summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/platform/audio/iir_filter.cc
blob: 4ef915ccfbfc8309afd5950ce6b4ac159b105d6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/platform/audio/iir_filter.h"

#include <algorithm>
#include <complex>

#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
#include "third_party/blink/renderer/platform/audio/vector_math.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"

namespace blink {

// The length of the memory buffers for the IIR filter.  This MUST be a power of
// two and must be greater than the possible length of the filter coefficients.
const int kBufferLength = 32;
static_assert(kBufferLength >= IIRFilter::kMaxOrder + 1,
              "Internal IIR buffer length must be greater than maximum IIR "
              "Filter order.");

IIRFilter::IIRFilter(const AudioDoubleArray* feedforward,
                     const AudioDoubleArray* feedback)
    : buffer_index_(0), feedback_(feedback), feedforward_(feedforward) {
  // These are guaranteed to be zero-initialized.
  x_buffer_.Allocate(kBufferLength);
  y_buffer_.Allocate(kBufferLength);
}

IIRFilter::~IIRFilter() = default;

void IIRFilter::Reset() {
  x_buffer_.Zero();
  y_buffer_.Zero();
  buffer_index_ = 0;
}

static std::complex<double> EvaluatePolynomial(const double* coef,
                                               std::complex<double> z,
                                               int order) {
  // Use Horner's method to evaluate the polynomial P(z) = sum(coef[k]*z^k, k,
  // 0, order);
  std::complex<double> result = 0;

  for (int k = order; k >= 0; --k)
    result = result * z + std::complex<double>(coef[k]);

  return result;
}

void IIRFilter::Process(const float* source_p,
                        float* dest_p,
                        uint32_t frames_to_process) {
  // Compute
  //
  //   y[n] = sum(b[k] * x[n - k], k = 0, M) - sum(a[k] * y[n - k], k = 1, N)
  //
  // where b[k] are the feedforward coefficients and a[k] are the feedback
  // coefficients of the filter.

  // This is a Direct Form I implementation of an IIR Filter.  Should we
  // consider doing a different implementation such as Transposed Direct Form
  // II?
  const double* feedback = feedback_->Data();
  const double* feedforward = feedforward_->Data();

  DCHECK(feedback);
  DCHECK(feedforward);

  // Sanity check to see if the feedback coefficients have been scaled
  // appropriately. It must be EXACTLY 1!
  DCHECK_EQ(feedback[0], 1);

  int feedback_length = feedback_->size();
  int feedforward_length = feedforward_->size();
  int min_length = std::min(feedback_length, feedforward_length);

  double* x_buffer = x_buffer_.Data();
  double* y_buffer = y_buffer_.Data();

  for (size_t n = 0; n < frames_to_process; ++n) {
    // To help minimize roundoff, we compute using double's, even though the
    // filter coefficients only have single precision values.
    double yn = feedforward[0] * source_p[n];

    // Run both the feedforward and feedback terms together, when possible.
    for (int k = 1; k < min_length; ++k) {
      int n = (buffer_index_ - k) & (kBufferLength - 1);
      yn += feedforward[k] * x_buffer[n];
      yn -= feedback[k] * y_buffer[n];
    }

    // Handle any remaining feedforward or feedback terms.
    for (int k = min_length; k < feedforward_length; ++k)
      yn +=
          feedforward[k] * x_buffer[(buffer_index_ - k) & (kBufferLength - 1)];

    for (int k = min_length; k < feedback_length; ++k)
      yn -= feedback[k] * y_buffer[(buffer_index_ - k) & (kBufferLength - 1)];

    // Save the current input and output values in the memory buffers for the
    // next output.
    x_buffer_[buffer_index_] = source_p[n];
    y_buffer_[buffer_index_] = yn;

    buffer_index_ = (buffer_index_ + 1) & (kBufferLength - 1);

    dest_p[n] = yn;
  }
}

void IIRFilter::GetFrequencyResponse(int n_frequencies,
                                     const float* frequency,
                                     float* mag_response,
                                     float* phase_response) {
  // Evaluate the z-transform of the filter at the given normalized frequencies
  // from 0 to 1. (One corresponds to the Nyquist frequency.)
  //
  // The z-tranform of the filter is
  //
  // H(z) = sum(b[k]*z^(-k), k, 0, M) / sum(a[k]*z^(-k), k, 0, N);
  //
  // The desired frequency response is H(exp(j*omega)), where omega is in [0,
  // 1).
  //
  // Let P(x) = sum(c[k]*x^k, k, 0, P) be a polynomial of order P.  Then each of
  // the sums in H(z) is equivalent to evaluating a polynomial at the point
  // 1/z.

  for (int k = 0; k < n_frequencies; ++k) {
    if (frequency[k] < 0 || frequency[k] > 1) {
      // Out-of-bounds frequencies should return NaN.
      mag_response[k] = std::nanf("");
      phase_response[k] = std::nanf("");
    } else {
      // zRecip = 1/z = exp(-j*frequency)
      double omega = -kPiDouble * frequency[k];
      std::complex<double> z_recip =
          std::complex<double>(cos(omega), sin(omega));

      std::complex<double> numerator = EvaluatePolynomial(
          feedforward_->Data(), z_recip, feedforward_->size() - 1);
      std::complex<double> denominator =
          EvaluatePolynomial(feedback_->Data(), z_recip, feedback_->size() - 1);
      std::complex<double> response = numerator / denominator;
      mag_response[k] = static_cast<float>(abs(response));
      phase_response[k] =
          static_cast<float>(atan2(imag(response), real(response)));
    }
  }
}

double IIRFilter::TailTime(double sample_rate, bool is_filter_stable) {
  // The maximum tail time.  This is somewhat arbitrary, but we're assuming that
  // no one is going to expect the IIRFilter to produce an output after this
  // much time after the inputs have stopped.
  const double kMaxTailTime = 10;

  // If the maximum amplitude of the impulse response is less than this, we
  // assume that we've reached the tail of the response.  Currently, this means
  // that the impulse is less than 1 bit of a 16-bit PCM value.
  const float kMaxTailAmplitude = 1 / 32768.0;

  // If filter is not stable, just return max tail.  Since the filter is not
  // stable, the impulse response won't converge to zero, so we don't need to
  // find the impulse response to find the actual tail time.
  if (!is_filter_stable) {
    return kMaxTailTime;
  }

  // How to compute the tail time?  We're going to filter an impulse
  // for |kMaxTailTime| seconds, in blocks of kRenderQuantumFrames at
  // a time.  The maximum magnitude of this block is saved.  After all
  // of the samples have been computed, find the last block with a
  // maximum magnitude greater than |kMaxTaileAmplitude|.  That block
  // index + 1 will be the tail time.  We don't need to be
  // super-accurate in computing the tail time since we process on
  // blocks, block accuracy is good enough, and the value just needs
  // to be larger than the "real" tail time, so we don't prematurely
  // zero out the output of the node.

  // Number of render quanta needed to reach the max tail time.
  int number_of_blocks = std::ceil(sample_rate * kMaxTailTime /
                                   audio_utilities::kRenderQuantumFrames);

  // Input and output buffers for filtering.
  AudioFloatArray input(audio_utilities::kRenderQuantumFrames);
  AudioFloatArray output(audio_utilities::kRenderQuantumFrames);

  // Array to hold the max magnitudes
  AudioFloatArray magnitudes(number_of_blocks);

  // Create the impulse input signal.
  input[0] = 1;

  // Process the first block and get the max magnitude of the output.
  Process(input.Data(), output.Data(), audio_utilities::kRenderQuantumFrames);
  vector_math::Vmaxmgv(output.Data(), 1, &magnitudes[0],
                       audio_utilities::kRenderQuantumFrames);

  // Process the rest of the signal, getting the max magnitude of the
  // output for each block.
  input[0] = 0;

  for (int k = 1; k < number_of_blocks; ++k) {
    Process(input.Data(), output.Data(), audio_utilities::kRenderQuantumFrames);
    vector_math::Vmaxmgv(output.Data(), 1, &magnitudes[k],
                         audio_utilities::kRenderQuantumFrames);
  }

  // Done computing the impulse response; reset the state so the actual node
  // starts in the expected initial state.
  Reset();

  // Find the last block with amplitude greater than the threshold.
  int index = number_of_blocks - 1;
  for (int k = index; k >= 0; --k) {
    if (magnitudes[k] > kMaxTailAmplitude) {
      index = k;
      break;
    }
  }

  // The magnitude first become lower than the threshold at the next block.
  // Compute the corresponding time value value; that's the tail time.
  return (index + 1) * audio_utilities::kRenderQuantumFrames / sample_rate;
}

}  // namespace blink