  SkRect oval;
  oval.set(cx - radius_x_scalar, cy - radius_y_scalar, cx + radius_x_scalar,
           cy + radius_y_scalar);

  float sweep = end_angle - start_angle;
  SkScalar start_degrees = WebCoreFloatToSkScalar(start_angle * 180 / kPiFloat);
  SkScalar sweep_degrees = WebCoreFloatToSkScalar(sweep * 180 / kPiFloat);
  SkScalar s360 = SkIntToScalar(360);

  // We can't use SkPath::addOval(), because addOval() makes a new sub-path.
  // addOval() calls moveTo() and close() internally.

  // Use s180, not s360, because SkPath::arcTo(oval, angle, s360, false) draws
  // nothing.
  SkScalar s180 = SkIntToScalar(180);
  if (SkScalarNearlyEqual(sweep_degrees, s360)) {
    // SkPath::arcTo can't handle the sweepAngle that is equal to or greater
    // than 2Pi.
    path_.arcTo(oval, start_degrees, s180, false);
    path_.arcTo(oval, start_degrees + s180, s180, false);
    return;
  }
  if (SkScalarNearlyEqual(sweep_degrees, -s360)) {
    path_.arcTo(oval, start_degrees, -s180, false);
    path_.arcTo(oval, start_degrees - s180, -s180, false);
    return;
  }

  path_.arcTo(oval, start_degrees, sweep_degrees, false);
}

void Path::AddArc(const FloatPoint& p,
                  float radius,
                  float start_angle,
                  float end_angle) {
  AddEllipse(p, radius, radius, start_angle, end_angle);
}

void Path::AddRect(const FloatRect& rect) {
  // Start at upper-left, add clock-wise.
  path_.addRect(rect, SkPath::kCW_Direction, 0);
}

void Path::AddEllipse(const FloatPoint& p,
                      float radius_x,
                      float radius_y,
                      float rotation,
                      float start_angle,
                      float end_angle) {
  DCHECK(EllipseIsRenderable(start_angle, end_angle));
  DCHECK_GE(start_angle, 0);
  DCHECK_LT(start_angle, kTwoPiFloat);

  if (!rotation) {
    AddEllipse(FloatPoint(p.X(), p.Y()), radius_x, radius_y, start_angle,
               end_angle);
    return;
  }

  // Add an arc after the relevant transform.
  AffineTransform ellipse_transform =
      AffineTransform::Translation(p.X(), p.Y()).RotateRadians(rotation);
  DCHECK(ellipse_transform.IsInvertible());
  AffineTransform inverse_ellipse_transform = ellipse_transform.Inverse();
  Transform(inverse_ellipse_transform);
  AddEllipse(FloatPoint::Zero(), radius_x, radius_y, start_angle, end_angle);
  Transform(ellipse_transform);
}

void Path::AddEllipse(const FloatRect& rect) {
  // Start at 3 o'clock, add clock-wise.
  path_.addOval(rect, SkPath::kCW_Direction, 1);
}

void Path::AddRoundedRect(const FloatRoundedRect& r) {
  AddRoundedRect(r.Rect(), r.GetRadii().TopLeft(), r.GetRadii().TopRight(),
                 r.GetRadii().BottomLeft(), r.GetRadii().BottomRight());
}

void Path::AddRoundedRect(const FloatRect& rect,
                          const FloatSize& rounding_radii) {
  if (rect.IsEmpty())
    return;

  FloatSize radius(rounding_radii);
  FloatSize half_size(rect.Width() / 2, rect.Height() / 2);

  // Apply the SVG corner radius constraints, per the rect section of the SVG
  // shapes spec: if one of rx,ry is negative, then the other corner radius
  // value is used. If both values are negative then rx = ry = 0. If rx is
  // greater than half of the width of the rectangle then set rx to half of the
  // width; ry is handled similarly.

  if (radius.Width() < 0)
    radius.SetWidth((radius.Height() < 0) ? 0 : radius.Height());

  if (radius.Height() < 0)
    radius.SetHeight(radius.Width());

  if (radius.Width() > half_size.Width())
    radius.SetWidth(half_size.Width());

  if (radius.Height() > half_size.Height())
    radius.SetHeight(half_size.Height());

  AddPathForRoundedRect(rect, radius, radius, radius, radius);
}

void Path::AddRoundedRect(const FloatRect& rect,
                          const FloatSize& top_left_radius,
                          const FloatSize& top_right_radius,
                          const FloatSize& bottom_left_radius,
                          const FloatSize& bottom_right_radius) {
  if (rect.IsEmpty())
    return;

  if (rect.Width() < top_left_radius.Width() + top_right_radius.Width() ||
      rect.Width() < bottom_left_radius.Width() + bottom_right_radius.Width() ||
      rect.Height() < top_left_radius.Height() + bottom_left_radius.Height() ||
      rect.Height() <
          top_right_radius.Height() + bottom_right_radius.Height()) {
    // If all the radii cannot be accommodated, return a rect.
    // FIXME: Is this an error scenario, given that it appears the code in
    // FloatRoundedRect::constrainRadii() should be always called first? Should
    // we assert that this code is not reached? This fallback is very bad, since
    // it means that radii that are just barely too big due to rounding or
    // snapping will get completely ignored.
    AddRect(rect);
    return;
  }

  AddPathForRoundedRect(rect, top_left_radius, top_right_radius,
                        bottom_left_radius, bottom_right_radius);
}

void Path::AddPathForRoundedRect(const FloatRect& rect,
                                 const FloatSize& top_left_radius,
                                 const FloatSize& top_right_radius,
                                 const FloatSize& bottom_left_radius,
                                 const FloatSize& bottom_right_radius) {
  // Start at upper-left (after corner radii), add clock-wise.
  path_.addRRect(FloatRoundedRect(rect, top_left_radius, top_right_radius,
                                  bottom_left_radius, bottom_right_radius),
                 SkPath::kCW_Direction, 0);
}

void Path::AddPath(const Path& src, const AffineTransform& transform) {
  path_.addPath(src.GetSkPath(), AffineTransformToSkMatrix(transform));
}

void Path::Translate(const FloatSize& size) {
  path_.offset(WebCoreFloatToSkScalar(size.Width()),
               WebCoreFloatToSkScalar(size.Height()));
}

bool Path::SubtractPath(const Path& other) {
  return Op(path_, other.path_, kDifference_SkPathOp, &path_);
}

bool Path::UnionPath(const Path& other) {
  return Op(path_, other.path_, kUnion_SkPathOp, &path_);
}

bool Path::IntersectPath(const Path& other) {
  return Op(path_, other.path_, kIntersect_SkPathOp, &path_);
}

bool EllipseIsRenderable(float start_angle, float end_angle) {
  return (std::abs(end_angle - start_angle) < kTwoPiFloat) ||
         WebCoreFloatNearlyEqual(std::abs(end_angle - start_angle),
                                 kTwoPiFloat);
}

}  // namespace blink