summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/platform/graphics/paint/geometry_mapper.cc
blob: efbba23f75f1b5a968d98fb4bd4c9da6f3790742 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/platform/graphics/paint/geometry_mapper.h"

#include "third_party/blink/renderer/platform/geometry/layout_rect.h"
#include "third_party/blink/renderer/platform/runtime_enabled_features.h"

namespace blink {

const TransformationMatrix& GeometryMapper::SourceToDestinationProjection(
    const TransformPaintPropertyNode* source,
    const TransformPaintPropertyNode* destination) {
  DCHECK(source && destination);
  bool success = false;
  const auto& result =
      SourceToDestinationProjectionInternal(source, destination, success);
  return result;
}

// Returns flatten(destination_to_screen)^-1 * flatten(source_to_screen)
//
// In case that source and destination are coplanar in tree hierarchy [1],
// computes destination_to_plane_root ^ -1 * source_to_plane_root.
// It can be proved that [2] the result will be the same (except numerical
// errors) when the plane root has invertible screen projection, and this
// offers fallback definition when plane root is singular. For example:
// <div style="transform:rotateY(90deg); overflow:scroll;">
//   <div id="A" style="opacity:0.5;">
//     <div id="B" style="position:absolute;"></div>
//   </div>
// </div>
// Both A and B have non-invertible screen projection, nevertheless it is
// useful to define projection between A and B. Say, the transform may be
// animated in compositor thus become visible.
// As SPv1 treats 3D transforms as compositing trigger, that implies mappings
// within the same compositing layer can only contain 2D transforms, thus
// intra-composited-layer queries are guaranteed to be handled correctly.
//
// [1] As defined by that all local transforms between source and some common
//     ancestor 'plane root' and all local transforms between the destination
//     and the plane root being flat.
// [2] destination_to_screen = plane_root_to_screen * destination_to_plane_root
//     source_to_screen = plane_root_to_screen * source_to_plane_root
//     output = flatten(destination_to_screen)^-1 * flatten(source_to_screen)
//     = flatten(plane_root_to_screen * destination_to_plane_root)^-1 *
//       flatten(plane_root_to_screen * source_to_plane_root)
//     Because both destination_to_plane_root and source_to_plane_root are
//     already flat,
//     = flatten(plane_root_to_screen * flatten(destination_to_plane_root))^-1 *
//       flatten(plane_root_to_screen * flatten(source_to_plane_root))
//     By flatten lemma [3] flatten(A * flatten(B)) = flatten(A) * flatten(B),
//     = flatten(destination_to_plane_root)^-1 *
//       flatten(plane_root_to_screen)^-1 *
//       flatten(plane_root_to_screen) * flatten(source_to_plane_root)
//     If flatten(plane_root_to_screen) is invertible, they cancel out:
//     = flatten(destination_to_plane_root)^-1 * flatten(source_to_plane_root)
//     = destination_to_plane_root^-1 * source_to_plane_root
// [3] Flatten lemma: https://goo.gl/DNKyOc
const TransformationMatrix&
GeometryMapper::SourceToDestinationProjectionInternal(
    const TransformPaintPropertyNode* source,
    const TransformPaintPropertyNode* destination,
    bool& success) {
  DCHECK(source && destination);
  DEFINE_STATIC_LOCAL(TransformationMatrix, identity, (TransformationMatrix()));
  DEFINE_STATIC_LOCAL(TransformationMatrix, temp, (TransformationMatrix()));

  if (source == destination) {
    success = true;
    return identity;
  }

  const GeometryMapperTransformCache& source_cache =
      source->GetTransformCache();
  const GeometryMapperTransformCache& destination_cache =
      destination->GetTransformCache();

  // Case 1: Check if source and destination are known to be coplanar.
  // Even if destination may have invertible screen projection,
  // this formula is likely to be numerically more stable.
  if (source_cache.plane_root() == destination_cache.plane_root()) {
    success = true;
    if (source == destination_cache.plane_root())
      return destination_cache.from_plane_root();
    if (destination == source_cache.plane_root())
      return source_cache.to_plane_root();
    temp = destination_cache.from_plane_root();
    temp.Multiply(source_cache.to_plane_root());
    return temp;
  }

  // Case 2: Check if we can fallback to the canonical definition of
  // flatten(destination_to_screen)^-1 * flatten(source_to_screen)
  // If flatten(destination_to_screen)^-1 is invalid, we are out of luck.
  if (!destination_cache.projection_from_screen_is_valid()) {
    success = false;
    return identity;
  }

  // Case 3: Compute:
  // flatten(destination_to_screen)^-1 * flatten(source_to_screen)
  const auto* root = TransformPaintPropertyNode::Root();
  success = true;
  if (source == root)
    return destination_cache.projection_from_screen();
  if (destination == root) {
    temp = source_cache.to_screen();
  } else {
    temp = destination_cache.projection_from_screen();
    temp.Multiply(source_cache.to_screen());
  }
  temp.FlattenTo2d();
  return temp;
}

void GeometryMapper::SourceToDestinationRect(
    const TransformPaintPropertyNode* source_transform_node,
    const TransformPaintPropertyNode* destination_transform_node,
    FloatRect& mapping_rect) {
  bool success = false;
  const TransformationMatrix& source_to_destination =
      SourceToDestinationProjectionInternal(
          source_transform_node, destination_transform_node, success);
  mapping_rect =
      success ? source_to_destination.MapRect(mapping_rect) : FloatRect();
}

void GeometryMapper::LocalToAncestorVisualRect(
    const PropertyTreeState& local_state,
    const PropertyTreeState& ancestor_state,
    FloatClipRect& mapping_rect,
    OverlayScrollbarClipBehavior clip_behavior) {
  bool success = false;
  LocalToAncestorVisualRectInternal(local_state, ancestor_state, mapping_rect,
                                    clip_behavior, success);
  DCHECK(success);
}

bool GeometryMapper::PointVisibleInAncestorSpace(
    const PropertyTreeState& local_state,
    const PropertyTreeState& ancestor_state,
    const FloatPoint& local_point) {
  for (const auto* clip = local_state.Clip();
       clip && clip != ancestor_state.Clip(); clip = clip->Parent()) {
    FloatPoint mapped_point =
        SourceToDestinationProjection(local_state.Transform(),
                                      clip->LocalTransformSpace())
            .MapPoint(local_point);

    if (!clip->ClipRect().IntersectsQuad(
            FloatRect(mapped_point, FloatSize(1, 1))))
      return false;

    if (clip->ClipPath() && !clip->ClipPath()->Contains(mapped_point))
      return false;
  }

  return true;
}

void GeometryMapper::LocalToAncestorVisualRectInternal(
    const PropertyTreeState& local_state,
    const PropertyTreeState& ancestor_state,
    FloatClipRect& rect_to_map,
    OverlayScrollbarClipBehavior clip_behavior,
    bool& success) {
  if (local_state == ancestor_state) {
    success = true;
    return;
  }

  if (local_state.Effect() != ancestor_state.Effect()) {
    SlowLocalToAncestorVisualRectWithEffects(
        local_state, ancestor_state, rect_to_map, clip_behavior, success);
    return;
  }

  const auto& transform_matrix = SourceToDestinationProjectionInternal(
      local_state.Transform(), ancestor_state.Transform(), success);
  if (!success) {
    // A failure implies either source-to-plane or destination-to-plane being
    // singular. A notable example of singular source-to-plane from valid CSS:
    // <div id="plane" style="transform:rotateY(180deg)">
    //   <div style="overflow:overflow">
    //     <div id="ancestor" style="opacity:0.5;">
    //       <div id="local" style="position:absolute; transform:scaleX(0);">
    //       </div>
    //     </div>
    //   </div>
    // </div>
    // Either way, the element won't be renderable thus returning empty rect.
    success = true;
    rect_to_map = FloatClipRect(FloatRect());
    return;
  }
  rect_to_map.Map(transform_matrix);

  FloatClipRect clip_rect = LocalToAncestorClipRectInternal(
      local_state.Clip(), ancestor_state.Clip(), ancestor_state.Transform(),
      clip_behavior, success);
  if (success) {
    // This is where we propagate the roundedness and tightness of |clip_rect|
    // to |rect_to_map|.
    rect_to_map.Intersect(clip_rect);
    return;
  }

  if (!RuntimeEnabledFeatures::SlimmingPaintV2Enabled()) {
    // On SPv1* we may fail when the paint invalidation container creates an
    // overflow clip (in ancestor_state) which is not in localState of an
    // out-of-flow positioned descendant. See crbug.com/513108 and layout test
    // compositing/overflow/handle-non-ancestor-clip-parent.html (run with
    // --enable-prefer-compositing-to-lcd-text) for details.
    // Ignore it for SPv1* for now.
    success = true;
    rect_to_map.ClearIsTight();
  }
}

void GeometryMapper::SlowLocalToAncestorVisualRectWithEffects(
    const PropertyTreeState& local_state,
    const PropertyTreeState& ancestor_state,
    FloatClipRect& mapping_rect,
    OverlayScrollbarClipBehavior clip_behavior,
    bool& success) {
  PropertyTreeState last_transform_and_clip_state(local_state.Transform(),
                                                  local_state.Clip(), nullptr);

  for (const auto* effect = local_state.Effect();
       effect && effect != ancestor_state.Effect(); effect = effect->Parent()) {
    if (!effect->HasFilterThatMovesPixels())
      continue;

    DCHECK(effect->OutputClip());
    PropertyTreeState transform_and_clip_state(effect->LocalTransformSpace(),
                                               effect->OutputClip(), nullptr);
    LocalToAncestorVisualRectInternal(last_transform_and_clip_state,
                                      transform_and_clip_state, mapping_rect,
                                      clip_behavior, success);
    if (!success) {
      success = true;
      mapping_rect = FloatClipRect(FloatRect());
      return;
    }

    mapping_rect = FloatClipRect(effect->MapRect(mapping_rect.Rect()));
    last_transform_and_clip_state = transform_and_clip_state;
  }

  PropertyTreeState final_transform_and_clip_state(
      ancestor_state.Transform(), ancestor_state.Clip(), nullptr);
  LocalToAncestorVisualRectInternal(last_transform_and_clip_state,
                                    final_transform_and_clip_state,
                                    mapping_rect, clip_behavior, success);

  // Many effects (e.g. filters, clip-paths) can make a clip rect not tight.
  mapping_rect.ClearIsTight();
}

FloatClipRect GeometryMapper::LocalToAncestorClipRect(
    const PropertyTreeState& local_state,
    const PropertyTreeState& ancestor_state,
    OverlayScrollbarClipBehavior clip_behavior) {
  if (local_state.Clip() == ancestor_state.Clip())
    return FloatClipRect();

  bool success = false;
  auto result = LocalToAncestorClipRectInternal(
      local_state.Clip(), ancestor_state.Clip(), ancestor_state.Transform(),
      clip_behavior, success);
  DCHECK(success);

  // Many effects (e.g. filters, clip-paths) can make a clip rect not tight.
  if (local_state.Effect() != ancestor_state.Effect())
    result.ClearIsTight();

  return result;
}

static FloatClipRect GetClipRect(const ClipPaintPropertyNode* clip_node,
                                 OverlayScrollbarClipBehavior clip_behavior) {
  FloatClipRect clip_rect(
      UNLIKELY(clip_behavior == kExcludeOverlayScrollbarSizeForHitTesting)
          ? clip_node->ClipRectExcludingOverlayScrollbars()
          : clip_node->ClipRect());
  if (clip_node->ClipPath())
    clip_rect.ClearIsTight();
  return clip_rect;
}

FloatClipRect GeometryMapper::LocalToAncestorClipRectInternal(
    const ClipPaintPropertyNode* descendant,
    const ClipPaintPropertyNode* ancestor_clip,
    const TransformPaintPropertyNode* ancestor_transform,
    OverlayScrollbarClipBehavior clip_behavior,
    bool& success) {
  if (descendant == ancestor_clip) {
    success = true;
    return FloatClipRect();
  }

  if (descendant->Parent() == ancestor_clip &&
      descendant->LocalTransformSpace() == ancestor_transform) {
    success = true;
    return GetClipRect(descendant, clip_behavior);
  }

  FloatClipRect clip;
  const ClipPaintPropertyNode* clip_node = descendant;
  Vector<const ClipPaintPropertyNode*> intermediate_nodes;

  GeometryMapperClipCache::ClipAndTransform clip_and_transform(
      ancestor_clip, ancestor_transform, clip_behavior);
  // Iterate over the path from localState.clip to ancestor_state.clip. Stop if
  // we've found a memoized (precomputed) clip for any particular node.
  while (clip_node && clip_node != ancestor_clip) {
    if (const FloatClipRect* cached_clip =
            clip_node->GetClipCache().GetCachedClip(clip_and_transform)) {
      clip = *cached_clip;
      break;
    }

    intermediate_nodes.push_back(clip_node);
    clip_node = clip_node->Parent();
  }
  if (!clip_node) {
    success = false;
    if (!RuntimeEnabledFeatures::SlimmingPaintV2Enabled()) {
      // On SPv1 we may fail when the paint invalidation container creates an
      // overflow clip (in ancestor_state) which is not in localState of an
      // out-of-flow positioned descendant. See crbug.com/513108 and layout
      // test compositing/overflow/handle-non-ancestor-clip-parent.html (run
      // with --enable-prefer-compositing-to-lcd-text) for details.
      // Ignore it for SPv1 for now.
      success = true;
    }
    FloatClipRect loose_infinite;
    loose_infinite.ClearIsTight();
    return loose_infinite;
  }

  // Iterate down from the top intermediate node found in the previous loop,
  // computing and memoizing clip rects as we go.
  for (auto it = intermediate_nodes.rbegin(); it != intermediate_nodes.rend();
       ++it) {
    const TransformationMatrix& transform_matrix =
        SourceToDestinationProjectionInternal((*it)->LocalTransformSpace(),
                                              ancestor_transform, success);
    if (!success) {
      success = true;
      return FloatClipRect(FloatRect());
    }

    // This is where we generate the roundedness and tightness of clip rect
    // from clip and transform properties, and propagate them to |clip|.
    FloatClipRect mapped_rect(GetClipRect((*it), clip_behavior));
    mapped_rect.Map(transform_matrix);
    clip.Intersect(mapped_rect);

    (*it)->GetClipCache().SetCachedClip(clip_and_transform, clip);
  }

  DCHECK(*descendant->GetClipCache().GetCachedClip(clip_and_transform) == clip);
  success = true;
  return clip;
}

void GeometryMapper::ClearCache() {
  GeometryMapperTransformCache::ClearCache();
  GeometryMapperClipCache::ClearCache();
}

}  // namespace blink