summaryrefslogtreecommitdiff
path: root/chromium/net/tools/stress_cache/stress_cache.cc
blob: 4561e5e0b031ea4c8940ead71a967b839648d99a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This is a simple application that stress-tests the crash recovery of the disk
// cache. The main application starts a copy of itself on a loop, checking the
// exit code of the child process. When the child dies in an unexpected way,
// the main application quits.

// The child application has two threads: one to exercise the cache in an
// infinite loop, and another one to asynchronously kill the process.

// A regular build should never crash.
// To test that the disk cache doesn't generate critical errors with regular
// application level crashes, edit stress_support.h.

#include <string>
#include <vector>

#include "base/at_exit.h"
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/command_line.h"
#include "base/debug/debugger.h"
#include "base/files/file_path.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/message_loop/message_pump_type.h"
#include "base/path_service.h"
#include "base/process/launch.h"
#include "base/process/process.h"
#include "base/run_loop.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/task/single_thread_task_executor.h"
#include "base/task/single_thread_task_runner.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/base/test_completion_callback.h"
#include "net/disk_cache/blockfile/backend_impl.h"
#include "net/disk_cache/blockfile/stress_support.h"
#include "net/disk_cache/disk_cache.h"
#include "net/disk_cache/disk_cache_test_util.h"

#if BUILDFLAG(IS_WIN)
#include "base/logging_win.h"
#endif

using base::Time;

const int kError = -1;
const int kExpectedCrash = 100;

// Starts a new process.
int RunSlave(int iteration) {
  base::FilePath exe;
  base::PathService::Get(base::FILE_EXE, &exe);

  base::CommandLine cmdline(exe);
  cmdline.AppendArg(base::NumberToString(iteration));

  base::Process process = base::LaunchProcess(cmdline, base::LaunchOptions());
  if (!process.IsValid()) {
    printf("Unable to run test\n");
    return kError;
  }

  int exit_code;
  if (!process.WaitForExit(&exit_code)) {
    printf("Unable to get return code\n");
    return kError;
  }
  return exit_code;
}

// Main loop for the master process.
int MasterCode() {
  for (int i = 0; i < 100000; i++) {
    int ret = RunSlave(i);
    if (kExpectedCrash != ret)
      return ret;
  }

  printf("More than enough...\n");

  return 0;
}

// -----------------------------------------------------------------------

std::string GenerateStressKey() {
  char key[20 * 1024];
  size_t size = 50 + rand() % 20000;
  CacheTestFillBuffer(key, size, true);

  key[size - 1] = '\0';
  return std::string(key);
}

// kNumKeys is meant to be enough to have about 3x or 4x iterations before
// the process crashes.
#ifdef NDEBUG
const int kNumKeys = 4000;
#else
const int kNumKeys = 1200;
#endif
const int kNumEntries = 30;
const int kBufferSize = 2000;
const int kReadSize = 20;

// Things that an entry can be doing.
enum Operation { NONE, OPEN, CREATE, READ, WRITE, DOOM };

// This class encapsulates a cache entry and the operations performed on that
// entry. An entry is opened or created as needed, the current content is then
// verified and then something is written to the entry. At that point, the
// |state_| becomes NONE again, waiting for another write, unless the entry is
// closed or deleted.
class EntryWrapper {
 public:
  EntryWrapper() {
    buffer_ = base::MakeRefCounted<net::IOBuffer>(kBufferSize);
    memset(buffer_->data(), 'k', kBufferSize);
  }

  Operation state() const { return state_; }

  void DoOpen(int key);

 private:
  void OnOpenDone(int key, disk_cache::EntryResult result);
  void DoRead();
  void OnReadDone(int result);
  void DoWrite();
  void OnWriteDone(int size, int result);
  void DoDelete(const std::string& key);
  void OnDeleteDone(int result);
  void DoIdle();

  disk_cache::Entry* entry_ = nullptr;
  Operation state_ = NONE;
  scoped_refptr<net::IOBuffer> buffer_;
};

// The data that the main thread is working on.
struct Data {
  Data() = default;

  int pendig_operations = 0;  // Counter of simultaneous operations.
  int writes = 0;             // How many writes since this iteration started.
  int iteration = 0;          // The iteration (number of crashes).
  disk_cache::BackendImpl* cache = nullptr;
  std::string keys[kNumKeys];
  EntryWrapper entries[kNumEntries];
};

Data* g_data = nullptr;

void EntryWrapper::DoOpen(int key) {
  DCHECK_EQ(state_, NONE);
  if (entry_)
    return DoRead();

  state_ = OPEN;
  disk_cache::EntryResult result = g_data->cache->OpenEntry(
      g_data->keys[key], net::HIGHEST,
      base::BindOnce(&EntryWrapper::OnOpenDone, base::Unretained(this), key));
  if (result.net_error() != net::ERR_IO_PENDING)
    OnOpenDone(key, std::move(result));
}

void EntryWrapper::OnOpenDone(int key, disk_cache::EntryResult result) {
  if (result.net_error() == net::OK) {
    entry_ = result.ReleaseEntry();
    return DoRead();
  }

  CHECK_EQ(state_, OPEN);
  state_ = CREATE;
  result = g_data->cache->CreateEntry(
      g_data->keys[key], net::HIGHEST,
      base::BindOnce(&EntryWrapper::OnOpenDone, base::Unretained(this), key));
  if (result.net_error() != net::ERR_IO_PENDING)
    OnOpenDone(key, std::move(result));
}

void EntryWrapper::DoRead() {
  int current_size = entry_->GetDataSize(0);
  if (!current_size)
    return DoWrite();

  state_ = READ;
  memset(buffer_->data(), 'k', kReadSize);
  int rv = entry_->ReadData(
      0, 0, buffer_.get(), kReadSize,
      base::BindOnce(&EntryWrapper::OnReadDone, base::Unretained(this)));
  if (rv != net::ERR_IO_PENDING)
    OnReadDone(rv);
}

void EntryWrapper::OnReadDone(int result) {
  DCHECK_EQ(state_, READ);
  CHECK_EQ(result, kReadSize);
  CHECK_EQ(0, memcmp(buffer_->data(), "Write: ", 7));
  DoWrite();
}

void EntryWrapper::DoWrite() {
  bool truncate = (rand() % 2 == 0);
  int size = kBufferSize - (rand() % 20) * kBufferSize / 20;
  state_ = WRITE;
  base::snprintf(buffer_->data(), kBufferSize,
                 "Write: %d iter: %d, size: %d, truncate: %d     ",
                 g_data->writes, g_data->iteration, size, truncate ? 1 : 0);
  int rv = entry_->WriteData(
      0, 0, buffer_.get(), size,
      base::BindOnce(&EntryWrapper::OnWriteDone, base::Unretained(this), size),
      truncate);
  if (rv != net::ERR_IO_PENDING)
    OnWriteDone(size, rv);
}

void EntryWrapper::OnWriteDone(int size, int result) {
  DCHECK_EQ(state_, WRITE);
  CHECK_EQ(size, result);
  if (!(g_data->writes++ % 100))
    printf("Entries: %d    \r", g_data->writes);

  int random = rand() % 100;
  std::string key = entry_->GetKey();
  if (random > 90)
    return DoDelete(key);  // 10% delete then close.

  if (random > 60) {  // 20% close.
    entry_->Close();
    entry_ = nullptr;
  }

  if (random > 80)
    return DoDelete(key);  // 10% close then delete.

  DoIdle();  // 60% do another write later.
}

void EntryWrapper::DoDelete(const std::string& key) {
  state_ = DOOM;
  int rv = g_data->cache->DoomEntry(
      key, net::HIGHEST,
      base::BindOnce(&EntryWrapper::OnDeleteDone, base::Unretained(this)));
  if (rv != net::ERR_IO_PENDING)
    OnDeleteDone(rv);
}

void EntryWrapper::OnDeleteDone(int result) {
  DCHECK_EQ(state_, DOOM);
  if (entry_) {
    entry_->Close();
    entry_ = nullptr;
  }
  DoIdle();
}

void LoopTask();

void EntryWrapper::DoIdle() {
  state_ = NONE;
  g_data->pendig_operations--;
  DCHECK(g_data->pendig_operations);
  base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                                base::BindOnce(&LoopTask));
}

// The task that keeps the main thread busy. Whenever an entry becomes idle this
// task is executed again.
void LoopTask() {
  if (g_data->pendig_operations >= kNumEntries)
    return;

  int slot = rand() % kNumEntries;
  if (g_data->entries[slot].state() == NONE) {
    // Each slot will have some keys assigned to it so that the same entry will
    // not be open by two slots, which means that the state is well known at
    // all times.
    int keys_per_entry = kNumKeys / kNumEntries;
    int key = rand() % keys_per_entry + keys_per_entry * slot;
    g_data->pendig_operations++;
    g_data->entries[slot].DoOpen(key);
  }

  base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                                base::BindOnce(&LoopTask));
}

// This thread will loop forever, adding and removing entries from the cache.
// iteration is the current crash cycle, so the entries on the cache are marked
// to know which instance of the application wrote them.
void StressTheCache(int iteration) {
  int cache_size = 0x2000000;  // 32MB.
  uint32_t mask = 0xfff;       // 4096 entries.

  base::FilePath path;
  base::PathService::Get(base::DIR_TEMP, &path);
  path = path.AppendASCII("cache_test_stress");

  base::Thread cache_thread("CacheThread");
  if (!cache_thread.StartWithOptions(
          base::Thread::Options(base::MessagePumpType::IO, 0)))
    return;

  g_data = new Data();
  g_data->iteration = iteration;
  g_data->cache = new disk_cache::BackendImpl(
      path, mask, cache_thread.task_runner().get(), net::DISK_CACHE, nullptr);
  g_data->cache->SetMaxSize(cache_size);
  g_data->cache->SetFlags(disk_cache::kNoLoadProtection);

  net::TestCompletionCallback cb;
  g_data->cache->Init(cb.callback());

  if (cb.WaitForResult() != net::OK) {
    printf("Unable to initialize cache.\n");
    return;
  }
  printf("Iteration %d, initial entries: %d\n", iteration,
         g_data->cache->GetEntryCount());

  int seed = static_cast<int>(Time::Now().ToInternalValue());
  srand(seed);

  for (auto& key : g_data->keys)
    key = GenerateStressKey();

  base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                                base::BindOnce(&LoopTask));
  base::RunLoop().Run();
}

// We want to prevent the timer thread from killing the process while we are
// waiting for the debugger to attach.
bool g_crashing = false;

// RunSoon() and CrashCallback() reference each other, unfortunately.
void RunSoon(scoped_refptr<base::SingleThreadTaskRunner> task_runner);

void CrashCallback() {
  // Keep trying to run.
  RunSoon(base::ThreadTaskRunnerHandle::Get());

  if (g_crashing)
    return;

  if (rand() % 100 > 30) {
    printf("sweet death...\n");

    // Terminate the current process without doing normal process-exit cleanup.
    base::Process::TerminateCurrentProcessImmediately(kExpectedCrash);
  }
}

void RunSoon(scoped_refptr<base::SingleThreadTaskRunner> task_runner) {
  const base::TimeDelta kTaskDelay = base::Seconds(10);
  task_runner->PostDelayedTask(FROM_HERE, base::BindOnce(&CrashCallback),
                               kTaskDelay);
}

// We leak everything here :)
bool StartCrashThread() {
  base::Thread* thread = new base::Thread("party_crasher");
  if (!thread->Start())
    return false;

  RunSoon(thread->task_runner());
  return true;
}

void CrashHandler(const char* file,
                  int line,
                  const base::StringPiece str,
                  const base::StringPiece stack_trace) {
  g_crashing = true;
  base::debug::BreakDebugger();
}

// -----------------------------------------------------------------------

#if BUILDFLAG(IS_WIN)
// {B9A153D4-31C3-48e4-9ABF-D54383F14A0D}
const GUID kStressCacheTraceProviderName = {
    0xb9a153d4, 0x31c3, 0x48e4,
        { 0x9a, 0xbf, 0xd5, 0x43, 0x83, 0xf1, 0x4a, 0xd } };
#endif

int main(int argc, const char* argv[]) {
  // Setup an AtExitManager so Singleton objects will be destructed.
  base::AtExitManager at_exit_manager;

  if (argc < 2)
    return MasterCode();

  logging::ScopedLogAssertHandler scoped_assert_handler(
      base::BindRepeating(CrashHandler));

#if BUILDFLAG(IS_WIN)
  logging::LogEventProvider::Initialize(kStressCacheTraceProviderName);
#else
  base::CommandLine::Init(argc, argv);
  logging::LoggingSettings settings;
  settings.logging_dest =
      logging::LOG_TO_SYSTEM_DEBUG_LOG | logging::LOG_TO_STDERR;
  logging::InitLogging(settings);
#endif

  // Some time for the memory manager to flush stuff.
  base::PlatformThread::Sleep(base::Seconds(3));
  base::SingleThreadTaskExecutor io_task_executor(base::MessagePumpType::IO);

  char* end;
  long int iteration = strtol(argv[1], &end, 0);

  if (!StartCrashThread()) {
    printf("failed to start thread\n");
    return kError;
  }

  StressTheCache(iteration);
  return 0;
}