summaryrefslogtreecommitdiff
path: root/chromium/sql/recover_module/record.cc
blob: 6c2be3fe91d1fe69cd8ad11858bad771dd84f6bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "sql/recover_module/record.h"

#include <cstddef>
#include <limits>
#include <type_traits>

#include "base/check_op.h"
#include "base/notreached.h"
#include "sql/recover_module/integers.h"
#include "sql/recover_module/payload.h"
#include "third_party/sqlite/sqlite3.h"

namespace sql {
namespace recover {

RecordReader::RecordReader(LeafPayloadReader* payload_reader, int column_count)
    : payload_reader_(payload_reader), column_count_(column_count) {
  DCHECK(payload_reader != nullptr);
  DCHECK_GT(column_count, 0);
  value_headers_.reserve(column_count);
}

RecordReader::~RecordReader() = default;

namespace {

// Value type indicating a null.
constexpr int kNullType = 0;
// Value type indicating a 1-byte signed integer.
constexpr int kInt1Type = 1;
// Value type indicating a 2-byte signed big-endian integer.
constexpr int kInt2Type = 2;
// Value type indicating a 3-byte signed big-endian integer.
constexpr int kInt3Type = 3;
// Value type indicating a 4-byte signed big-endian integer.
constexpr int kInt4Type = 4;
// Value type indicating a 6-byte signed big-endian integer.
constexpr int kInt6Type = 5;
// Value type indicating an 8-byte signed big-endian integer.
constexpr int kInt8Type = 6;
// Value type indicating a big-endian IEEE 754 64-bit floating point number.
constexpr int kDoubleType = 7;
// Value type indicating the integer 0 (zero).
constexpr int kIntZeroType = 8;
// Value type indicating the integer 1 (one).
constexpr int kIntOneType = 9;
// Value types greater than or equal to this indicate blobs or text.
constexpr int kMinBlobOrStringType = 12;

// The return value of ParseHeaderType below.
struct ParsedHeaderType {
  // True for the special value used to communicate a parsing error.
  bool IsInvalid() const {
    return type == ValueType::kNull && has_inline_value;
  }

  const ValueType type;
  const int64_t size;
  const int8_t inline_value;
  const bool has_inline_value;
};

// Decodes a type identifier in a SQLite record header.
//
// The type identifier includes the type and the size.
//
// Returns {kNull, 1} when parsing fails. Null values never require any extra
// bytes, so this special return value will never occur during normal
// processing.
ParsedHeaderType ParseHeaderType(int64_t encoded_type) {
  static constexpr int8_t kNoInlineValue = 0;

  if (encoded_type == kNullType)
    return {ValueType::kNull, 0, kNoInlineValue, false};
  if (encoded_type == kInt1Type)
    return {ValueType::kInteger, 1, kNoInlineValue, false};
  if (encoded_type == kInt2Type)
    return {ValueType::kInteger, 2, kNoInlineValue, false};
  if (encoded_type == kInt3Type)
    return {ValueType::kInteger, 3, kNoInlineValue, false};
  if (encoded_type == kInt4Type)
    return {ValueType::kInteger, 4, kNoInlineValue, false};
  if (encoded_type == kInt6Type)
    return {ValueType::kInteger, 6, kNoInlineValue, false};
  if (encoded_type == kInt8Type)
    return {ValueType::kInteger, 8, kNoInlineValue, false};
  if (encoded_type == kDoubleType)
    return {ValueType::kFloat, 8, kNoInlineValue, false};
  if (encoded_type == kIntZeroType)
    return {ValueType::kInteger, 0, 0, true};
  if (encoded_type == kIntOneType)
    return {ValueType::kInteger, 0, 1, true};

  if (encoded_type < kMinBlobOrStringType) {
    // Types between |kIntOneType| and |kMinBlobOrStringType| are reserved for
    // SQLite internal usage, and should not appear in persistent databases.
    // This shows database corruption.
    return {ValueType::kNull, 0, kNoInlineValue, true};
  }

  // Blobs and texts take alternating numbers starting at 12.
  encoded_type -= kMinBlobOrStringType;
  const ValueType value_type =
      (encoded_type & 1) == 0 ? ValueType::kBlob : ValueType::kText;
  const int64_t value_size = encoded_type >> 1;
  return {value_type, value_size, kNoInlineValue, false};
}

}  // namespace

bool RecordReader::Initialize() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);

  // The size of |value_headers_| is used in DCHECKs to track whether
  // Initialize() succeeded.
  value_headers_.clear();

  int64_t next_value_offset = InitializeHeaderBuffer();
  if (next_value_offset == 0)
    return false;

  const uint8_t* header_pointer = header_buffer_.data();
  const uint8_t* header_end = header_buffer_.data() + header_buffer_.size();

  for (int i = 0; i < column_count_; ++i) {
    int64_t encoded_type;
    if (header_pointer == header_end) {
      // SQLite versions built with SQLITE_ENABLE_NULL_TRIM don't store trailing
      // null type IDs in the header.
      encoded_type = kNullType;
    } else {
      std::tie(encoded_type, header_pointer) =
          ParseVarint(header_pointer, header_end);
    }

    ParsedHeaderType parsed_type = ParseHeaderType(encoded_type);
    if (parsed_type.IsInvalid()) {
      // Parsing failed. The record is corrupted.
      return false;
    }
    value_headers_.emplace_back(next_value_offset, parsed_type.size,
                                parsed_type.type, parsed_type.inline_value,
                                parsed_type.has_inline_value);

    next_value_offset += parsed_type.size;
  }

  DCHECK_EQ(value_headers_.size(), static_cast<size_t>(column_count_));
  return true;
}

ValueType RecordReader::GetValueType(int column_index) const {
  DCHECK(IsInitialized());
  DCHECK_GE(column_index, 0);
  DCHECK_LT(static_cast<size_t>(column_index), value_headers_.size());

  return value_headers_[column_index].type;
}

namespace {

// Deallocates buffers passed to sqlite3_result_{blob,text}64().
void ValueBytesDeleter(void* buffer) {
  DCHECK(buffer != nullptr);
  uint8_t* value_bytes = reinterpret_cast<uint8_t*>(buffer);
  delete[] value_bytes;
}

}  // namespace

bool RecordReader::ReadValue(int column_index,
                             sqlite3_context* receiver) const {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  DCHECK(IsInitialized());
  DCHECK_GE(column_index, 0);
  DCHECK_LT(static_cast<size_t>(column_index), value_headers_.size());
  DCHECK(receiver != nullptr);

  const ValueHeader& header = value_headers_[column_index];

  const int64_t offset = header.offset;
  const int64_t size = header.size;

  if (header.type == ValueType::kNull) {
    DCHECK_EQ(size, 0);
    DCHECK(!header.has_inline_value);

    sqlite3_result_null(receiver);
    return true;
  }

  if (header.type == ValueType::kInteger) {
    if (header.has_inline_value) {
      sqlite3_result_int(receiver, header.inline_value);
      return true;
    }

    uint8_t value_bytes[8];
    DCHECK_GT(size, 0);
    DCHECK_LE(size, static_cast<int64_t>(sizeof(value_bytes)));
    // SQLite integers are big-endian, so the least significant bytes are at the
    // end of the integer's buffer.
    uint8_t* const first_read_byte = value_bytes + 8 - size;
    if (!payload_reader_->ReadPayload(offset, size, first_read_byte))
      return false;

    // Sign-extend the number.
    const uint8_t sign_byte = (*first_read_byte & 0x80) ? 0xff : 0;
    for (uint8_t* sign_extended_byte = &value_bytes[0];
         sign_extended_byte < first_read_byte; ++sign_extended_byte) {
      *sign_extended_byte = sign_byte;
    }

    const int64_t value = LoadBigEndianInt64(value_bytes);
    sqlite3_result_int64(receiver, value);
    return true;
  }

  if (header.type == ValueType::kFloat) {
    DCHECK_EQ(header.size, static_cast<int64_t>(sizeof(double)));
    DCHECK(!header.has_inline_value);

    union {
      double fp;
      int64_t integer;
      uint8_t bytes[8];
    } value;
    static_assert(sizeof(double) == 8,
                  "double is not the correct type to represent SQLite floats");
    if (!payload_reader_->ReadPayload(header.offset, sizeof(double),
                                      reinterpret_cast<uint8_t*>(&value))) {
      return false;
    }
    // SQLite's doubles are big-endian.
    value.integer = LoadBigEndianInt64(value.bytes);
    sqlite3_result_double(receiver, value.fp);
    return true;
  }

  if (header.type == ValueType::kBlob || header.type == ValueType::kText) {
    DCHECK_GE(header.size, 0);
    DCHECK(!header.has_inline_value);

    uint8_t* const value_bytes = new uint8_t[size];
    if (!payload_reader_->ReadPayload(offset, size, value_bytes)) {
      delete[] value_bytes;
      return false;
    }
    if (header.type == ValueType::kBlob) {
      sqlite3_result_blob64(receiver, value_bytes, static_cast<uint64_t>(size),
                            &ValueBytesDeleter);
    } else {
      DCHECK_EQ(header.type, ValueType::kText);

      const unsigned char encoding = SQLITE_UTF8;
      sqlite3_result_text64(receiver, reinterpret_cast<char*>(value_bytes),
                            static_cast<uint64_t>(size), &ValueBytesDeleter,
                            encoding);
    }
    return true;
  }

  NOTREACHED() << "Invalid value type";
  return false;
}

void RecordReader::Reset() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  value_headers_.clear();
}

int64_t RecordReader::InitializeHeaderBuffer() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);

  const uint8_t* const inline_payload_start =
      payload_reader_->ReadInlinePayload();
  if (inline_payload_start == nullptr) {
    // Read failure.
    return 0;
  }

  const int64_t inline_payload_size = payload_reader_->inline_payload_size();
  const uint8_t* const inline_payload_end =
      inline_payload_start + inline_payload_size;
  int64_t header_size;
  const uint8_t* payload_header_start;
  std::tie(header_size, payload_header_start) =
      ParseVarint(inline_payload_start, inline_payload_end);

  if (header_size < 0 || header_size > payload_reader_->payload_size()) {
    // The header is bigger than the entire record. This record is corrupted.
    return 0;
  }

  int header_size_size = payload_header_start - inline_payload_start;
  static_assert(std::numeric_limits<int>::max() > kMaxVarintSize,
                "The |header_size_size| computation above may overflow");

  // The header size varint is included in the header size computation.
  const int64_t header_data_size = header_size - header_size_size;
  header_buffer_.resize(header_data_size);
  if (!payload_reader_->ReadPayload(header_size_size, header_data_size,
                                    header_buffer_.data())) {
    // Read failure.
    return 0;
  }

  return header_size;
}

}  // namespace recover
}  // namespace sql