summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/core/layout/grid.cc
blob: 29bda92142c011778a6ac20afb9cc6d648b54748 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/core/layout/grid.h"

#include <algorithm>
#include <memory>
#include <utility>

#include "third_party/blink/renderer/core/layout/layout_grid.h"

namespace blink {

Grid::Grid(const LayoutGrid* grid) : order_iterator_(grid) {}

size_t Grid::NumTracks(GridTrackSizingDirection direction) const {
  if (direction == kForRows)
    return grid_.size();
  return grid_.size() ? grid_[0].size() : 0;
}

void Grid::EnsureGridSize(size_t maximum_row_size, size_t maximum_column_size) {
  const size_t old_row_size = NumTracks(kForRows);
  if (maximum_row_size > old_row_size) {
    grid_.Grow(maximum_row_size);
    for (size_t row = old_row_size; row < NumTracks(kForRows); ++row)
      grid_[row].Grow(NumTracks(kForColumns));
  }

  if (maximum_column_size > NumTracks(kForColumns)) {
    for (size_t row = 0; row < NumTracks(kForRows); ++row)
      grid_[row].Grow(maximum_column_size);
  }
}

void Grid::insert(LayoutBox& child, const GridArea& area) {
  DCHECK(area.rows.IsTranslatedDefinite());
  DCHECK(area.columns.IsTranslatedDefinite());
  EnsureGridSize(area.rows.EndLine(), area.columns.EndLine());

  for (const auto& row : area.rows) {
    for (const auto& column : area.columns)
      grid_[row][column].push_back(&child);
  }

  SetGridItemArea(child, area);
}

void Grid::SetSmallestTracksStart(int row_start, int column_start) {
  smallest_row_start_ = row_start;
  smallest_column_start_ = column_start;
}

int Grid::SmallestTrackStart(GridTrackSizingDirection direction) const {
  return direction == kForRows ? smallest_row_start_ : smallest_column_start_;
}

GridArea Grid::GridItemArea(const LayoutBox& item) const {
  DCHECK(grid_item_area_.Contains(&item));
  return grid_item_area_.at(&item);
}

void Grid::SetGridItemArea(const LayoutBox& item, GridArea area) {
  grid_item_area_.Set(&item, area);
}

size_t Grid::GridItemPaintOrder(const LayoutBox& item) const {
  return grid_items_indexes_map_.at(&item);
}

void Grid::SetGridItemPaintOrder(const LayoutBox& item, size_t order) {
  grid_items_indexes_map_.Set(&item, order);
}

const GridCell& Grid::Cell(size_t row, size_t column) const {
  return grid_[row][column];
}

#if DCHECK_IS_ON()
bool Grid::HasAnyGridItemPaintOrder() const {
  return !grid_items_indexes_map_.IsEmpty();
}
#endif

void Grid::SetAutoRepeatTracks(size_t auto_repeat_rows,
                               size_t auto_repeat_columns) {
  DCHECK_GE(static_cast<unsigned>(kGridMaxTracks),
            NumTracks(kForRows) + auto_repeat_rows);
  DCHECK_GE(static_cast<unsigned>(kGridMaxTracks),
            NumTracks(kForColumns) + auto_repeat_columns);
  auto_repeat_rows_ = auto_repeat_rows;
  auto_repeat_columns_ = auto_repeat_columns;
}

size_t Grid::AutoRepeatTracks(GridTrackSizingDirection direction) const {
  return direction == kForRows ? auto_repeat_rows_ : auto_repeat_columns_;
}

void Grid::SetAutoRepeatEmptyColumns(
    std::unique_ptr<OrderedTrackIndexSet> auto_repeat_empty_columns) {
  auto_repeat_empty_columns_ = std::move(auto_repeat_empty_columns);
}

void Grid::SetAutoRepeatEmptyRows(
    std::unique_ptr<OrderedTrackIndexSet> auto_repeat_empty_rows) {
  auto_repeat_empty_rows_ = std::move(auto_repeat_empty_rows);
}

bool Grid::HasAutoRepeatEmptyTracks(GridTrackSizingDirection direction) const {
  return direction == kForColumns ? !!auto_repeat_empty_columns_
                                  : !!auto_repeat_empty_rows_;
}

bool Grid::IsEmptyAutoRepeatTrack(GridTrackSizingDirection direction,
                                  size_t line) const {
  DCHECK(HasAutoRepeatEmptyTracks(direction));
  return AutoRepeatEmptyTracks(direction)->Contains(line);
}

OrderedTrackIndexSet* Grid::AutoRepeatEmptyTracks(
    GridTrackSizingDirection direction) const {
  DCHECK(HasAutoRepeatEmptyTracks(direction));
  return direction == kForColumns ? auto_repeat_empty_columns_.get()
                                  : auto_repeat_empty_rows_.get();
}

GridSpan Grid::GridItemSpan(const LayoutBox& grid_item,
                            GridTrackSizingDirection direction) const {
  GridArea area = GridItemArea(grid_item);
  return direction == kForColumns ? area.columns : area.rows;
}

void Grid::SetHasAnyOrthogonalGridItem(bool has_any_orthogonal_grid_item) {
  has_any_orthogonal_grid_item_ = has_any_orthogonal_grid_item;
}

void Grid::SetNeedsItemsPlacement(bool needs_items_placement) {
  needs_items_placement_ = needs_items_placement;

  if (!needs_items_placement) {
    grid_.ShrinkToFit();
    return;
  }

  grid_.resize(0);
  grid_item_area_.clear();
  grid_items_indexes_map_.clear();
  has_any_orthogonal_grid_item_ = false;
  smallest_row_start_ = 0;
  smallest_column_start_ = 0;
  auto_repeat_columns_ = 0;
  auto_repeat_rows_ = 0;
  auto_repeat_empty_columns_ = nullptr;
  auto_repeat_empty_rows_ = nullptr;
}

GridIterator::GridIterator(const Grid& grid,
                           GridTrackSizingDirection direction,
                           size_t fixed_track_index,
                           size_t varying_track_index)
    : grid_(grid.grid_),
      direction_(direction),
      row_index_((direction == kForColumns) ? varying_track_index
                                            : fixed_track_index),
      column_index_((direction == kForColumns) ? fixed_track_index
                                               : varying_track_index),
      child_index_(0) {
  DCHECK(!grid_.IsEmpty());
  DCHECK(!grid_[0].IsEmpty());
  DCHECK_LT(row_index_, grid_.size());
  DCHECK_LT(column_index_, grid_[0].size());
}

LayoutBox* GridIterator::NextGridItem() {
  DCHECK(!grid_.IsEmpty());
  DCHECK(!grid_[0].IsEmpty());

  size_t& varying_track_index =
      (direction_ == kForColumns) ? row_index_ : column_index_;
  const size_t end_of_varying_track_index =
      (direction_ == kForColumns) ? grid_.size() : grid_[0].size();
  for (; varying_track_index < end_of_varying_track_index;
       ++varying_track_index) {
    const GridCell& children = grid_[row_index_][column_index_];
    if (child_index_ < children.size())
      return children[child_index_++];

    child_index_ = 0;
  }
  return nullptr;
}

bool GridIterator::CheckEmptyCells(size_t row_span, size_t column_span) const {
  DCHECK(!grid_.IsEmpty());
  DCHECK(!grid_[0].IsEmpty());

  // Ignore cells outside current grid as we will grow it later if needed.
  size_t max_rows = std::min(row_index_ + row_span, grid_.size());
  size_t max_columns = std::min(column_index_ + column_span, grid_[0].size());

  // This adds a O(N^2) behavior that shouldn't be a big deal as we expect
  // spanning areas to be small.
  for (size_t row = row_index_; row < max_rows; ++row) {
    for (size_t column = column_index_; column < max_columns; ++column) {
      const GridCell& children = grid_[row][column];
      if (!children.IsEmpty())
        return false;
    }
  }

  return true;
}

std::unique_ptr<GridArea> GridIterator::NextEmptyGridArea(
    size_t fixed_track_span,
    size_t varying_track_span) {
  DCHECK(!grid_.IsEmpty());
  DCHECK(!grid_[0].IsEmpty());
  DCHECK_GE(fixed_track_span, 1u);
  DCHECK_GE(varying_track_span, 1u);

  size_t row_span =
      (direction_ == kForColumns) ? varying_track_span : fixed_track_span;
  size_t column_span =
      (direction_ == kForColumns) ? fixed_track_span : varying_track_span;

  size_t& varying_track_index =
      (direction_ == kForColumns) ? row_index_ : column_index_;
  const size_t end_of_varying_track_index =
      (direction_ == kForColumns) ? grid_.size() : grid_[0].size();
  for (; varying_track_index < end_of_varying_track_index;
       ++varying_track_index) {
    if (CheckEmptyCells(row_span, column_span)) {
      std::unique_ptr<GridArea> result = std::make_unique<GridArea>(
          GridSpan::TranslatedDefiniteGridSpan(row_index_,
                                               row_index_ + row_span),
          GridSpan::TranslatedDefiniteGridSpan(column_index_,
                                               column_index_ + column_span));
      // Advance the iterator to avoid an infinite loop where we would return
      // the same grid area over and over.
      ++varying_track_index;
      return result;
    }
  }
  return nullptr;
}

}  // namespace blink