summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/platform/audio/reverb_convolver.cc
blob: 9cb601ebc2231fe498faccc547f8249e825c49bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
 * Copyright (C) 2010 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "third_party/blink/renderer/platform/audio/reverb_convolver.h"

#include <memory>
#include <utility>

#include "base/location.h"
#include "third_party/blink/public/platform/platform.h"
#include "third_party/blink/public/platform/web_thread.h"
#include "third_party/blink/renderer/platform/audio/audio_bus.h"
#include "third_party/blink/renderer/platform/audio/vector_math.h"
#include "third_party/blink/renderer/platform/cross_thread_functional.h"
#include "third_party/blink/renderer/platform/web_task_runner.h"

namespace blink {

using namespace VectorMath;

const int kInputBufferSize = 8 * 16384;

// We only process the leading portion of the impulse response in the real-time
// thread.  We don't exceed this length.  It turns out then, that the
// background thread has about 278msec of scheduling slop.  Empirically, this
// has been found to be a good compromise between giving enough time for
// scheduling slop, while still minimizing the amount of processing done in the
// primary (high-priority) thread.  This was found to be a good value on Mac OS
// X, and may work well on other platforms as well, assuming the very rough
// scheduling latencies are similar on these time-scales.  Of course, this code
// may need to be tuned for individual platforms if this assumption is found to
// be incorrect.
const size_t kRealtimeFrameLimit = 8192 + 4096;  // ~278msec @ 44.1KHz

const size_t kMinFFTSize = 128;
const size_t kMaxRealtimeFFTSize = 2048;

ReverbConvolver::ReverbConvolver(AudioChannel* impulse_response,
                                 size_t render_slice_size,
                                 size_t max_fft_size,
                                 size_t convolver_render_phase,
                                 bool use_background_threads)
    : impulse_response_length_(impulse_response->length()),
      accumulation_buffer_(impulse_response->length() + render_slice_size),
      input_buffer_(kInputBufferSize),
      min_fft_size_(
          kMinFFTSize),  // First stage will have this size - successive
                         // stages will double in size each time
      max_fft_size_(max_fft_size)  // until we hit m_maxFFTSize
{
  // If we are using background threads then don't exceed this FFT size for the
  // stages which run in the real-time thread.  This avoids having only one or
  // two large stages (size 16384 or so) at the end which take a lot of time
  // every several processing slices.  This way we amortize the cost over more
  // processing slices.
  max_realtime_fft_size_ = kMaxRealtimeFFTSize;

  const float* response = impulse_response->Data();
  size_t total_response_length = impulse_response->length();

  // The total latency is zero because the direct-convolution is used in the
  // leading portion.
  size_t reverb_total_latency = 0;

  size_t stage_offset = 0;
  int i = 0;
  size_t fft_size = min_fft_size_;
  while (stage_offset < total_response_length) {
    size_t stage_size = fft_size / 2;

    // For the last stage, it's possible that stageOffset is such that we're
    // straddling the end of the impulse response buffer (if we use stageSize),
    // so reduce the last stage's length...
    if (stage_size + stage_offset > total_response_length)
      stage_size = total_response_length - stage_offset;

    // This "staggers" the time when each FFT happens so they don't all happen
    // at the same time
    int render_phase = convolver_render_phase + i * render_slice_size;

    bool use_direct_convolver = !stage_offset;

    std::unique_ptr<ReverbConvolverStage> stage =
        std::make_unique<ReverbConvolverStage>(
            response, total_response_length, reverb_total_latency, stage_offset,
            stage_size, fft_size, render_phase, render_slice_size,
            &accumulation_buffer_, use_direct_convolver);

    bool is_background_stage = false;

    if (use_background_threads && stage_offset > kRealtimeFrameLimit) {
      background_stages_.push_back(std::move(stage));
      is_background_stage = true;
    } else {
      stages_.push_back(std::move(stage));
    }

    stage_offset += stage_size;
    ++i;

    if (!use_direct_convolver) {
      // Figure out next FFT size
      fft_size *= 2;
    }

    if (use_background_threads && !is_background_stage &&
        fft_size > max_realtime_fft_size_)
      fft_size = max_realtime_fft_size_;
    if (fft_size > max_fft_size_)
      fft_size = max_fft_size_;
  }

  // Start up background thread
  // FIXME: would be better to up the thread priority here.  It doesn't need to
  // be real-time, but higher than the default...
  if (use_background_threads && background_stages_.size() > 0) {
    background_thread_ =
        Platform::Current()->CreateThread(WebThreadCreationParams(
            WebThreadType::kReverbConvolutionBackgroundThread));
  }
}

ReverbConvolver::~ReverbConvolver() {
  // Wait for background thread to stop
  background_thread_.reset();
}

void ReverbConvolver::ProcessInBackground() {
  // Process all of the stages until their read indices reach the input buffer's
  // write index
  int write_index = input_buffer_.WriteIndex();

  // Even though it doesn't seem like every stage needs to maintain its own
  // version of readIndex we do this in case we want to run in more than one
  // background thread.
  int read_index;

  while ((read_index = background_stages_[0]->InputReadIndex()) !=
         write_index) {  // FIXME: do better to detect buffer overrun...
    // The ReverbConvolverStages need to process in amounts which evenly divide
    // half the FFT size
    const int kSliceSize = kMinFFTSize / 2;

    // Accumulate contributions from each stage
    for (size_t i = 0; i < background_stages_.size(); ++i)
      background_stages_[i]->ProcessInBackground(this, kSliceSize);
  }
}

void ReverbConvolver::Process(const AudioChannel* source_channel,
                              AudioChannel* destination_channel,
                              size_t frames_to_process) {
  bool is_safe = source_channel && destination_channel &&
                 source_channel->length() >= frames_to_process &&
                 destination_channel->length() >= frames_to_process;
  DCHECK(is_safe);
  if (!is_safe)
    return;

  const float* source = source_channel->Data();
  float* destination = destination_channel->MutableData();
  bool is_data_safe = source && destination;
  DCHECK(is_data_safe);
  if (!is_data_safe)
    return;

  // Feed input buffer (read by all threads)
  input_buffer_.Write(source, frames_to_process);

  // Accumulate contributions from each stage
  for (size_t i = 0; i < stages_.size(); ++i)
    stages_[i]->Process(source, frames_to_process);

  // Finally read from accumulation buffer
  accumulation_buffer_.ReadAndClear(destination, frames_to_process);

  // Now that we've buffered more input, post another task to the background
  // thread.
  if (background_thread_) {
    PostCrossThreadTask(*background_thread_->GetTaskRunner(), FROM_HERE,
                        CrossThreadBind(&ReverbConvolver::ProcessInBackground,
                                        CrossThreadUnretained(this)));
  }
}

void ReverbConvolver::Reset() {
  for (size_t i = 0; i < stages_.size(); ++i)
    stages_[i]->Reset();

  for (size_t i = 0; i < background_stages_.size(); ++i)
    background_stages_[i]->Reset();

  accumulation_buffer_.Reset();
  input_buffer_.Reset();
}

size_t ReverbConvolver::LatencyFrames() const {
  return 0;
}

}  // namespace blink