summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/platform/audio/cpu/x86/vector_math_x86.h
blob: f023b8f2dc18bc24ea8e86674afe19eb71a976b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_AUDIO_CPU_X86_VECTOR_MATH_X86_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_AUDIO_CPU_X86_VECTOR_MATH_X86_H_

#include "base/cpu.h"
#include "third_party/blink/renderer/platform/audio/cpu/x86/vector_math_avx.h"
#include "third_party/blink/renderer/platform/audio/cpu/x86/vector_math_sse.h"
#include "third_party/blink/renderer/platform/audio/vector_math_scalar.h"
#include "third_party/blink/renderer/platform/wtf/assertions.h"

namespace blink {
namespace VectorMath {
namespace X86 {

struct FrameCounts {
  size_t scalar_for_alignment;
  size_t sse_for_alignment;
  size_t avx;
  size_t sse;
  size_t scalar;
};

static bool CPUSupportsAVX() {
  static bool supports = ::base::CPU().has_avx();
  return supports;
}

static size_t GetAVXAlignmentOffsetInNumberOfFloats(const float* source_p) {
  constexpr size_t kBytesPerRegister = AVX::kBitsPerRegister / 8u;
  constexpr size_t kAlignmentOffsetMask = kBytesPerRegister - 1u;
  size_t offset = reinterpret_cast<size_t>(source_p) & kAlignmentOffsetMask;
  DCHECK_EQ(0u, offset % sizeof(*source_p));
  return offset / sizeof(*source_p);
}

static ALWAYS_INLINE FrameCounts
SplitFramesToProcess(const float* source_p, size_t frames_to_process) {
  FrameCounts counts = {0u, 0u, 0u, 0u, 0u};

  const size_t avx_alignment_offset =
      GetAVXAlignmentOffsetInNumberOfFloats(source_p);

  // If the first frame is not AVX aligned, the first several frames (at most
  // seven) must be processed separately for proper alignment.
  const size_t total_for_alignment =
      (AVX::kPackedFloatsPerRegister - avx_alignment_offset) &
      ~AVX::kFramesToProcessMask;
  const size_t scalar_for_alignment =
      total_for_alignment & ~SSE::kFramesToProcessMask;
  const size_t sse_for_alignment =
      total_for_alignment & SSE::kFramesToProcessMask;

  // Check which CPU features can be used based on the number of frames to
  // process and based on CPU support.
  const bool use_at_least_avx =
      CPUSupportsAVX() &&
      frames_to_process >= scalar_for_alignment + sse_for_alignment +
                               AVX::kPackedFloatsPerRegister;
  const bool use_at_least_sse =
      use_at_least_avx ||
      frames_to_process >= scalar_for_alignment + SSE::kPackedFloatsPerRegister;

  if (use_at_least_sse) {
    counts.scalar_for_alignment = scalar_for_alignment;
    frames_to_process -= counts.scalar_for_alignment;
    // The remaining frames are SSE aligned.
    DCHECK(SSE::IsAligned(source_p + counts.scalar_for_alignment));

    if (use_at_least_avx) {
      counts.sse_for_alignment = sse_for_alignment;
      frames_to_process -= counts.sse_for_alignment;
      // The remaining frames are AVX aligned.
      DCHECK(AVX::IsAligned(source_p + counts.scalar_for_alignment +
                            counts.sse_for_alignment));

      // Process as many as possible of the remaining frames using AVX.
      counts.avx = frames_to_process & AVX::kFramesToProcessMask;
      frames_to_process -= counts.avx;
    }

    // Process as many as possible of the remaining frames using SSE.
    counts.sse = frames_to_process & SSE::kFramesToProcessMask;
    frames_to_process -= counts.sse;
  }

  // Process the remaining frames separately.
  counts.scalar = frames_to_process;
  return counts;
}

static ALWAYS_INLINE void PrepareFilterForConv(
    const float* filter_p,
    int filter_stride,
    size_t filter_size,
    AudioFloatArray* prepared_filter) {
  if (CPUSupportsAVX()) {
    AVX::PrepareFilterForConv(filter_p, filter_stride, filter_size,
                              prepared_filter);
  } else {
    SSE::PrepareFilterForConv(filter_p, filter_stride, filter_size,
                              prepared_filter);
  }
}

static ALWAYS_INLINE void Conv(const float* source_p,
                               int source_stride,
                               const float* filter_p,
                               int filter_stride,
                               float* dest_p,
                               int dest_stride,
                               size_t frames_to_process,
                               size_t filter_size,
                               const AudioFloatArray* prepared_filter) {
  const float* prepared_filter_p =
      prepared_filter ? prepared_filter->Data() : nullptr;
  if (source_stride == 1 && dest_stride == 1 && prepared_filter_p) {
    if (CPUSupportsAVX() && (filter_size & ~AVX::kFramesToProcessMask) == 0u) {
      // |frames_to_process| is always a multiply of render quantum and
      // therefore the frames can always be processed using AVX.
      CHECK_EQ(frames_to_process & ~AVX::kFramesToProcessMask, 0u);
      AVX::Conv(source_p, prepared_filter_p, dest_p, frames_to_process,
                filter_size);
      return;
    }
    if ((filter_size & ~SSE::kFramesToProcessMask) == 0u) {
      // |frames_to_process| is always a multiply of render quantum and
      // therefore the frames can always be processed using SSE.
      CHECK_EQ(frames_to_process & ~SSE::kFramesToProcessMask, 0u);
      SSE::Conv(source_p, prepared_filter_p, dest_p, frames_to_process,
                filter_size);
      return;
    }
  }
  Scalar::Conv(source_p, source_stride, filter_p, filter_stride, dest_p,
               dest_stride, frames_to_process, filter_size, nullptr);
}

static ALWAYS_INLINE void Vadd(const float* source1p,
                               int source_stride1,
                               const float* source2p,
                               int source_stride2,
                               float* dest_p,
                               int dest_stride,
                               size_t frames_to_process) {
  if (source_stride1 == 1 && source_stride2 == 1 && dest_stride == 1) {
    const FrameCounts frame_counts =
        SplitFramesToProcess(source1p, frames_to_process);

    Scalar::Vadd(source1p, 1, source2p, 1, dest_p, 1,
                 frame_counts.scalar_for_alignment);
    size_t i = frame_counts.scalar_for_alignment;
    if (frame_counts.sse_for_alignment > 0u) {
      SSE::Vadd(source1p + i, source2p + i, dest_p + i,
                frame_counts.sse_for_alignment);
      i += frame_counts.sse_for_alignment;
    }
    if (frame_counts.avx > 0u) {
      AVX::Vadd(source1p + i, source2p + i, dest_p + i, frame_counts.avx);
      i += frame_counts.avx;
    }
    if (frame_counts.sse > 0u) {
      SSE::Vadd(source1p + i, source2p + i, dest_p + i, frame_counts.sse);
      i += frame_counts.sse;
    }
    Scalar::Vadd(source1p + i, 1, source2p + i, 1, dest_p + i, 1,
                 frame_counts.scalar);
    DCHECK_EQ(frames_to_process, i + frame_counts.scalar);
  } else {
    Scalar::Vadd(source1p, source_stride1, source2p, source_stride2, dest_p,
                 dest_stride, frames_to_process);
  }
}

static ALWAYS_INLINE void Vclip(const float* source_p,
                                int source_stride,
                                const float* low_threshold_p,
                                const float* high_threshold_p,
                                float* dest_p,
                                int dest_stride,
                                size_t frames_to_process) {
  if (source_stride == 1 && dest_stride == 1) {
    const FrameCounts frame_counts =
        SplitFramesToProcess(source_p, frames_to_process);

    Scalar::Vclip(source_p, 1, low_threshold_p, high_threshold_p, dest_p, 1,
                  frame_counts.scalar_for_alignment);
    size_t i = frame_counts.scalar_for_alignment;
    if (frame_counts.sse_for_alignment > 0u) {
      SSE::Vclip(source_p + i, low_threshold_p, high_threshold_p, dest_p + i,
                 frame_counts.sse_for_alignment);
      i += frame_counts.sse_for_alignment;
    }
    if (frame_counts.avx > 0u) {
      AVX::Vclip(source_p + i, low_threshold_p, high_threshold_p, dest_p + i,
                 frame_counts.avx);
      i += frame_counts.avx;
    }
    if (frame_counts.sse > 0u) {
      SSE::Vclip(source_p + i, low_threshold_p, high_threshold_p, dest_p + i,
                 frame_counts.sse);
      i += frame_counts.sse;
    }
    Scalar::Vclip(source_p + i, 1, low_threshold_p, high_threshold_p,
                  dest_p + i, 1, frame_counts.scalar);
    DCHECK_EQ(frames_to_process, i + frame_counts.scalar);
  } else {
    Scalar::Vclip(source_p, source_stride, low_threshold_p, high_threshold_p,
                  dest_p, dest_stride, frames_to_process);
  }
}

static ALWAYS_INLINE void Vmaxmgv(const float* source_p,
                                  int source_stride,
                                  float* max_p,
                                  size_t frames_to_process) {
  if (source_stride == 1) {
    const FrameCounts frame_counts =
        SplitFramesToProcess(source_p, frames_to_process);

    Scalar::Vmaxmgv(source_p, 1, max_p, frame_counts.scalar_for_alignment);
    size_t i = frame_counts.scalar_for_alignment;
    if (frame_counts.sse_for_alignment > 0u) {
      SSE::Vmaxmgv(source_p + i, max_p, frame_counts.sse_for_alignment);
      i += frame_counts.sse_for_alignment;
    }
    if (frame_counts.avx > 0u) {
      AVX::Vmaxmgv(source_p + i, max_p, frame_counts.avx);
      i += frame_counts.avx;
    }
    if (frame_counts.sse > 0u) {
      SSE::Vmaxmgv(source_p + i, max_p, frame_counts.sse);
      i += frame_counts.sse;
    }
    Scalar::Vmaxmgv(source_p + i, 1, max_p, frame_counts.scalar);
    DCHECK_EQ(frames_to_process, i + frame_counts.scalar);
  } else {
    Scalar::Vmaxmgv(source_p, source_stride, max_p, frames_to_process);
  }
}

static ALWAYS_INLINE void Vmul(const float* source1p,
                               int source_stride1,
                               const float* source2p,
                               int source_stride2,
                               float* dest_p,
                               int dest_stride,
                               size_t frames_to_process) {
  if (source_stride1 == 1 && source_stride2 == 1 && dest_stride == 1) {
    const FrameCounts frame_counts =
        SplitFramesToProcess(source1p, frames_to_process);

    Scalar::Vmul(source1p, 1, source2p, 1, dest_p, 1,
                 frame_counts.scalar_for_alignment);
    size_t i = frame_counts.scalar_for_alignment;
    if (frame_counts.sse_for_alignment > 0u) {
      SSE::Vmul(source1p + i, source2p + i, dest_p + i,
                frame_counts.sse_for_alignment);
      i += frame_counts.sse_for_alignment;
    }
    if (frame_counts.avx > 0u) {
      AVX::Vmul(source1p + i, source2p + i, dest_p + i, frame_counts.avx);
      i += frame_counts.avx;
    }
    if (frame_counts.sse > 0u) {
      SSE::Vmul(source1p + i, source2p + i, dest_p + i, frame_counts.sse);
      i += frame_counts.sse;
    }
    Scalar::Vmul(source1p + i, 1, source2p + i, 1, dest_p + i, 1,
                 frame_counts.scalar);
    DCHECK_EQ(frames_to_process, i + frame_counts.scalar);
  } else {
    Scalar::Vmul(source1p, source_stride1, source2p, source_stride2, dest_p,
                 dest_stride, frames_to_process);
  }
}

static ALWAYS_INLINE void Vsma(const float* source_p,
                               int source_stride,
                               const float* scale,
                               float* dest_p,
                               int dest_stride,
                               size_t frames_to_process) {
  if (source_stride == 1 && dest_stride == 1) {
    const FrameCounts frame_counts =
        SplitFramesToProcess(source_p, frames_to_process);

    Scalar::Vsma(source_p, 1, scale, dest_p, 1,
                 frame_counts.scalar_for_alignment);
    size_t i = frame_counts.scalar_for_alignment;
    if (frame_counts.sse_for_alignment > 0u) {
      SSE::Vsma(source_p + i, scale, dest_p + i,
                frame_counts.sse_for_alignment);
      i += frame_counts.sse_for_alignment;
    }
    if (frame_counts.avx > 0u) {
      AVX::Vsma(source_p + i, scale, dest_p + i, frame_counts.avx);
      i += frame_counts.avx;
    }
    if (frame_counts.sse > 0u) {
      SSE::Vsma(source_p + i, scale, dest_p + i, frame_counts.sse);
      i += frame_counts.sse;
    }
    Scalar::Vsma(source_p + i, 1, scale, dest_p + i, 1, frame_counts.scalar);
    DCHECK_EQ(frames_to_process, i + frame_counts.scalar);
  } else {
    Scalar::Vsma(source_p, source_stride, scale, dest_p, dest_stride,
                 frames_to_process);
  }
}

static ALWAYS_INLINE void Vsmul(const float* source_p,
                                int source_stride,
                                const float* scale,
                                float* dest_p,
                                int dest_stride,
                                size_t frames_to_process) {
  if (source_stride == 1 && dest_stride == 1) {
    const FrameCounts frame_counts =
        SplitFramesToProcess(source_p, frames_to_process);

    Scalar::Vsmul(source_p, 1, scale, dest_p, 1,
                  frame_counts.scalar_for_alignment);
    size_t i = frame_counts.scalar_for_alignment;
    if (frame_counts.sse_for_alignment > 0u) {
      SSE::Vsmul(source_p + i, scale, dest_p + i,
                 frame_counts.sse_for_alignment);
      i += frame_counts.sse_for_alignment;
    }
    if (frame_counts.avx > 0u) {
      AVX::Vsmul(source_p + i, scale, dest_p + i, frame_counts.avx);
      i += frame_counts.avx;
    }
    if (frame_counts.sse > 0u) {
      SSE::Vsmul(source_p + i, scale, dest_p + i, frame_counts.sse);
      i += frame_counts.sse;
    }
    Scalar::Vsmul(source_p + i, 1, scale, dest_p + i, 1, frame_counts.scalar);
    DCHECK_EQ(frames_to_process, i + frame_counts.scalar);
  } else {
    Scalar::Vsmul(source_p, source_stride, scale, dest_p, dest_stride,
                  frames_to_process);
  }
}

static ALWAYS_INLINE void Vsvesq(const float* source_p,
                                 int source_stride,
                                 float* sum_p,
                                 size_t frames_to_process) {
  if (source_stride == 1) {
    const FrameCounts frame_counts =
        SplitFramesToProcess(source_p, frames_to_process);

    Scalar::Vsvesq(source_p, 1, sum_p, frame_counts.scalar_for_alignment);
    size_t i = frame_counts.scalar_for_alignment;
    if (frame_counts.sse_for_alignment > 0u) {
      SSE::Vsvesq(source_p + i, sum_p, frame_counts.sse_for_alignment);
      i += frame_counts.sse_for_alignment;
    }
    if (frame_counts.avx > 0u) {
      AVX::Vsvesq(source_p + i, sum_p, frame_counts.avx);
      i += frame_counts.avx;
    }
    if (frame_counts.sse > 0u) {
      SSE::Vsvesq(source_p + i, sum_p, frame_counts.sse);
      i += frame_counts.sse;
    }
    Scalar::Vsvesq(source_p + i, 1, sum_p, frame_counts.scalar);
    DCHECK_EQ(frames_to_process, i + frame_counts.scalar);
  } else {
    Scalar::Vsvesq(source_p, source_stride, sum_p, frames_to_process);
  }
}

static ALWAYS_INLINE void Zvmul(const float* real1p,
                                const float* imag1p,
                                const float* real2p,
                                const float* imag2p,
                                float* real_dest_p,
                                float* imag_dest_p,
                                size_t frames_to_process) {
  FrameCounts frame_counts = SplitFramesToProcess(real1p, frames_to_process);

  Scalar::Zvmul(real1p, imag1p, real2p, imag2p, real_dest_p, imag_dest_p,
                frame_counts.scalar_for_alignment);
  size_t i = frame_counts.scalar_for_alignment;
  if (frame_counts.sse_for_alignment > 0u) {
    SSE::Zvmul(real1p + i, imag1p + i, real2p + i, imag2p + i, real_dest_p + i,
               imag_dest_p + i, frame_counts.sse_for_alignment);
    i += frame_counts.sse_for_alignment;
  }
  if (frame_counts.avx > 0u) {
    AVX::Zvmul(real1p + i, imag1p + i, real2p + i, imag2p + i, real_dest_p + i,
               imag_dest_p + i, frame_counts.avx);
    i += frame_counts.avx;
  }
  if (frame_counts.sse > 0u) {
    SSE::Zvmul(real1p + i, imag1p + i, real2p + i, imag2p + i, real_dest_p + i,
               imag_dest_p + i, frame_counts.sse);
    i += frame_counts.sse;
  }
  Scalar::Zvmul(real1p + i, imag1p + i, real2p + i, imag2p + i, real_dest_p + i,
                imag_dest_p + i, frame_counts.scalar);
  DCHECK_EQ(frames_to_process, i + frame_counts.scalar);
}

}  // namespace X86
}  // namespace VectorMath
}  // namespace blink

#endif  // THIRD_PARTY_BLINK_RENDERER_PLATFORM_AUDIO_CPU_X86_VECTOR_MATH_X86_H_