summaryrefslogtreecommitdiff
path: root/chromium/net/third_party/quiche/src/quiche/quic/core/io/quic_all_event_loops_test.cc
blob: ed6282476265b6e917adb8064dc77b1f49c3db4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
// Copyright 2022 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// A universal test for all event loops supported by the build of QUICHE in
// question.
//
// This test is very similar to QuicPollEventLoopTest, however, there are some
// notable differences:
//   (1) This test uses the real clock, since the event loop implementation may
//       not support accepting a mock clock.
//   (2) This test covers both level-triggered and edge-triggered event loops.

#include <fcntl.h>
#include <unistd.h>

#include "absl/cleanup/cleanup.h"
#include "absl/memory/memory.h"
#include "absl/strings/string_view.h"
#include "quiche/quic/core/io/quic_default_event_loop.h"
#include "quiche/quic/core/io/quic_event_loop.h"
#include "quiche/quic/core/quic_alarm.h"
#include "quiche/quic/core/quic_alarm_factory.h"
#include "quiche/quic/core/quic_default_clock.h"
#include "quiche/quic/core/quic_time.h"
#include "quiche/quic/platform/api/quic_test.h"
#include "quiche/quic/test_tools/quic_test_utils.h"

namespace quic::test {
namespace {

using testing::_;
using testing::AtMost;

MATCHER_P(HasFlagSet, value, "Checks a flag in a bit mask") {
  return (arg & value) != 0;
}

constexpr QuicSocketEventMask kAllEvents =
    kSocketEventReadable | kSocketEventWritable | kSocketEventError;

class MockQuicSocketEventListener : public QuicSocketEventListener {
 public:
  MOCK_METHOD(void, OnSocketEvent,
              (QuicEventLoop* /*event_loop*/, QuicUdpSocketFd /*fd*/,
               QuicSocketEventMask /*events*/),
              (override));
};

class MockDelegate : public QuicAlarm::Delegate {
 public:
  QuicConnectionContext* GetConnectionContext() override { return nullptr; }
  MOCK_METHOD(void, OnAlarm, (), (override));
};

void SetNonBlocking(int fd) {
  QUICHE_CHECK(::fcntl(fd, F_SETFL, ::fcntl(fd, F_GETFL) | O_NONBLOCK) == 0)
      << "Failed to mark FD non-blocking, errno: " << errno;
}

class QuicEventLoopFactoryTest
    : public QuicTestWithParam<QuicEventLoopFactory*> {
 public:
  QuicEventLoopFactoryTest()
      : loop_(GetParam()->Create(&clock_)),
        factory_(loop_->CreateAlarmFactory()) {
    int fds[2];
    int result = ::pipe(fds);
    QUICHE_CHECK(result >= 0) << "Failed to create a pipe, errno: " << errno;
    read_fd_ = fds[0];
    write_fd_ = fds[1];

    SetNonBlocking(read_fd_);
    SetNonBlocking(write_fd_);
  }

  ~QuicEventLoopFactoryTest() {
    close(read_fd_);
    close(write_fd_);
  }

  std::pair<std::unique_ptr<QuicAlarm>, MockDelegate*> CreateAlarm() {
    auto delegate = std::make_unique<testing::StrictMock<MockDelegate>>();
    MockDelegate* delegate_unowned = delegate.get();
    auto alarm = absl::WrapUnique(factory_->CreateAlarm(delegate.release()));
    return std::make_pair(std::move(alarm), delegate_unowned);
  }

  template <typename Condition>
  void RunEventLoopUntil(Condition condition, QuicTime::Delta timeout) {
    const QuicTime end = clock_.Now() + timeout;
    while (!condition() && clock_.Now() < end) {
      loop_->RunEventLoopOnce(end - clock_.Now());
    }
  }

 protected:
  QuicDefaultClock clock_;
  std::unique_ptr<QuicEventLoop> loop_;
  std::unique_ptr<QuicAlarmFactory> factory_;
  int read_fd_;
  int write_fd_;
};

std::string GetTestParamName(
    ::testing::TestParamInfo<QuicEventLoopFactory*> info) {
  return EscapeTestParamName(info.param->GetName());
}

INSTANTIATE_TEST_SUITE_P(QuicEventLoopFactoryTests, QuicEventLoopFactoryTest,
                         ::testing::ValuesIn(GetAllSupportedEventLoops()),
                         GetTestParamName);

TEST_P(QuicEventLoopFactoryTest, NothingHappens) {
  testing::StrictMock<MockQuicSocketEventListener> listener;
  ASSERT_TRUE(loop_->RegisterSocket(read_fd_, kAllEvents, &listener));
  ASSERT_TRUE(loop_->RegisterSocket(write_fd_, kAllEvents, &listener));

  // Attempt double-registration.
  EXPECT_FALSE(loop_->RegisterSocket(write_fd_, kAllEvents, &listener));

  EXPECT_CALL(listener, OnSocketEvent(_, write_fd_, kSocketEventWritable));
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(4));
  // Expect no further calls.
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(5));
}

TEST_P(QuicEventLoopFactoryTest, RearmWriter) {
  testing::StrictMock<MockQuicSocketEventListener> listener;
  ASSERT_TRUE(loop_->RegisterSocket(write_fd_, kAllEvents, &listener));

  if (loop_->SupportsEdgeTriggered()) {
    EXPECT_CALL(listener, OnSocketEvent(_, write_fd_, kSocketEventWritable))
        .Times(1);
    loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
    loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
  } else {
    EXPECT_CALL(listener, OnSocketEvent(_, write_fd_, kSocketEventWritable))
        .Times(2);
    loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
    ASSERT_TRUE(loop_->RearmSocket(write_fd_, kSocketEventWritable));
    loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
  }
}

TEST_P(QuicEventLoopFactoryTest, Readable) {
  testing::StrictMock<MockQuicSocketEventListener> listener;
  ASSERT_TRUE(loop_->RegisterSocket(read_fd_, kAllEvents, &listener));

  ASSERT_EQ(4, write(write_fd_, "test", 4));
  EXPECT_CALL(listener, OnSocketEvent(_, read_fd_, kSocketEventReadable));
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
  // Expect no further calls.
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
}

// A common pattern: read a limited amount of data from an FD, and expect to
// read the remainder on the next operation.
TEST_P(QuicEventLoopFactoryTest, ArtificialNotifyFromCallback) {
  testing::StrictMock<MockQuicSocketEventListener> listener;
  ASSERT_TRUE(loop_->RegisterSocket(read_fd_, kSocketEventReadable, &listener));

  constexpr absl::string_view kData = "test test test test test test test ";
  constexpr size_t kTimes = kData.size() / 5;
  ASSERT_EQ(kData.size(), write(write_fd_, kData.data(), kData.size()));
  EXPECT_CALL(listener, OnSocketEvent(_, read_fd_, kSocketEventReadable))
      .Times(loop_->SupportsEdgeTriggered() ? (kTimes + 1) : kTimes)
      .WillRepeatedly([&]() {
        char buf[5];
        int read_result = read(read_fd_, buf, sizeof(buf));
        if (read_result > 0) {
          ASSERT_EQ(read_result, 5);
          if (loop_->SupportsEdgeTriggered()) {
            EXPECT_TRUE(
                loop_->ArtificiallyNotifyEvent(read_fd_, kSocketEventReadable));
          } else {
            EXPECT_TRUE(loop_->RearmSocket(read_fd_, kSocketEventReadable));
          }
        } else {
          EXPECT_EQ(errno, EAGAIN);
        }
      });
  for (size_t i = 0; i < kTimes + 2; i++) {
    loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
  }
}

TEST_P(QuicEventLoopFactoryTest, WriterUnblocked) {
  testing::StrictMock<MockQuicSocketEventListener> listener;
  ASSERT_TRUE(loop_->RegisterSocket(write_fd_, kAllEvents, &listener));

  EXPECT_CALL(listener, OnSocketEvent(_, write_fd_, kSocketEventWritable));
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));

  int io_result;
  std::string data(2048, 'a');
  do {
    io_result = write(write_fd_, data.data(), data.size());
  } while (io_result > 0);
  ASSERT_EQ(errno, EAGAIN);

  // Rearm if necessary and expect no immediate calls.
  if (!loop_->SupportsEdgeTriggered()) {
    ASSERT_TRUE(loop_->RearmSocket(write_fd_, kSocketEventWritable));
  }
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));

  EXPECT_CALL(listener, OnSocketEvent(_, write_fd_, kSocketEventWritable));
  do {
    io_result = read(read_fd_, data.data(), data.size());
  } while (io_result > 0);
  ASSERT_EQ(errno, EAGAIN);
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
}

TEST_P(QuicEventLoopFactoryTest, ArtificialEvent) {
  testing::StrictMock<MockQuicSocketEventListener> listener;
  ASSERT_TRUE(loop_->RegisterSocket(read_fd_, kAllEvents, &listener));
  ASSERT_TRUE(loop_->RegisterSocket(write_fd_, kAllEvents, &listener));

  ASSERT_TRUE(loop_->ArtificiallyNotifyEvent(read_fd_, kSocketEventReadable));

  EXPECT_CALL(listener, OnSocketEvent(_, read_fd_, kSocketEventReadable));
  EXPECT_CALL(listener, OnSocketEvent(_, write_fd_, kSocketEventWritable));
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
}

TEST_P(QuicEventLoopFactoryTest, Unregister) {
  testing::StrictMock<MockQuicSocketEventListener> listener;
  ASSERT_TRUE(loop_->RegisterSocket(write_fd_, kAllEvents, &listener));
  ASSERT_TRUE(loop_->UnregisterSocket(write_fd_));

  // Expect nothing to happen.
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));

  EXPECT_FALSE(loop_->UnregisterSocket(write_fd_));
  if (!loop_->SupportsEdgeTriggered()) {
    EXPECT_FALSE(loop_->RearmSocket(write_fd_, kSocketEventWritable));
  }
  EXPECT_FALSE(loop_->ArtificiallyNotifyEvent(write_fd_, kSocketEventWritable));
}

TEST_P(QuicEventLoopFactoryTest, UnregisterInsideEventHandler) {
  testing::StrictMock<MockQuicSocketEventListener> listener;
  ASSERT_TRUE(loop_->RegisterSocket(read_fd_, kAllEvents, &listener));
  ASSERT_TRUE(loop_->RegisterSocket(write_fd_, kAllEvents, &listener));

  // We are not guaranteed the order in which those events will happen, so we
  // try to accommodate both possibilities.
  int total_called = 0;
  EXPECT_CALL(listener, OnSocketEvent(_, read_fd_, kSocketEventReadable))
      .Times(AtMost(1))
      .WillOnce([&]() {
        ++total_called;
        ASSERT_TRUE(loop_->UnregisterSocket(write_fd_));
      });
  EXPECT_CALL(listener, OnSocketEvent(_, write_fd_, kSocketEventWritable))
      .Times(AtMost(1))
      .WillOnce([&]() {
        ++total_called;
        ASSERT_TRUE(loop_->UnregisterSocket(read_fd_));
      });
  ASSERT_TRUE(loop_->ArtificiallyNotifyEvent(read_fd_, kSocketEventReadable));
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
  EXPECT_EQ(total_called, 1);
}

TEST_P(QuicEventLoopFactoryTest, UnregisterSelfInsideEventHandler) {
  testing::StrictMock<MockQuicSocketEventListener> listener;
  ASSERT_TRUE(loop_->RegisterSocket(write_fd_, kAllEvents, &listener));

  EXPECT_CALL(listener, OnSocketEvent(_, write_fd_, kSocketEventWritable))
      .WillOnce([&]() { ASSERT_TRUE(loop_->UnregisterSocket(write_fd_)); });
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(1));
}

// Creates a bidirectional socket and tests its behavior when it's both readable
// and writable.
TEST_P(QuicEventLoopFactoryTest, ReadWriteSocket) {
  int sockets[2];
  ASSERT_EQ(socketpair(AF_UNIX, SOCK_STREAM, 0, sockets), 0);
  auto close_sockets = absl::MakeCleanup([&]() {
    close(sockets[0]);
    close(sockets[1]);
  });
  SetNonBlocking(sockets[0]);
  SetNonBlocking(sockets[1]);

  testing::StrictMock<MockQuicSocketEventListener> listener;
  ASSERT_TRUE(loop_->RegisterSocket(sockets[0], kAllEvents, &listener));
  EXPECT_CALL(listener, OnSocketEvent(_, sockets[0], kSocketEventWritable));
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(4));

  int io_result;
  std::string data(2048, 'a');
  do {
    io_result = write(sockets[0], data.data(), data.size());
  } while (io_result > 0);
  ASSERT_EQ(errno, EAGAIN);

  if (!loop_->SupportsEdgeTriggered()) {
    ASSERT_TRUE(loop_->RearmSocket(sockets[0], kSocketEventWritable));
  }
  // We are not write-blocked, so this should not notify.
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(4));

  EXPECT_GT(write(sockets[1], data.data(), data.size()), 0);
  EXPECT_CALL(listener, OnSocketEvent(_, sockets[0], kSocketEventReadable));
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(4));

  do {
    char buffer[2048];
    io_result = read(sockets[1], buffer, sizeof(buffer));
  } while (io_result > 0);
  ASSERT_EQ(errno, EAGAIN);
  // Here, we can receive either "writable" or "readable and writable"
  // notification depending on the backend in question.
  EXPECT_CALL(listener,
              OnSocketEvent(_, sockets[0], HasFlagSet(kSocketEventWritable)));
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(4));
}

TEST_P(QuicEventLoopFactoryTest, AlarmInFuture) {
  constexpr auto kAlarmTimeout = QuicTime::Delta::FromMilliseconds(5);
  auto [alarm, delegate] = CreateAlarm();

  alarm->Set(clock_.Now() + kAlarmTimeout);

  bool alarm_called = false;
  EXPECT_CALL(*delegate, OnAlarm()).WillOnce([&]() { alarm_called = true; });
  RunEventLoopUntil([&]() { return alarm_called; },
                    QuicTime::Delta::FromMilliseconds(100));
}

TEST_P(QuicEventLoopFactoryTest, AlarmsInPast) {
  constexpr auto kAlarmTimeout = QuicTime::Delta::FromMilliseconds(5);
  auto [alarm1, delegate1] = CreateAlarm();
  auto [alarm2, delegate2] = CreateAlarm();

  alarm1->Set(clock_.Now() - 2 * kAlarmTimeout);
  alarm2->Set(clock_.Now() - kAlarmTimeout);

  {
    testing::InSequence s;
    EXPECT_CALL(*delegate1, OnAlarm());
    EXPECT_CALL(*delegate2, OnAlarm());
  }
  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(100));
}

TEST_P(QuicEventLoopFactoryTest, AlarmCancelled) {
  constexpr auto kAlarmTimeout = QuicTime::Delta::FromMilliseconds(5);
  auto [alarm, delegate] = CreateAlarm();

  alarm->Set(clock_.Now() + kAlarmTimeout);
  alarm->Cancel();

  loop_->RunEventLoopOnce(kAlarmTimeout * 2);
}

TEST_P(QuicEventLoopFactoryTest, AlarmCancelledAndSetAgain) {
  constexpr auto kAlarmTimeout = QuicTime::Delta::FromMilliseconds(5);
  auto [alarm, delegate] = CreateAlarm();

  alarm->Set(clock_.Now() + kAlarmTimeout);
  alarm->Cancel();
  alarm->Set(clock_.Now() + 2 * kAlarmTimeout);

  bool alarm_called = false;
  EXPECT_CALL(*delegate, OnAlarm()).WillOnce([&]() { alarm_called = true; });
  RunEventLoopUntil([&]() { return alarm_called; },
                    QuicTime::Delta::FromMilliseconds(100));
}

TEST_P(QuicEventLoopFactoryTest, AlarmCancelsAnotherAlarm) {
  constexpr auto kAlarmTimeout = QuicTime::Delta::FromMilliseconds(5);
  auto [alarm1_ptr, delegate1] = CreateAlarm();
  auto [alarm2_ptr, delegate2] = CreateAlarm();

  QuicAlarm& alarm1 = *alarm1_ptr;
  QuicAlarm& alarm2 = *alarm2_ptr;
  alarm1.Set(clock_.Now() - kAlarmTimeout);
  alarm2.Set(clock_.Now() - kAlarmTimeout);

  int alarms_called = 0;
  // Since the order in which alarms are cancelled is not well-determined, make
  // each one cancel another.
  EXPECT_CALL(*delegate1, OnAlarm()).Times(AtMost(1)).WillOnce([&]() {
    alarm2.Cancel();
    ++alarms_called;
  });
  EXPECT_CALL(*delegate2, OnAlarm()).Times(AtMost(1)).WillOnce([&]() {
    alarm1.Cancel();
    ++alarms_called;
  });
  // Run event loop twice to ensure the second alarm is not called after two
  // iterations.
  loop_->RunEventLoopOnce(kAlarmTimeout * 2);
  loop_->RunEventLoopOnce(kAlarmTimeout * 2);
  EXPECT_EQ(alarms_called, 1);
}

TEST_P(QuicEventLoopFactoryTest, DestructorWithPendingAlarm) {
  constexpr auto kAlarmTimeout = QuicTime::Delta::FromMilliseconds(5);
  auto [alarm1_ptr, delegate1] = CreateAlarm();

  alarm1_ptr->Set(clock_.Now() + kAlarmTimeout);
  // Expect destructor to cleanly unregister itself before the event loop is
  // gone.
}

TEST_P(QuicEventLoopFactoryTest, NegativeTimeout) {
  constexpr auto kAlarmTimeout = QuicTime::Delta::FromSeconds(300);
  auto [alarm1_ptr, delegate1] = CreateAlarm();

  alarm1_ptr->Set(clock_.Now() + kAlarmTimeout);

  loop_->RunEventLoopOnce(QuicTime::Delta::FromMilliseconds(-1));
}

TEST_P(QuicEventLoopFactoryTest, ScheduleAlarmInPastFromInsideAlarm) {
  constexpr auto kAlarmTimeout = QuicTime::Delta::FromMilliseconds(20);
  auto [alarm1_ptr, delegate1] = CreateAlarm();
  auto [alarm2_ptr, delegate2] = CreateAlarm();

  alarm1_ptr->Set(clock_.Now() - kAlarmTimeout);
  EXPECT_CALL(*delegate1, OnAlarm())
      .WillOnce([&, alarm2_unowned = alarm2_ptr.get()]() {
        alarm2_unowned->Set(clock_.Now() - 2 * kAlarmTimeout);
      });
  bool fired = false;
  EXPECT_CALL(*delegate2, OnAlarm()).WillOnce([&]() { fired = true; });

  RunEventLoopUntil([&]() { return fired; },
                    QuicTime::Delta::FromMilliseconds(100));
}

}  // namespace
}  // namespace quic::test