summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/modules/mediastream/low_latency_video_renderer_algorithm_unittest.cc
blob: 8c7b206db18797871721dd8da6f30949d8496cc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
// Copyright 2020 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <queue>

#include "media/base/video_frame_pool.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/blink/renderer/modules/mediastream/low_latency_video_renderer_algorithm.h"

namespace blink {

class LowLatencyVideoRendererAlgorithmTest : public testing::Test {
 public:
  LowLatencyVideoRendererAlgorithmTest()
      : algorithm_(nullptr),
        current_render_time_(base::TimeTicks() + base::TimeDelta::FromDays(1)) {
  }

  ~LowLatencyVideoRendererAlgorithmTest() override = default;

  scoped_refptr<media::VideoFrame> CreateFrame(
      size_t maximum_composition_delay_in_frames) {
    const gfx::Size natural_size(8, 8);
    scoped_refptr<media::VideoFrame> frame = frame_pool_.CreateFrame(
        media::PIXEL_FORMAT_I420, natural_size, gfx::Rect(natural_size),
        natural_size, base::TimeDelta());
    frame->metadata().maximum_composition_delay_in_frames =
        maximum_composition_delay_in_frames;
    return frame;
  }

  int CreateAndEnqueueFrame(int max_composition_delay_in_frames) {
    scoped_refptr<media::VideoFrame> frame =
        CreateFrame(max_composition_delay_in_frames);
    int unique_id = frame->unique_id();
    algorithm_.EnqueueFrame(std::move(frame));
    return unique_id;
  }

  size_t frames_queued() const { return algorithm_.frames_queued(); }

  scoped_refptr<media::VideoFrame> RenderAndStep(size_t* frames_dropped) {
    constexpr base::TimeDelta kRenderInterval =
        base::TimeDelta::FromMillisecondsD(1000.0 / 60.0);  // 60fps.
    return RenderAndStep(frames_dropped, kRenderInterval);
  }

  scoped_refptr<media::VideoFrame> RenderAndStep(
      size_t* frames_dropped,
      base::TimeDelta render_interval) {
    const base::TimeTicks start = current_render_time_;
    current_render_time_ += render_interval;
    const base::TimeTicks end = current_render_time_;
    return algorithm_.Render(start, end, frames_dropped);
  }

  void StepUntilJustBeforeNextFrameIsRendered(
      base::TimeDelta render_interval,
      absl::optional<int> expected_id = absl::nullopt) {
    // No frame will be rendered until the total render time that has passed is
    // greater than the frame duration of a frame.
    base::TimeTicks start_time = current_render_time_;
    while (current_render_time_ - start_time + render_interval <
           FrameDuration()) {
      scoped_refptr<media::VideoFrame> rendered_frame =
          RenderAndStep(nullptr, render_interval);
      if (expected_id) {
        ASSERT_TRUE(rendered_frame);
        EXPECT_EQ(rendered_frame->unique_id(), *expected_id);
      } else {
        EXPECT_FALSE(rendered_frame);
      }
    }
  }

  base::TimeDelta FrameDuration() const {
    // Assume 60 Hz video content.
    return base::TimeDelta::FromMillisecondsD(1000.0 / 60.0);
  }

 protected:
  media::VideoFramePool frame_pool_;
  LowLatencyVideoRendererAlgorithm algorithm_;
  base::TimeTicks current_render_time_;

 private:
  DISALLOW_COPY_AND_ASSIGN(LowLatencyVideoRendererAlgorithmTest);
};

TEST_F(LowLatencyVideoRendererAlgorithmTest, Empty) {
  size_t frames_dropped = 0;
  EXPECT_EQ(0u, frames_queued());
  EXPECT_FALSE(RenderAndStep(&frames_dropped));
  EXPECT_EQ(0u, frames_dropped);
  EXPECT_EQ(0u, frames_queued());
}

TEST_F(LowLatencyVideoRendererAlgorithmTest, NormalMode60Hz) {
  // Every frame rendered.
  constexpr int kNumberOfFrames = 100;
  constexpr int kMaxCompositionDelayInFrames = 6;
  for (int i = 0; i < kNumberOfFrames; ++i) {
    int frame_id = CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);
    size_t frames_dropped = 0u;
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(&frames_dropped);
    ASSERT_TRUE(rendered_frame);
    EXPECT_EQ(rendered_frame->unique_id(), frame_id);
    EXPECT_EQ(frames_dropped, 0u);
  }
}

// Half frame rate (30Hz playing back 60Hz video)
TEST_F(LowLatencyVideoRendererAlgorithmTest, NormalMode30Hz) {
  constexpr base::TimeDelta kRenderInterval =
      base::TimeDelta::FromMillisecondsD(1000.0 / 30.0);  // 30Hz.
  constexpr int kMaxCompositionDelayInFrames = 6;

  constexpr size_t kNumberOfFrames = 120;
  for (size_t i = 0; i < kNumberOfFrames; ++i) {
    scoped_refptr<media::VideoFrame> frame;
    size_t expected_frames_dropped = 0;
    if (i > 0) {
      // This frame will be dropped.
      CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);
      ++expected_frames_dropped;
    }

    int last_id = CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);

    size_t frames_dropped = 0;
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(&frames_dropped, kRenderInterval);
    ASSERT_TRUE(rendered_frame);
    EXPECT_EQ(rendered_frame->unique_id(), last_id);
    EXPECT_EQ(frames_dropped, expected_frames_dropped);
  }
  // Only the currently rendered frame is in the queue.
  EXPECT_EQ(frames_queued(), 1u);
}

// Fractional frame rate (90Hz playing back 60Hz video)
TEST_F(LowLatencyVideoRendererAlgorithmTest, NormalMode90Hz) {
  constexpr base::TimeDelta kRenderInterval =
      base::TimeDelta::FromMillisecondsD(1000.0 / 90.0);  // 90Hz.
  constexpr int kMaxCompositionDelayInFrames = 6;

  CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);

  constexpr size_t kNumberOfFramesToSubmit = 100;
  size_t submitted_frames = 0;
  while (submitted_frames < kNumberOfFramesToSubmit) {
    // In each while iteration: Enqueue two new frames (60Hz) and render three
    // times (90Hz).
    for (int i = 0; i < 2; ++i) {
      size_t frames_dropped = 0;
      scoped_refptr<media::VideoFrame> rendered_frame =
          RenderAndStep(&frames_dropped, kRenderInterval);
      ASSERT_TRUE(rendered_frame);
      EXPECT_EQ(frames_dropped, 0u);
      // Enqueue a new frame.
      CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);
      ++submitted_frames;
    }
    size_t frames_dropped = 0;
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(&frames_dropped, kRenderInterval);
    ASSERT_TRUE(rendered_frame);
    EXPECT_EQ(frames_dropped, 0u);
  }
}

// Double frame rate (120Hz playing back 60Hz video)
TEST_F(LowLatencyVideoRendererAlgorithmTest, NormalMode120Hz) {
  constexpr base::TimeDelta kRenderInterval =
      base::TimeDelta::FromMillisecondsD(1000.0 / 120.0);  // 120Hz.
  constexpr int kMaxCompositionDelayInFrames = 6;

  // Add one initial frame.
  int last_id = CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);

  constexpr size_t kNumberOfFrames = 120;
  for (size_t i = 0; i < kNumberOfFrames; ++i) {
    size_t frames_dropped = 0;
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(&frames_dropped, kRenderInterval);
    ASSERT_TRUE(rendered_frame);
    int rendered_frame_id = last_id;
    EXPECT_EQ(rendered_frame->unique_id(), rendered_frame_id);

    last_id = CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);

    // The same frame should be rendered.
    rendered_frame = RenderAndStep(&frames_dropped, kRenderInterval);
    ASSERT_TRUE(rendered_frame);
    EXPECT_EQ(rendered_frame->unique_id(), rendered_frame_id);
  }
  // Two frames in the queue including the last rendered frame.
  EXPECT_EQ(frames_queued(), 2u);
}

// Super high display rate (600Hz playing back 60Hz video)
TEST_F(LowLatencyVideoRendererAlgorithmTest, NormalMode600Hz) {
  constexpr base::TimeDelta kRenderInterval =
      base::TimeDelta::FromMillisecondsD(1000.0 / 600.0 + 1.0e-3);  // 600Hz.
  constexpr int kMaxCompositionDelayInFrames = 6;

  // Add one initial frame.
  int last_id = CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);

  constexpr size_t kNumberOfFrames = 120;
  for (size_t i = 0; i < kNumberOfFrames; ++i) {
    size_t frames_dropped = 0;
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(&frames_dropped, kRenderInterval);
    ASSERT_TRUE(rendered_frame);
    int rendered_frame_id = last_id;
    EXPECT_EQ(rendered_frame->unique_id(), rendered_frame_id);

    last_id = CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);

    // The same frame should be rendered 9 times.
    StepUntilJustBeforeNextFrameIsRendered(kRenderInterval, rendered_frame_id);
  }
  // Two frames in the queue including the last rendered frame.
  EXPECT_EQ(frames_queued(), 2u);
}

TEST_F(LowLatencyVideoRendererAlgorithmTest,
       DropAllFramesIfQueueExceedsMaxSize) {
  // Create an initial queue of 60 frames.
  constexpr int kMaxCompositionDelayInFrames = 6;
  constexpr size_t kInitialQueueSize = 60;
  int last_id = 0;
  for (size_t i = 0; i < kInitialQueueSize; ++i) {
    last_id = CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);
  }
  EXPECT_EQ(frames_queued(), kInitialQueueSize);

  // Last submitted frame should be rendered.
  size_t frames_dropped = 0;
  scoped_refptr<media::VideoFrame> rendered_frame =
      RenderAndStep(&frames_dropped);
  ASSERT_TRUE(rendered_frame);
  EXPECT_EQ(frames_dropped, kInitialQueueSize - 1);
  EXPECT_EQ(rendered_frame->unique_id(), last_id);

  // The following frame should be rendered as normal.
  last_id = CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);
  rendered_frame = RenderAndStep(&frames_dropped);
  ASSERT_TRUE(rendered_frame);
  EXPECT_EQ(frames_dropped, 0u);
  EXPECT_EQ(rendered_frame->unique_id(), last_id);
}

TEST_F(LowLatencyVideoRendererAlgorithmTest, EnterDrainMode60Hz) {
  // Enter drain mode when more than 6 frames are in the queue.
  constexpr int kMaxCompositionDelayInFrames = 6;
  constexpr int kNumberOfFramesSubmitted = kMaxCompositionDelayInFrames + 1;
  std::queue<int> enqueued_frame_ids;
  for (int i = 0; i < kNumberOfFramesSubmitted; ++i) {
    enqueued_frame_ids.push(
        CreateAndEnqueueFrame(kMaxCompositionDelayInFrames));
  }
  // Every other frame will be rendered until there's one frame in the queue.
  int processed_frames_count = 0;
  while (processed_frames_count < kNumberOfFramesSubmitted - 1) {
    size_t frames_dropped = 0;
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(&frames_dropped);
    ASSERT_TRUE(rendered_frame);
    EXPECT_EQ(frames_dropped, 1u);
    enqueued_frame_ids.pop();
    EXPECT_EQ(rendered_frame->unique_id(), enqueued_frame_ids.front());
    enqueued_frame_ids.pop();
    processed_frames_count += 1 + frames_dropped;
  }

  // One more frame to render.
  size_t frames_dropped = 0;
  scoped_refptr<media::VideoFrame> rendered_frame =
      RenderAndStep(&frames_dropped);
  ASSERT_TRUE(rendered_frame);
  EXPECT_EQ(frames_dropped, 0u);
  EXPECT_EQ(rendered_frame->unique_id(), enqueued_frame_ids.front());
  enqueued_frame_ids.pop();
  EXPECT_EQ(enqueued_frame_ids.size(), 0u);
}

TEST_F(LowLatencyVideoRendererAlgorithmTest, ExitDrainMode60Hz) {
  // Enter drain mode when more than 6 frames are in the queue.
  constexpr int kMaxCompositionDelayInFrames = 6;
  int number_of_frames_submitted = kMaxCompositionDelayInFrames + 1;
  std::queue<int> enqueued_frame_ids;
  for (int i = 0; i < number_of_frames_submitted; ++i) {
    enqueued_frame_ids.push(
        CreateAndEnqueueFrame(kMaxCompositionDelayInFrames));
  }

  // Every other frame will be rendered until there's one frame in the queue.
  int processed_frames_count = 0;
  while (processed_frames_count < number_of_frames_submitted - 1) {
    size_t frames_dropped = 0;
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(&frames_dropped);
    ASSERT_TRUE(rendered_frame);
    EXPECT_EQ(frames_dropped, 1u);
    enqueued_frame_ids.pop();
    EXPECT_EQ(rendered_frame->unique_id(), enqueued_frame_ids.front());
    enqueued_frame_ids.pop();
    // Enqueue a new frame.
    enqueued_frame_ids.push(
        CreateAndEnqueueFrame(kMaxCompositionDelayInFrames));
    ++number_of_frames_submitted;
    processed_frames_count += 1 + frames_dropped;
  }

  // Continue in normal mode without dropping frames.
  constexpr int kNumberOfFramesInNormalMode = 30;
  for (int i = 0; i < kNumberOfFramesInNormalMode; ++i) {
    size_t frames_dropped = 0;
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(&frames_dropped);
    ASSERT_TRUE(rendered_frame);
    EXPECT_EQ(frames_dropped, 0u);
    EXPECT_EQ(rendered_frame->unique_id(), enqueued_frame_ids.front());
    enqueued_frame_ids.pop();
    enqueued_frame_ids.push(
        CreateAndEnqueueFrame(kMaxCompositionDelayInFrames));
  }
}

// Double Rate Drain (120Hz playing back 60Hz video in DRAIN mode)
TEST_F(LowLatencyVideoRendererAlgorithmTest, EnterDrainMode120Hz) {
  constexpr base::TimeDelta kRenderInterval =
      base::TimeDelta::FromMillisecondsD(1000.0 / 120.0);  // 120Hz.
  // Enter drain mode when more than 6 frames are in the queue.
  constexpr int kMaxCompositionDelayInFrames = 6;

  // Process one frame to initialize the algorithm.
  CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);
  EXPECT_TRUE(RenderAndStep(nullptr, kRenderInterval));

  constexpr int kNumberOfFramesSubmitted = kMaxCompositionDelayInFrames + 1;
  std::queue<int> enqueued_frame_ids;
  for (int i = 0; i < kNumberOfFramesSubmitted; ++i) {
    enqueued_frame_ids.push(
        CreateAndEnqueueFrame(kMaxCompositionDelayInFrames));
  }
  // Every frame will be rendered at double rate until there's one frame in the
  // queue.
  int processed_frames_count = 0;
  while (processed_frames_count < kNumberOfFramesSubmitted - 1) {
    size_t frames_dropped = 0;
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(&frames_dropped, kRenderInterval);
    ASSERT_TRUE(rendered_frame);
    EXPECT_EQ(frames_dropped, 0u);
    EXPECT_EQ(rendered_frame->unique_id(), enqueued_frame_ids.front());
    enqueued_frame_ids.pop();
    processed_frames_count += 1 + frames_dropped;
  }

  // One more frame to render.
  size_t frames_dropped = 0;
  scoped_refptr<media::VideoFrame> rendered_frame =
      RenderAndStep(&frames_dropped, kRenderInterval);
  ASSERT_TRUE(rendered_frame);
  EXPECT_EQ(frames_dropped, 0u);
  EXPECT_EQ(rendered_frame->unique_id(), enqueued_frame_ids.front());
  enqueued_frame_ids.pop();
  EXPECT_EQ(enqueued_frame_ids.size(), 0u);
}

TEST_F(LowLatencyVideoRendererAlgorithmTest, SteadyStateQueueReduction60Hz) {
  // Create an initial queue of 5 frames.
  constexpr int kMaxCompositionDelayInFrames = 6;
  constexpr size_t kInitialQueueSize = 5;
  std::queue<int> enqueued_frame_ids;
  for (size_t i = 0; i < kInitialQueueSize; ++i) {
    enqueued_frame_ids.push(
        CreateAndEnqueueFrame(kMaxCompositionDelayInFrames));
  }
  EXPECT_EQ(frames_queued(), kInitialQueueSize);

  constexpr size_t kNumberOfFramesSubmitted = 100;
  constexpr int kMinimumNumberOfFramesBetweenDrops = 8;
  int processed_frames_since_last_frame_drop = 0;
  for (size_t i = kInitialQueueSize; i < kNumberOfFramesSubmitted; ++i) {
    // Every frame will be rendered with occasional frame drops to reduce the
    // steady state queue.
    size_t frames_dropped = 0;
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(&frames_dropped);

    ASSERT_TRUE(rendered_frame);
    if (frames_dropped > 0) {
      ASSERT_EQ(frames_dropped, 1u);
      EXPECT_GE(processed_frames_since_last_frame_drop,
                kMinimumNumberOfFramesBetweenDrops);
      enqueued_frame_ids.pop();
      processed_frames_since_last_frame_drop = 0;
    } else {
      ++processed_frames_since_last_frame_drop;
    }

    EXPECT_EQ(rendered_frame->unique_id(), enqueued_frame_ids.front());
    enqueued_frame_ids.pop();
    enqueued_frame_ids.push(
        CreateAndEnqueueFrame(kMaxCompositionDelayInFrames));
  }

  // Steady state queue should now have been reduced to one frame + the current
  // frame that is also counted.
  EXPECT_EQ(frames_queued(), 2u);
}

// Fractional rate, steady state queue reduction.
TEST_F(LowLatencyVideoRendererAlgorithmTest, SteadyStateReduction90Hz) {
  constexpr base::TimeDelta kRenderInterval =
      base::TimeDelta::FromMillisecondsD(1000.0 / 90.0);  // 90Hz.

  // Create an initial queue of 5 frames.
  constexpr int kMaxCompositionDelayInFrames = 6;
  constexpr size_t kInitialQueueSize = 5;
  for (size_t i = 0; i < kInitialQueueSize; ++i) {
    CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);
  }
  EXPECT_EQ(frames_queued(), kInitialQueueSize);

  constexpr size_t kNumberOfFramesToSubmit = 100;
  constexpr int kMinimumNumberOfFramesBetweenDrops = 8;
  int processed_frames_since_last_frame_drop = 0;
  size_t submitted_frames = kInitialQueueSize;
  while (submitted_frames < kNumberOfFramesToSubmit) {
    // Every frame will be rendered with occasional frame drops to reduce the
    // steady state queue.

    // In each while iteration: Enqueue two new frames (60Hz) and render three
    // times (90Hz).
    for (int i = 0; i < 2; ++i) {
      size_t frames_dropped = 0;
      scoped_refptr<media::VideoFrame> rendered_frame =
          RenderAndStep(&frames_dropped, kRenderInterval);
      ASSERT_TRUE(rendered_frame);
      if (frames_dropped > 0) {
        ASSERT_EQ(frames_dropped, 1u);
        EXPECT_GE(processed_frames_since_last_frame_drop,
                  kMinimumNumberOfFramesBetweenDrops);
        processed_frames_since_last_frame_drop = 0;
      } else {
        ++processed_frames_since_last_frame_drop;
      }
      CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);
      ++submitted_frames;
    }
    size_t frames_dropped = 0;
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(&frames_dropped, kRenderInterval);
    ASSERT_TRUE(rendered_frame);
    if (frames_dropped > 0) {
      ASSERT_EQ(frames_dropped, 1u);
      EXPECT_GE(processed_frames_since_last_frame_drop,
                kMinimumNumberOfFramesBetweenDrops);
      processed_frames_since_last_frame_drop = 0;
    } else {
      ++processed_frames_since_last_frame_drop;
    }
  }

  // Steady state queue should now have been reduced to one frame + the current
  // frame that is also counted.
  EXPECT_EQ(frames_queued(), 2u);
}

TEST_F(LowLatencyVideoRendererAlgorithmTest,
       RenderFrameImmediatelyAfterOutage) {
  constexpr base::TimeDelta kRenderInterval =
      base::TimeDelta::FromMillisecondsD(1000.0 / 600.0 + 1.0e-3);  // 600Hz.
  constexpr int kMaxCompositionDelayInFrames = 6;

  for (int outage_length = 0; outage_length < 100; ++outage_length) {
    algorithm_.Reset();

    // Process one frame to get the algorithm initialized.
    CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);
    scoped_refptr<media::VideoFrame> rendered_frame =
        RenderAndStep(nullptr, kRenderInterval);
    ASSERT_TRUE(rendered_frame);
    int frame_id_0 = rendered_frame->unique_id();
    StepUntilJustBeforeNextFrameIsRendered(kRenderInterval,
                                           rendered_frame->unique_id());

    for (int i = 0; i < outage_length; ++i) {
      // Try to render, but no new frame has been enqueued so the last frame
      // will be rendered again.
      rendered_frame = RenderAndStep(nullptr, kRenderInterval);
      ASSERT_TRUE(rendered_frame);
      EXPECT_EQ(rendered_frame->unique_id(), frame_id_0);
    }

    // Enqueue two frames.
    int frame_id_1 = CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);
    int frame_id_2 = CreateAndEnqueueFrame(kMaxCompositionDelayInFrames);

    // The first submitted frame should be rendered.
    rendered_frame = RenderAndStep(nullptr, kRenderInterval);
    ASSERT_TRUE(rendered_frame);
    EXPECT_EQ(rendered_frame->unique_id(), frame_id_1);
    // The same frame is rendered for 9 more render intervals.
    StepUntilJustBeforeNextFrameIsRendered(kRenderInterval, frame_id_1);

    // The next frame is rendered.
    rendered_frame = RenderAndStep(nullptr, kRenderInterval);
    ASSERT_TRUE(rendered_frame);
    EXPECT_EQ(rendered_frame->unique_id(), frame_id_2);
  }
}

}  // namespace blink