summaryrefslogtreecommitdiff
path: root/chromium/net/third_party/quiche/src/quiche/quic/core/quic_stream_send_buffer.cc
blob: c7eb1886f88a35a45aab6841ddaa11601e4533d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// Copyright (c) 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "quiche/quic/core/quic_stream_send_buffer.h"

#include <algorithm>

#include "quiche/quic/core/quic_data_writer.h"
#include "quiche/quic/core/quic_interval.h"
#include "quiche/quic/core/quic_utils.h"
#include "quiche/quic/platform/api/quic_bug_tracker.h"
#include "quiche/quic/platform/api/quic_flag_utils.h"
#include "quiche/quic/platform/api/quic_flags.h"
#include "quiche/quic/platform/api/quic_logging.h"
#include "quiche/common/platform/api/quiche_mem_slice.h"

namespace quic {

namespace {

struct CompareOffset {
  bool operator()(const BufferedSlice& slice, QuicStreamOffset offset) const {
    return slice.offset + slice.slice.length() < offset;
  }
};

}  // namespace

BufferedSlice::BufferedSlice(quiche::QuicheMemSlice mem_slice,
                             QuicStreamOffset offset)
    : slice(std::move(mem_slice)), offset(offset) {}

BufferedSlice::BufferedSlice(BufferedSlice&& other) = default;

BufferedSlice& BufferedSlice::operator=(BufferedSlice&& other) = default;

BufferedSlice::~BufferedSlice() {}

QuicInterval<std::size_t> BufferedSlice::interval() const {
  const std::size_t length = slice.length();
  return QuicInterval<std::size_t>(offset, offset + length);
}

bool StreamPendingRetransmission::operator==(
    const StreamPendingRetransmission& other) const {
  return offset == other.offset && length == other.length;
}

QuicStreamSendBuffer::QuicStreamSendBuffer(
    quiche::QuicheBufferAllocator* allocator)
    : current_end_offset_(0),
      stream_offset_(0),
      allocator_(allocator),
      stream_bytes_written_(0),
      stream_bytes_outstanding_(0),
      write_index_(-1) {}

QuicStreamSendBuffer::~QuicStreamSendBuffer() {}

void QuicStreamSendBuffer::SaveStreamData(absl::string_view data) {
  QUICHE_DCHECK(!data.empty());

  // Latch the maximum data slice size.
  const QuicByteCount max_data_slice_size =
      GetQuicFlag(FLAGS_quic_send_buffer_max_data_slice_size);
  while (!data.empty()) {
    auto slice_len = std::min<absl::string_view::size_type>(
        data.length(), max_data_slice_size);
    auto buffer =
        quiche::QuicheBuffer::Copy(allocator_, data.substr(0, slice_len));
    SaveMemSlice(quiche::QuicheMemSlice(std::move(buffer)));

    data = data.substr(slice_len);
  }
}

void QuicStreamSendBuffer::SaveMemSlice(quiche::QuicheMemSlice slice) {
  QUIC_DVLOG(2) << "Save slice offset " << stream_offset_ << " length "
                << slice.length();
  if (slice.empty()) {
    QUIC_BUG(quic_bug_10853_1) << "Try to save empty MemSlice to send buffer.";
    return;
  }
  size_t length = slice.length();
  // Need to start the offsets at the right interval.
  if (interval_deque_.Empty()) {
    const QuicStreamOffset end = stream_offset_ + length;
    current_end_offset_ = std::max(current_end_offset_, end);
  }
  BufferedSlice bs = BufferedSlice(std::move(slice), stream_offset_);
  interval_deque_.PushBack(std::move(bs));
  stream_offset_ += length;
}

QuicByteCount QuicStreamSendBuffer::SaveMemSliceSpan(
    absl::Span<quiche::QuicheMemSlice> span) {
  QuicByteCount total = 0;
  for (quiche::QuicheMemSlice& slice : span) {
    if (slice.length() == 0) {
      // Skip empty slices.
      continue;
    }
    total += slice.length();
    SaveMemSlice(std::move(slice));
  }
  return total;
}

void QuicStreamSendBuffer::OnStreamDataConsumed(size_t bytes_consumed) {
  stream_bytes_written_ += bytes_consumed;
  stream_bytes_outstanding_ += bytes_consumed;
}

bool QuicStreamSendBuffer::WriteStreamData(QuicStreamOffset offset,
                                           QuicByteCount data_length,
                                           QuicDataWriter* writer) {
  QUIC_BUG_IF(quic_bug_12823_1, current_end_offset_ < offset)
      << "Tried to write data out of sequence. last_offset_end:"
      << current_end_offset_ << ", offset:" << offset;
  // The iterator returned from |interval_deque_| will automatically advance
  // the internal write index for the QuicIntervalDeque. The incrementing is
  // done in operator++.
  for (auto slice_it = interval_deque_.DataAt(offset);
       slice_it != interval_deque_.DataEnd(); ++slice_it) {
    if (data_length == 0 || offset < slice_it->offset) {
      break;
    }

    QuicByteCount slice_offset = offset - slice_it->offset;
    QuicByteCount available_bytes_in_slice =
        slice_it->slice.length() - slice_offset;
    QuicByteCount copy_length = std::min(data_length, available_bytes_in_slice);
    if (!writer->WriteBytes(slice_it->slice.data() + slice_offset,
                            copy_length)) {
      QUIC_BUG(quic_bug_10853_2) << "Writer fails to write.";
      return false;
    }
    offset += copy_length;
    data_length -= copy_length;
    const QuicStreamOffset new_end =
        slice_it->offset + slice_it->slice.length();
    current_end_offset_ = std::max(current_end_offset_, new_end);
  }
  return data_length == 0;
}

bool QuicStreamSendBuffer::OnStreamDataAcked(
    QuicStreamOffset offset, QuicByteCount data_length,
    QuicByteCount* newly_acked_length) {
  *newly_acked_length = 0;
  if (data_length == 0) {
    return true;
  }
  if (bytes_acked_.Empty() || offset >= bytes_acked_.rbegin()->max() ||
      bytes_acked_.IsDisjoint(
          QuicInterval<QuicStreamOffset>(offset, offset + data_length))) {
    // Optimization for the typical case, when all data is newly acked.
    if (stream_bytes_outstanding_ < data_length) {
      return false;
    }
    bytes_acked_.AddOptimizedForAppend(offset, offset + data_length);
    *newly_acked_length = data_length;
    stream_bytes_outstanding_ -= data_length;
    pending_retransmissions_.Difference(offset, offset + data_length);
    if (!FreeMemSlices(offset, offset + data_length)) {
      return false;
    }
    CleanUpBufferedSlices();
    return true;
  }
  // Exit if no new data gets acked.
  if (bytes_acked_.Contains(offset, offset + data_length)) {
    return true;
  }
  // Execute the slow path if newly acked data fill in existing holes.
  QuicIntervalSet<QuicStreamOffset> newly_acked(offset, offset + data_length);
  newly_acked.Difference(bytes_acked_);
  for (const auto& interval : newly_acked) {
    *newly_acked_length += (interval.max() - interval.min());
  }
  if (stream_bytes_outstanding_ < *newly_acked_length) {
    return false;
  }
  stream_bytes_outstanding_ -= *newly_acked_length;
  bytes_acked_.Add(offset, offset + data_length);
  pending_retransmissions_.Difference(offset, offset + data_length);
  if (newly_acked.Empty()) {
    return true;
  }
  if (!FreeMemSlices(newly_acked.begin()->min(), newly_acked.rbegin()->max())) {
    return false;
  }
  CleanUpBufferedSlices();
  return true;
}

void QuicStreamSendBuffer::OnStreamDataLost(QuicStreamOffset offset,
                                            QuicByteCount data_length) {
  if (data_length == 0) {
    return;
  }
  QuicIntervalSet<QuicStreamOffset> bytes_lost(offset, offset + data_length);
  bytes_lost.Difference(bytes_acked_);
  if (bytes_lost.Empty()) {
    return;
  }
  for (const auto& lost : bytes_lost) {
    pending_retransmissions_.Add(lost.min(), lost.max());
  }
}

void QuicStreamSendBuffer::OnStreamDataRetransmitted(
    QuicStreamOffset offset, QuicByteCount data_length) {
  if (data_length == 0) {
    return;
  }
  pending_retransmissions_.Difference(offset, offset + data_length);
}

bool QuicStreamSendBuffer::HasPendingRetransmission() const {
  return !pending_retransmissions_.Empty();
}

StreamPendingRetransmission QuicStreamSendBuffer::NextPendingRetransmission()
    const {
  if (HasPendingRetransmission()) {
    const auto pending = pending_retransmissions_.begin();
    return {pending->min(), pending->max() - pending->min()};
  }
  QUIC_BUG(quic_bug_10853_3)
      << "NextPendingRetransmission is called unexpected with no "
         "pending retransmissions.";
  return {0, 0};
}

bool QuicStreamSendBuffer::FreeMemSlices(QuicStreamOffset start,
                                         QuicStreamOffset end) {
  auto it = interval_deque_.DataBegin();
  if (it == interval_deque_.DataEnd() || it->slice.empty()) {
    QUIC_BUG(quic_bug_10853_4)
        << "Trying to ack stream data [" << start << ", " << end << "), "
        << (it == interval_deque_.DataEnd()
                ? "and there is no outstanding data."
                : "and the first slice is empty.");
    return false;
  }
  if (!it->interval().Contains(start)) {
    // Slow path that not the earliest outstanding data gets acked.
    it = std::lower_bound(interval_deque_.DataBegin(),
                          interval_deque_.DataEnd(), start, CompareOffset());
  }
  if (it == interval_deque_.DataEnd() || it->slice.empty()) {
    QUIC_BUG(quic_bug_10853_5)
        << "Offset " << start << " with iterator offset: " << it->offset
        << (it == interval_deque_.DataEnd() ? " does not exist."
                                            : " has already been acked.");
    return false;
  }
  for (; it != interval_deque_.DataEnd(); ++it) {
    if (it->offset >= end) {
      break;
    }
    if (!it->slice.empty() &&
        bytes_acked_.Contains(it->offset, it->offset + it->slice.length())) {
      it->slice.Reset();
    }
  }
  return true;
}

void QuicStreamSendBuffer::CleanUpBufferedSlices() {
  while (!interval_deque_.Empty() &&
         interval_deque_.DataBegin()->slice.empty()) {
    QUIC_BUG_IF(quic_bug_12823_2,
                interval_deque_.DataBegin()->offset > current_end_offset_)
        << "Fail to pop front from interval_deque_. Front element contained "
           "a slice whose data has not all be written. Front offset "
        << interval_deque_.DataBegin()->offset << " length "
        << interval_deque_.DataBegin()->slice.length();
    interval_deque_.PopFront();
  }
}

bool QuicStreamSendBuffer::IsStreamDataOutstanding(
    QuicStreamOffset offset, QuicByteCount data_length) const {
  return data_length > 0 &&
         !bytes_acked_.Contains(offset, offset + data_length);
}

size_t QuicStreamSendBuffer::size() const { return interval_deque_.Size(); }

}  // namespace quic